Artículos de revistas sobre el tema "Deep supervised learning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Deep supervised learning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Kim, Taeheon, Jaewon Hur y Youkyung Han. "Very High-Resolution Satellite Image Registration Based on Self-supervised Deep Learning". Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 41, n.º 4 (31 de agosto de 2023): 217–25. http://dx.doi.org/10.7848/ksgpc.2023.41.4.217.
Texto completoAlZuhair, Mona Suliman, Mohamed Maher Ben Ismail y Ouiem Bchir. "Soft Semi-Supervised Deep Learning-Based Clustering". Applied Sciences 13, n.º 17 (27 de agosto de 2023): 9673. http://dx.doi.org/10.3390/app13179673.
Texto completoWei, Xiang, Xiaotao Wei, Xiangyuan Kong, Siyang Lu, Weiwei Xing y Wei Lu. "FMixCutMatch for semi-supervised deep learning". Neural Networks 133 (enero de 2021): 166–76. http://dx.doi.org/10.1016/j.neunet.2020.10.018.
Texto completoZhou, Shusen, Hailin Zou, Chanjuan Liu, Mujun Zang, Zhiwang Zhang y Jun Yue. "Deep extractive networks for supervised learning". Optik 127, n.º 20 (octubre de 2016): 9008–19. http://dx.doi.org/10.1016/j.ijleo.2016.07.007.
Texto completoFong, A. C. M. y G. Hong. "Boosted Supervised Intensional Learning Supported by Unsupervised Learning". International Journal of Machine Learning and Computing 11, n.º 2 (marzo de 2021): 98–102. http://dx.doi.org/10.18178/ijmlc.2021.11.2.1020.
Texto completoHu, Yu y Hongmin Cai. "Hypergraph-Supervised Deep Subspace Clustering". Mathematics 9, n.º 24 (15 de diciembre de 2021): 3259. http://dx.doi.org/10.3390/math9243259.
Texto completoFu, Zheren, Yan Li, Zhendong Mao, Quan Wang y Yongdong Zhang. "Deep Metric Learning with Self-Supervised Ranking". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 2 (18 de mayo de 2021): 1370–78. http://dx.doi.org/10.1609/aaai.v35i2.16226.
Texto completoDutta, Ujjal Kr, Mehrtash Harandi y C. Chandra Shekhar. "Semi-Supervised Metric Learning: A Deep Resurrection". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 8 (18 de mayo de 2021): 7279–87. http://dx.doi.org/10.1609/aaai.v35i8.16894.
Texto completoBharati, Aparna, Richa Singh, Mayank Vatsa y Kevin W. Bowyer. "Detecting Facial Retouching Using Supervised Deep Learning". IEEE Transactions on Information Forensics and Security 11, n.º 9 (septiembre de 2016): 1903–13. http://dx.doi.org/10.1109/tifs.2016.2561898.
Texto completoMathilde Caron. "Self-supervised learning of deep visual representations". Bulletin 1024, n.º 21 (abril de 2023): 171–72. http://dx.doi.org/10.48556/sif.1024.21.171.
Texto completoQin, Shanshan, Nayantara Mudur y Cengiz Pehlevan. "Contrastive Similarity Matching for Supervised Learning". Neural Computation 33, n.º 5 (13 de abril de 2021): 1300–1328. http://dx.doi.org/10.1162/neco_a_01374.
Texto completoAlzahrani, Theiab, Baidaa Al-Bander y Waleed Al-Nuaimy. "Deep Learning Models for Automatic Makeup Detection". AI 2, n.º 4 (14 de octubre de 2021): 497–511. http://dx.doi.org/10.3390/ai2040031.
Texto completoWu, Haiping, Khimya Khetarpal y Doina Precup. "Self-Supervised Attention-Aware Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 12 (18 de mayo de 2021): 10311–19. http://dx.doi.org/10.1609/aaai.v35i12.17235.
Texto completoGupta, Jaya, Sunil Pathak y Gireesh Kumar. "Deep Learning (CNN) and Transfer Learning: A Review". Journal of Physics: Conference Series 2273, n.º 1 (1 de mayo de 2022): 012029. http://dx.doi.org/10.1088/1742-6596/2273/1/012029.
Texto completoGupta, Jaya, Sunil Pathak y Gireesh Kumar. "Deep Learning (CNN) and Transfer Learning: A Review". Journal of Physics: Conference Series 2273, n.º 1 (1 de mayo de 2022): 012029. http://dx.doi.org/10.1088/1742-6596/2273/1/012029.
Texto completoGupta, Ashwani y Utpal Sharma. "Deep Learning-Based Aspect Term Extraction for Sentiment Analysis in Hindi". Indian Journal Of Science And Technology 17, n.º 7 (15 de febrero de 2024): 625–34. http://dx.doi.org/10.17485/ijst/v17i7.2766.
Texto completoKim, Chayoung. "Deep Q-Learning Network with Bayesian-Based Supervised Expert Learning". Symmetry 14, n.º 10 (13 de octubre de 2022): 2134. http://dx.doi.org/10.3390/sym14102134.
Texto completoLin, Yi-Nan, Tsang-Yen Hsieh, Cheng-Ying Yang, Victor RL Shen, Tony Tong-Ying Juang y Wen-Hao Chen. "Deep Petri nets of unsupervised and supervised learning". Measurement and Control 53, n.º 7-8 (9 de junio de 2020): 1267–77. http://dx.doi.org/10.1177/0020294020923375.
Texto completoYin, Chunwu y Zhanbo Chen. "Developing Sustainable Classification of Diseases via Deep Learning and Semi-Supervised Learning". Healthcare 8, n.º 3 (24 de agosto de 2020): 291. http://dx.doi.org/10.3390/healthcare8030291.
Texto completoChong, De Wei, Kenny y Abel Yang. "Photometric Redshift Analysis using Supervised Learning Algorithms and Deep Learning". EPJ Web of Conferences 206 (2019): 09006. http://dx.doi.org/10.1051/epjconf/201920609006.
Texto completoChen, Chong, Ying Liu, Maneesh Kumar, Jian Qin y Yunxia Ren. "Energy consumption modelling using deep learning embedded semi-supervised learning". Computers & Industrial Engineering 135 (septiembre de 2019): 757–65. http://dx.doi.org/10.1016/j.cie.2019.06.052.
Texto completoLe, Linh, Ying Xie y Vijay V. Raghavan. "KNN Loss and Deep KNN". Fundamenta Informaticae 182, n.º 2 (30 de septiembre de 2021): 95–110. http://dx.doi.org/10.3233/fi-2021-2068.
Texto completoGuo, Yuejun, Orhan Ermis, Qiang Tang, Hoang Trang y Alexandre De Oliveira. "An Empirical Study of Deep Learning-Based SS7 Attack Detection". Information 14, n.º 9 (16 de septiembre de 2023): 509. http://dx.doi.org/10.3390/info14090509.
Texto completoNafea, Ahmed Adil, Saeed Amer Alameri, Russel R. Majeed, Meaad Ali Khalaf y Mohammed M. AL-Ani. "A Short Review on Supervised Machine Learning and Deep Learning Techniques in Computer Vision". Babylonian Journal of Machine Learning 2024 (11 de febrero de 2024): 48–55. http://dx.doi.org/10.58496/bjml/2024/004.
Texto completoLiu, MengYang, MingJun Li y XiaoYang Zhang. "The Application of the Unsupervised Migration Method Based on Deep Learning Model in the Marketing Oriented Allocation of High Level Accounting Talents". Computational Intelligence and Neuroscience 2022 (6 de junio de 2022): 1–10. http://dx.doi.org/10.1155/2022/5653942.
Texto completoLiu, MengYang, MingJun Li y XiaoYang Zhang. "The Application of the Unsupervised Migration Method Based on Deep Learning Model in the Marketing Oriented Allocation of High Level Accounting Talents". Computational Intelligence and Neuroscience 2022 (6 de junio de 2022): 1–10. http://dx.doi.org/10.1155/2022/5653942.
Texto completoShwartz Ziv, Ravid y Yann LeCun. "To Compress or Not to Compress—Self-Supervised Learning and Information Theory: A Review". Entropy 26, n.º 3 (12 de marzo de 2024): 252. http://dx.doi.org/10.3390/e26030252.
Texto completoWang, Guo-Hua y Jianxin Wu. "Repetitive Reprediction Deep Decipher for Semi-Supervised Learning". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 6170–77. http://dx.doi.org/10.1609/aaai.v34i04.6082.
Texto completoAugustine, Tanya N. "Weakly-supervised deep learning models in computational pathology". eBioMedicine 81 (julio de 2022): 104117. http://dx.doi.org/10.1016/j.ebiom.2022.104117.
Texto completoKang, Xudong, Binbin Zhuo y Puhong Duan. "Semi-supervised deep learning for hyperspectral image classification". Remote Sensing Letters 10, n.º 4 (3 de enero de 2019): 353–62. http://dx.doi.org/10.1080/2150704x.2018.1557787.
Texto completoAugusta, Carolyn, Rob Deardon y Graham Taylor. "Deep learning for supervised classification of spatial epidemics". Spatial and Spatio-temporal Epidemiology 29 (junio de 2019): 187–98. http://dx.doi.org/10.1016/j.sste.2018.08.002.
Texto completoZeng, Zeng, Yang Xulei, Yu Qiyun, Yao Meng y Zhang Le. "SeSe-Net: Self-Supervised deep learning for segmentation". Pattern Recognition Letters 128 (diciembre de 2019): 23–29. http://dx.doi.org/10.1016/j.patrec.2019.08.002.
Texto completoIto, Ryo, Ken Nakae, Junichi Hata, Hideyuki Okano y Shin Ishii. "Semi-supervised deep learning of brain tissue segmentation". Neural Networks 116 (agosto de 2019): 25–34. http://dx.doi.org/10.1016/j.neunet.2019.03.014.
Texto completoTang, Xin, Fang Guo, Jianbing Shen y Tianyuan Du. "Facial landmark detection by semi-supervised deep learning". Neurocomputing 297 (julio de 2018): 22–32. http://dx.doi.org/10.1016/j.neucom.2018.01.080.
Texto completoLi, Zhun, ByungSoo Ko y Ho-Jin Choi. "Naive semi-supervised deep learning using pseudo-label". Peer-to-Peer Networking and Applications 12, n.º 5 (10 de diciembre de 2018): 1358–68. http://dx.doi.org/10.1007/s12083-018-0702-9.
Texto completoXiang, Xuezhi, Mingliang Zhai, Rongfang Zhang, Yulong Qiao y Abdulmotaleb El Saddik. "Deep Optical Flow Supervised Learning With Prior Assumptions". IEEE Access 6 (2018): 43222–32. http://dx.doi.org/10.1109/access.2018.2863233.
Texto completoHu, Yaxian, Senlin Luo, Longfei Han, Limin Pan y Tiemei Zhang. "Deep supervised learning with mixture of neural networks". Artificial Intelligence in Medicine 102 (enero de 2020): 101764. http://dx.doi.org/10.1016/j.artmed.2019.101764.
Texto completoLingyi, Jiang, Zheng Yifeng, Chen Che, Li Guohe y Zhang Wenjie. "Review of optimization methods for supervised deep learning". Journal of Image and Graphics 28, n.º 4 (2023): 963–83. http://dx.doi.org/10.11834/jig.211139.
Texto completoHu, Peng, Liangli Zhen, Xi Peng, Hongyuan Zhu, Jie Lin, Xu Wang y Dezhong Peng. "Deep Supervised Multi-View Learning With Graph Priors". IEEE Transactions on Image Processing 33 (2024): 123–33. http://dx.doi.org/10.1109/tip.2023.3335825.
Texto completoWeikang, Xiang, Zhou Quan, Cui Jingcheng, Mo Zhiyi, Wu Xiaofu, Ou Weihua, Wang Jingdong y Liu Wenyu. "Weakly supervised semantic segmentation based on deep learning". Journal of Image and Graphics 29, n.º 5 (2024): 1146–68. http://dx.doi.org/10.11834/jig.230628.
Texto completoAversa, Rossella, Piero Coronica, Cristiano De Nobili y Stefano Cozzini. "Deep Learning, Feature Learning, and Clustering Analysis for SEM Image Classification". Data Intelligence 2, n.º 4 (octubre de 2020): 513–28. http://dx.doi.org/10.1162/dint_a_00062.
Texto completoEpstein, Sean C., Timothy J. P. Bray, Margaret Hall-Craggs y Hui Zhang. "Choice of training label matters: how to best use deep learning for quantitative MRI parameter estimation". Machine Learning for Biomedical Imaging 2, January 2024 (23 de enero de 2024): 586–610. http://dx.doi.org/10.59275/j.melba.2024-geb5.
Texto completoPrashant Krishnan, V., S. Rajarajeswari, Venkat Krishnamohan, Vivek Chandra Sheel y R. Deepak. "Music Generation Using Deep Learning Techniques". Journal of Computational and Theoretical Nanoscience 17, n.º 9 (1 de julio de 2020): 3983–87. http://dx.doi.org/10.1166/jctn.2020.9003.
Texto completoZheng, Huan, Tongyao Pang y Hui Ji. "Unsupervised Deep Video Denoising with Untrained Network". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 3 (26 de junio de 2023): 3651–59. http://dx.doi.org/10.1609/aaai.v37i3.25476.
Texto completoSong, Jingkuan, Lianli Gao, Fuhao Zou, Yan Yan y Nicu Sebe. "Deep and fast: Deep learning hashing with semi-supervised graph construction". Image and Vision Computing 55 (noviembre de 2016): 101–8. http://dx.doi.org/10.1016/j.imavis.2016.02.005.
Texto completoVanyan, Ani y Hrant Khachatrian. "Deep Semi-Supervised Image Classification Algorithms: a Survey". JUCS - Journal of Universal Computer Science 27, n.º 12 (28 de diciembre de 2021): 1390–407. http://dx.doi.org/10.3897/jucs.77029.
Texto completoTekleselassie, Hailye. "A Deep Learning Approach for DDoS Attack Detection Using Supervised Learning". MATEC Web of Conferences 348 (2021): 01012. http://dx.doi.org/10.1051/matecconf/202134801012.
Texto completoAdke, Shrinidhi, Changying Li, Khaled M. Rasheed y Frederick W. Maier. "Supervised and Weakly Supervised Deep Learning for Segmentation and Counting of Cotton Bolls Using Proximal Imagery". Sensors 22, n.º 10 (12 de mayo de 2022): 3688. http://dx.doi.org/10.3390/s22103688.
Texto completoLi, Ji, Yuesong Nan y Hui Ji. "Un-supervised learning for blind image deconvolution via Monte-Carlo sampling". Inverse Problems 38, n.º 3 (11 de febrero de 2022): 035012. http://dx.doi.org/10.1088/1361-6420/ac4ede.
Texto completoNisha.C.M y N. Thangarasu. "Deep learning algorithms and their relevance: A review". International Journal of Data Informatics and Intelligent Computing 2, n.º 4 (9 de diciembre de 2023): 1–10. http://dx.doi.org/10.59461/ijdiic.v2i4.78.
Texto completo