Artículos de revistas sobre el tema "Deep Learning, Computer Vision, Object Detection"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Deep Learning, Computer Vision, Object Detection".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Poojitha, L. "Anomalous Object Detection with Deep Learning". International Journal for Research in Applied Science and Engineering Technology 10, n.º 6 (30 de junio de 2022): 3227–32. http://dx.doi.org/10.22214/ijraset.2022.44581.
Texto completoSingh, Baljeet, Nitin Kumar, Irshad Ahmed y Karun Yadav. "Real-Time Object Detection Using Deep Learning". International Journal for Research in Applied Science and Engineering Technology 10, n.º 5 (31 de mayo de 2022): 3159–60. http://dx.doi.org/10.22214/ijraset.2022.42820.
Texto completoPernando, Yonky, Eka Lia Febrianti, Ilwan Syafrinal, Yuni Roza y Ummul Fitri Afifah. "DEEP LEARNING FOR FACES ON ORPHANAGE CHILDREN FACE DETECTION". JURTEKSI (Jurnal Teknologi dan Sistem Informasi) 9, n.º 1 (16 de diciembre de 2022): 25–32. http://dx.doi.org/10.33330/jurteksi.v9i1.1858.
Texto completoSingh, Ankita. "Face Mask Detection using Deep Learning to Manage Pandemic Guidelines". Journal of Management and Service Science (JMSS) 1, n.º 2 (2021): 1–21. http://dx.doi.org/10.54060/jmss/001.02.003.
Texto completoZhu, Juncai, Zhizhong Wang, Songwei Wang y Shuli Chen. "Moving Object Detection Based on Background Compensation and Deep Learning". Symmetry 12, n.º 12 (27 de noviembre de 2020): 1965. http://dx.doi.org/10.3390/sym12121965.
Texto completoTaralathasri, Bobburi, Dammati Vidya Sri, Gadidammalla Narendra Kumar, Annam Subbarao y Palli R. Krishna Prasad. "REAL TIME OBJECT DETECTION USING YOLO ALGORITHM". International Journal of Computer Science and Mobile Computing 10, n.º 7 (30 de julio de 2021): 61–67. http://dx.doi.org/10.47760/ijcsmc.2021.v10i07.009.
Texto completoJyothi, Madapati Asha y Mr M. Kalidas. "Real Time Smart Object Detection using Machine Learning". International Journal for Research in Applied Science and Engineering Technology 10, n.º 11 (30 de noviembre de 2022): 212–17. http://dx.doi.org/10.22214/ijraset.2022.47281.
Texto completoKumar, Aayush, Amit Kumar, Avanish Chandra y Indira Adak. "Custom Object Detection and Analysis in Real Time: YOLOv4". International Journal for Research in Applied Science and Engineering Technology 10, n.º 5 (31 de mayo de 2022): 3982–90. http://dx.doi.org/10.22214/ijraset.2022.43303.
Texto completoSaiful, Muhammad, Lalu Muhammad Samsu y Fathurrahman Fathurrahman. "Sistem Deteksi Infeksi COVID-19 Pada Hasil X-Ray Rontgen menggunakan Algoritma Convolutional Neural Network (CNN)". Infotek : Jurnal Informatika dan Teknologi 4, n.º 2 (31 de julio de 2021): 217–27. http://dx.doi.org/10.29408/jit.v4i2.3582.
Texto completoKumar, Chandan. "Hill Climb Game Play with Webcam Using OpenCV". International Journal for Research in Applied Science and Engineering Technology 10, n.º 12 (31 de enero de 2022): 441–53. http://dx.doi.org/10.22214/ijraset.2022.39860.
Texto completoMatsuzaka, Yasunari y Ryu Yashiro. "AI-Based Computer Vision Techniques and Expert Systems". AI 4, n.º 1 (23 de febrero de 2023): 289–302. http://dx.doi.org/10.3390/ai4010013.
Texto completoXin, Sun. "Application of Deep learning in computer vision". Highlights in Science, Engineering and Technology 16 (10 de noviembre de 2022): 125–30. http://dx.doi.org/10.54097/hset.v16i.2494.
Texto completoWang, Dadong, Jian-Gang Wang y Ke Xu. "Deep Learning for Object Detection, Classification and Tracking in Industry Applications". Sensors 21, n.º 21 (5 de noviembre de 2021): 7349. http://dx.doi.org/10.3390/s21217349.
Texto completoKolluri, Johnson y Ranjita Das. "An Evaluation of Deep Learning-Based Object Identification". International Journal on Recent and Innovation Trends in Computing and Communication 10, n.º 1s (9 de diciembre de 2022): 52–80. http://dx.doi.org/10.17762/ijritcc.v10i1s.5795.
Texto completoFu, Yanzhe. "Recent Deep Learning Approaches for Object Detection". Highlights in Science, Engineering and Technology 31 (10 de febrero de 2023): 64–70. http://dx.doi.org/10.54097/hset.v31i.4814.
Texto completoGupta, Ashish Kumar, Ayan Seal, Mukesh Prasad y Pritee Khanna. "Salient Object Detection Techniques in Computer Vision—A Survey". Entropy 22, n.º 10 (19 de octubre de 2020): 1174. http://dx.doi.org/10.3390/e22101174.
Texto completoNguyen, Nhat-Duy, Tien Do, Thanh Duc Ngo y Duy-Dinh Le. "An Evaluation of Deep Learning Methods for Small Object Detection". Journal of Electrical and Computer Engineering 2020 (27 de abril de 2020): 1–18. http://dx.doi.org/10.1155/2020/3189691.
Texto completoGururaj, Vaishnavi, Shriya Varada Ramesh, Sanjana Satheesh, Ashwini Kodipalli y Kusuma Thimmaraju. "Analysis of deep learning frameworks for object detection in motion". International Journal of Knowledge-based and Intelligent Engineering Systems 26, n.º 1 (8 de junio de 2022): 7–16. http://dx.doi.org/10.3233/kes-220002.
Texto completoNguyen, Huu Thu, Eon-Ho Lee, Chul Hee Bae y Sejin Lee. "Multiple Object Detection Based on Clustering and Deep Learning Methods". Sensors 20, n.º 16 (7 de agosto de 2020): 4424. http://dx.doi.org/10.3390/s20164424.
Texto completoChen, Ya-Ling, Yan-Rou Cai y Ming-Yang Cheng. "Vision-Based Robotic Object Grasping—A Deep Reinforcement Learning Approach". Machines 11, n.º 2 (12 de febrero de 2023): 275. http://dx.doi.org/10.3390/machines11020275.
Texto completoLiu, Li, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu y Matti Pietikäinen. "Deep Learning for Generic Object Detection: A Survey". International Journal of Computer Vision 128, n.º 2 (31 de octubre de 2019): 261–318. http://dx.doi.org/10.1007/s11263-019-01247-4.
Texto completoHassan, Ehtesham, Yasser Khalil y Imtiaz Ahmad. "Learning Feature Fusion in Deep Learning-Based Object Detector". Journal of Engineering 2020 (22 de mayo de 2020): 1–11. http://dx.doi.org/10.1155/2020/7286187.
Texto completoVoulodimos, Athanasios, Nikolaos Doulamis, Anastasios Doulamis y Eftychios Protopapadakis. "Deep Learning for Computer Vision: A Brief Review". Computational Intelligence and Neuroscience 2018 (2018): 1–13. http://dx.doi.org/10.1155/2018/7068349.
Texto completoAlateeq, Muneerah M., Fathimathul Rajeena P.P. y Mona A. S. Ali. "Construction Site Hazards Identification Using Deep Learning and Computer Vision". Sustainability 15, n.º 3 (28 de enero de 2023): 2358. http://dx.doi.org/10.3390/su15032358.
Texto completoHamidisepehr, Ali, Seyed V. Mirnezami y Jason K. Ward. "Comparison of Object Detection Methods for Corn Damage Assessment Using Deep Learning". Transactions of the ASABE 63, n.º 6 (2020): 1969–80. http://dx.doi.org/10.13031/trans.13791.
Texto completoNamdev, Utkarsh, Shikha Agrawal y Rajeev Pandey. "Object Detection Techniques based on Deep Learning: A Review". Computer Science & Engineering: An International Journal 12, n.º 1 (28 de febrero de 2022): 125–34. http://dx.doi.org/10.5121/cseij.2022.12113.
Texto completoMurthy, Chinthakindi Balaram, Mohammad Farukh Hashmi, Neeraj Dhanraj Bokde y Zong Woo Geem. "Investigations of Object Detection in Images/Videos Using Various Deep Learning Techniques and Embedded Platforms—A Comprehensive Review". Applied Sciences 10, n.º 9 (8 de mayo de 2020): 3280. http://dx.doi.org/10.3390/app10093280.
Texto completoSultan, Wajeeha, Nadeem Anjum, Mark Stansfield y Naeem Ramzan. "Hybrid Local and Global Deep-Learning Architecture for Salient-Object Detection". Applied Sciences 10, n.º 23 (7 de diciembre de 2020): 8754. http://dx.doi.org/10.3390/app10238754.
Texto completoBalachandran, Venketaramana, Muhammad Nur Aiman Shapiee, Ahmad Fakhri Ab. Nasir, Mohd Azraai Mohd Razman y Anwar P.P. Abdul Majeed. "Deep Learning Based Human Presence Detection". MEKATRONIKA 2, n.º 2 (16 de diciembre de 2020): 55–61. http://dx.doi.org/10.15282/mekatronika.v2i2.6768.
Texto completoWulandari, Nurcahyani, Igi Ardiyanto y Hanung Adi Nugroho. "A Comparison of Deep Learning Approach for Underwater Object Detection". Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 6, n.º 2 (20 de abril de 2022): 252–58. http://dx.doi.org/10.29207/resti.v6i2.3931.
Texto completoBoukerche, Azzedine y Zhijun Hou. "Object Detection Using Deep Learning Methods in Traffic Scenarios". ACM Computing Surveys 54, n.º 2 (abril de 2021): 1–35. http://dx.doi.org/10.1145/3434398.
Texto completoKurniawan, Edi, Hendra Adinanta, Suryadi Suryadi, Bernadus Herdi Sirenden, Rini Khamimatul Ula, Hari Pratomo, Purwowibowo Purwowibowo y Jalu Ahmad Prakosa. "Deep neural network-based physical distancing monitoring system with tensorRT optimization". International Journal of Advances in Intelligent Informatics 8, n.º 2 (31 de julio de 2022): 185. http://dx.doi.org/10.26555/ijain.v8i2.824.
Texto completoXu, Ge, Amir Sohail Khan, Ata Jahangir Moshayedi, Xiaohong Zhang y Yang Shuxin. "The Object Detection, Perspective and Obstacles In Robotic: A Review". EAI Endorsed Transactions on AI and Robotics 1, n.º 1 (18 de octubre de 2022): e13. http://dx.doi.org/10.4108/airo.v1i1.2709.
Texto completoYang, Kaichen, Tzungyu Tsai, Honggang Yu, Tsung-Yi Ho y Yier Jin. "Beyond Digital Domain: Fooling Deep Learning Based Recognition System in Physical World". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 01 (3 de abril de 2020): 1088–95. http://dx.doi.org/10.1609/aaai.v34i01.5459.
Texto completoI, Ankith. "Real Time Object Detection Using YoloReal Time Object Detection Using Yolo". International Journal for Research in Applied Science and Engineering Technology 9, n.º 11 (30 de noviembre de 2021): 1504–11. http://dx.doi.org/10.22214/ijraset.2021.39044.
Texto completoMishra, Ranjan Kumar, G. Y. Sandesh Reddy y Himanshu Pathak. "The Understanding of Deep Learning: A Comprehensive Review". Mathematical Problems in Engineering 2021 (5 de abril de 2021): 1–15. http://dx.doi.org/10.1155/2021/5548884.
Texto completoRazzok, Mohammed, Abdelmajid Badri, Ilham EL Mourabit, Yassine Ruichek y Aıcha Sahel. "Pedestrian detection system based on deep learning". International Journal of Advances in Applied Sciences 11, n.º 3 (1 de septiembre de 2022): 194. http://dx.doi.org/10.11591/ijaas.v11.i3.pp194-198.
Texto completoNaik, S. Gopi. "Weapon and Object Detection Using Mobile-Net SSD Model in Deep Neural Network". International Journal for Research in Applied Science and Engineering Technology 9, n.º 8 (31 de agosto de 2021): 1573–82. http://dx.doi.org/10.22214/ijraset.2021.37622.
Texto completoCantero, David, Iker Esnaola-Gonzalez, Jose Miguel-Alonso y Ekaitz Jauregi. "Benchmarking Object Detection Deep Learning Models in Embedded Devices". Sensors 22, n.º 11 (31 de mayo de 2022): 4205. http://dx.doi.org/10.3390/s22114205.
Texto completoFeng, Qihan, Xinzheng Xu y Zhixiao Wang. "Deep learning-based small object detection: A survey". Mathematical Biosciences and Engineering 20, n.º 4 (2023): 6551–90. http://dx.doi.org/10.3934/mbe.2023282.
Texto completoWang, Ningwei, Yaze Li y Hongzhe Liu. "Reinforced Neighbour Feature Fusion Object Detection with Deep Learning". Symmetry 13, n.º 9 (3 de septiembre de 2021): 1623. http://dx.doi.org/10.3390/sym13091623.
Texto completoMauri, Antoine, Redouane Khemmar, Benoit Decoux, Nicolas Ragot, Romain Rossi, Rim Trabelsi, Rémi Boutteau, Jean-Yves Ertaud y Xavier Savatier. "Deep Learning for Real-Time 3D Multi-Object Detection, Localisation, and Tracking: Application to Smart Mobility". Sensors 20, n.º 2 (18 de enero de 2020): 532. http://dx.doi.org/10.3390/s20020532.
Texto completoHidayat, Rahmat, Hendrick, Riandini, Zhi-Hao Wang y Horng Gwo-Jiun. "Mask RCNN Methods for Eyes Modelling". International Journal of Data Science 2, n.º 2 (31 de diciembre de 2021): 63–68. http://dx.doi.org/10.18517/ijods.2.2.63-68.2021.
Texto completoTurchini, Francesco, Lorenzo Seidenari, Tiberio Uricchio y Alberto Del Bimbo. "Deep Learning Based Surveillance System for Open Critical Areas". Inventions 3, n.º 4 (11 de octubre de 2018): 69. http://dx.doi.org/10.3390/inventions3040069.
Texto completoDharmik, R. C., Sushilkumar Chavhan y S. R. Sathe. "Deep learning based missing object detection and person identification: an application for smart CCTV". 3C Tecnología_Glosas de innovación aplicadas a la pyme 11, n.º 2 (29 de diciembre de 2022): 51–57. http://dx.doi.org/10.17993/3ctecno.2022.v11n2e42.51-57.
Texto completoAbbas, Touqeer, Abdul Razzaq, Muhammad Azam Zia, Imran Mumtaz, Muhammad Asim Saleem, Wasif Akbar, Muhammad Ahmad Khan, Gulzar Akhtar y Casper Shikali Shivachi. "Deep Neural Networks for Automatic Flower Species Localization and Recognition". Computational Intelligence and Neuroscience 2022 (29 de abril de 2022): 1–9. http://dx.doi.org/10.1155/2022/9359353.
Texto completoGundu, Sireesha y Hussain Syed. "Vision-Based HAR in UAV Videos Using Histograms and Deep Learning Techniques". Sensors 23, n.º 5 (25 de febrero de 2023): 2569. http://dx.doi.org/10.3390/s23052569.
Texto completoUllah, Habib, Mohib Ullah, Sultan Daud Khan y Faouzi Alaya Cheikh. "EVALUATING DEEP SEMI-SUPERVISED LEARNING METHODS FOR COMPUTER VISION APPLICATIONS". Electronic Imaging 2021, n.º 6 (18 de enero de 2021): 313–1. http://dx.doi.org/10.2352/issn.2470-1173.2021.6.iriacv-313.
Texto completoVaradarajan, Vijayakumar, Dweepna Garg y Ketan Kotecha. "An Efficient Deep Convolutional Neural Network Approach for Object Detection and Recognition Using a Multi-Scale Anchor Box in Real-Time". Future Internet 13, n.º 12 (29 de noviembre de 2021): 307. http://dx.doi.org/10.3390/fi13120307.
Texto completoHassan, Adel y Muath Sabha. "Feature Extraction for Image Analysis and Detection using Machine Learning Techniques". International Journal of Advanced Networking and Applications 14, n.º 04 (2023): 5499–508. http://dx.doi.org/10.35444/ijana.2023.14401.
Texto completo