Literatura académica sobre el tema "Deep Learning, Computer Vision, Object Detection"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Deep Learning, Computer Vision, Object Detection".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Deep Learning, Computer Vision, Object Detection"
Poojitha, L. "Anomalous Object Detection with Deep Learning". International Journal for Research in Applied Science and Engineering Technology 10, n.º 6 (30 de junio de 2022): 3227–32. http://dx.doi.org/10.22214/ijraset.2022.44581.
Texto completoSingh, Baljeet, Nitin Kumar, Irshad Ahmed y Karun Yadav. "Real-Time Object Detection Using Deep Learning". International Journal for Research in Applied Science and Engineering Technology 10, n.º 5 (31 de mayo de 2022): 3159–60. http://dx.doi.org/10.22214/ijraset.2022.42820.
Texto completoPernando, Yonky, Eka Lia Febrianti, Ilwan Syafrinal, Yuni Roza y Ummul Fitri Afifah. "DEEP LEARNING FOR FACES ON ORPHANAGE CHILDREN FACE DETECTION". JURTEKSI (Jurnal Teknologi dan Sistem Informasi) 9, n.º 1 (16 de diciembre de 2022): 25–32. http://dx.doi.org/10.33330/jurteksi.v9i1.1858.
Texto completoSingh, Ankita. "Face Mask Detection using Deep Learning to Manage Pandemic Guidelines". Journal of Management and Service Science (JMSS) 1, n.º 2 (2021): 1–21. http://dx.doi.org/10.54060/jmss/001.02.003.
Texto completoZhu, Juncai, Zhizhong Wang, Songwei Wang y Shuli Chen. "Moving Object Detection Based on Background Compensation and Deep Learning". Symmetry 12, n.º 12 (27 de noviembre de 2020): 1965. http://dx.doi.org/10.3390/sym12121965.
Texto completoTaralathasri, Bobburi, Dammati Vidya Sri, Gadidammalla Narendra Kumar, Annam Subbarao y Palli R. Krishna Prasad. "REAL TIME OBJECT DETECTION USING YOLO ALGORITHM". International Journal of Computer Science and Mobile Computing 10, n.º 7 (30 de julio de 2021): 61–67. http://dx.doi.org/10.47760/ijcsmc.2021.v10i07.009.
Texto completoJyothi, Madapati Asha y Mr M. Kalidas. "Real Time Smart Object Detection using Machine Learning". International Journal for Research in Applied Science and Engineering Technology 10, n.º 11 (30 de noviembre de 2022): 212–17. http://dx.doi.org/10.22214/ijraset.2022.47281.
Texto completoKumar, Aayush, Amit Kumar, Avanish Chandra y Indira Adak. "Custom Object Detection and Analysis in Real Time: YOLOv4". International Journal for Research in Applied Science and Engineering Technology 10, n.º 5 (31 de mayo de 2022): 3982–90. http://dx.doi.org/10.22214/ijraset.2022.43303.
Texto completoSaiful, Muhammad, Lalu Muhammad Samsu y Fathurrahman Fathurrahman. "Sistem Deteksi Infeksi COVID-19 Pada Hasil X-Ray Rontgen menggunakan Algoritma Convolutional Neural Network (CNN)". Infotek : Jurnal Informatika dan Teknologi 4, n.º 2 (31 de julio de 2021): 217–27. http://dx.doi.org/10.29408/jit.v4i2.3582.
Texto completoKumar, Chandan. "Hill Climb Game Play with Webcam Using OpenCV". International Journal for Research in Applied Science and Engineering Technology 10, n.º 12 (31 de enero de 2022): 441–53. http://dx.doi.org/10.22214/ijraset.2022.39860.
Texto completoTesis sobre el tema "Deep Learning, Computer Vision, Object Detection"
Kohmann, Erich. "Tecniche di deep learning per l'object detection". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19637/.
Texto completoAndersson, Dickfors Robin y Nick Grannas. "OBJECT DETECTION USING DEEP LEARNING ON METAL CHIPS IN MANUFACTURING". Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-55068.
Texto completoDIGICOGS
Arefiyan, Khalilabad Seyyed Mostafa. "Deep Learning Models for Context-Aware Object Detection". Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/88387.
Texto completoMS
Bartoli, Giacomo. "Edge AI: Deep Learning techniques for Computer Vision applied to embedded systems". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16820/.
Texto completoEspis, Andrea. "Object detection and semantic segmentation for assisted data labeling". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.
Buscar texto completoNorrstig, Andreas. "Visual Object Detection using Convolutional Neural Networks in a Virtual Environment". Thesis, Linköpings universitet, Datorseende, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-156609.
Texto completoDickens, James. "Depth-Aware Deep Learning Networks for Object Detection and Image Segmentation". Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42619.
Texto completoSolini, Arianna. "Applicazione di Deep Learning e Computer Vision ad un Caso d'uso aziendale: Progettazione, Risoluzione ed Analisi". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Buscar texto completoCuan, Bonan. "Deep similarity metric learning for multiple object tracking". Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI065.
Texto completoMultiple object tracking, i.e. simultaneously tracking multiple objects in the scene, is an important but challenging visual task. Objects should be accurately detected and distinguished from each other to avoid erroneous trajectories. Since remarkable progress has been made in object detection field, “tracking-by-detection” approaches are widely adopted in multiple object tracking research. Objects are detected in advance and tracking reduces to an association problem: linking detections of the same object through frames into trajectories. Most tracking algorithms employ both motion and appearance models for data association. For multiple object tracking problems where exist many objects of the same category, a fine-grained discriminant appearance model is paramount and indispensable. Therefore, we propose an appearance-based re-identification model using deep similarity metric learning to deal with multiple object tracking in mono-camera videos. Two main contributions are reported in this dissertation: First, a deep Siamese network is employed to learn an end-to-end mapping from input images to a discriminant embedding space. Different metric learning configurations using various metrics, loss functions, deep network structures, etc., are investigated, in order to determine the best re-identification model for tracking. In addition, with an intuitive and simple classification design, the proposed model achieves satisfactory re-identification results, which are comparable to state-of-the-art approaches using triplet losses. Our approach is easy and fast to train and the learned embedding can be readily transferred onto the domain of tracking tasks. Second, we integrate our proposed re-identification model in multiple object tracking as appearance guidance for detection association. For each object to be tracked in a video, we establish an identity-related appearance model based on the learned embedding for re-identification. Similarities among detected object instances are exploited for identity classification. The collaboration and interference between appearance and motion models are also investigated. An online appearance-motion model coupling is proposed to further improve the tracking performance. Experiments on Multiple Object Tracking Challenge benchmark prove the effectiveness of our modifications, with a state-of-the-art tracking accuracy
Chen, Zhe. "Augmented Context Modelling Neural Networks". Thesis, The University of Sydney, 2019. http://hdl.handle.net/2123/20654.
Texto completoLibros sobre el tema "Deep Learning, Computer Vision, Object Detection"
Escriva, David Millan, Roy Shilkrot, Prateek Joshi y Vinicius G. Mendonca. Building Computer Vision Projects with OpenCV 4 and C++: Implement complex computer vision algorithms and explore deep learning and face detection. Packt Publishing, 2019.
Buscar texto completoLearn OpenCV 4. 5 with Python 3. 7 by Examples: Implement Computer Vision Algorithms Provided by OpenCV 4. 5 with Python 3. 7 for Image Processing, Object Detection and Machine Learning. Independently Published, 2021.
Buscar texto completoMehta, Vaishali, Dolly Sharma, Monika Mangla, Anita Gehlot, Rajesh Singh y Sergio Márquez Sánchez, eds. Challenges and Opportunities for Deep Learning Applications in Industry 4.0. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/97898150360601220101.
Texto completoCapítulos de libros sobre el tema "Deep Learning, Computer Vision, Object Detection"
Verdhan, Vaibhav. "Object Detection Using Deep Learning". En Computer Vision Using Deep Learning, 141–85. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6616-8_5.
Texto completoLi, Kaidong, Wenchi Ma, Usman Sajid, Yuanwei Wu y Guanghui Wang. "Object Detection with Convolutional Neural Networks". En Deep Learning in Computer Vision, 41–62. First edition. | Boca Raton, FL : CRC Press/Taylor and Francis, 2020. |: CRC Press, 2020. http://dx.doi.org/10.1201/9781351003827-2.
Texto completoChoudhary, Sachi, Rashmi Sharma y Gargeya Sharma. "Object Detection Frameworks and Services in Computer Vision". En Object Detection with Deep Learning Models, 23–47. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003206736-2.
Texto completoAnsari, Shamshad. "Deep Learning in Object Detection". En Building Computer Vision Applications Using Artificial Neural Networks, 219–307. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5887-3_6.
Texto completoKim, Jongpil y Vladimir Pavlovic. "A Shape-Based Approach for Salient Object Detection Using Deep Learning". En Computer Vision – ECCV 2016, 455–70. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46493-0_28.
Texto completoKehl, Wadim, Fausto Milletari, Federico Tombari, Slobodan Ilic y Nassir Navab. "Deep Learning of Local RGB-D Patches for 3D Object Detection and 6D Pose Estimation". En Computer Vision – ECCV 2016, 205–20. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46487-9_13.
Texto completoWu, Falin, Guopeng Zhou, Jiaqi He, Haolun Li, Yushuang Liu y Gongliu Yang. "Efficient Object Detection and Classification of Ground Objects from Thermal Infrared Remote Sensing Image Based on Deep Learning". En Pattern Recognition and Computer Vision, 165–75. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88013-2_14.
Texto completoLiao, Shirong, Pan Zhou, Lianglin Wang y Songzhi Su. "Reading Digital Numbers of Water Meter with Deep Learning Based Object Detector". En Pattern Recognition and Computer Vision, 38–49. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31654-9_4.
Texto completoGrza̧bka, Marcin, Marcin Iwanowski y Grzegorz Sarwas. "On the Influence of Image Features on the Performance of Deep Learning Models in Human-Object Interaction Detection". En Computer Vision and Graphics, 165–79. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-22025-8_12.
Texto completoKapoor, Navpreet Singh, Mansimar Anand, Priyanshu, Shailendra Tiwari, Shivendra Shivani y Raman Singh. "Real Time Face Detection-based Automobile Safety System using Computer Vision and Supervised Machine Learning". En Advancement of Deep Learning and its Applications in Object Detection and Recognition, 63–85. New York: River Publishers, 2023. http://dx.doi.org/10.1201/9781003393658-4.
Texto completoActas de conferencias sobre el tema "Deep Learning, Computer Vision, Object Detection"
Brust, Clemens-Alexander, Christoph Käding y Joachim Denzler. "Active Learning for Deep Object Detection". En 14th International Conference on Computer Vision Theory and Applications. SCITEPRESS - Science and Technology Publications, 2019. http://dx.doi.org/10.5220/0007248601810190.
Texto completoLi, Guanbin y Yizhou Yu. "Deep Contrast Learning for Salient Object Detection". En 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016. http://dx.doi.org/10.1109/cvpr.2016.58.
Texto completoDakhil, Radhwan Adnan y Ali Retha Hasoon Khayeat. "Review on Deep Learning Techniques for Underwater Object Detection". En 3rd International Conference on Data Science and Machine Learning (DSML 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.121505.
Texto completoBAI, Yuqi y Zhaohui MENG. "Feature Maps Channel Augmentation for Object Detection". En 2020 International Conference on Computer Vision, Image and Deep Learning (CVIDL). IEEE, 2020. http://dx.doi.org/10.1109/cvidl51233.2020.00031.
Texto completoShanahan, James G. "Introduction to Computer Vision and Realtime Deep Learning-based Object Detection". En CIKM '20: The 29th ACM International Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3340531.3412177.
Texto completoLiu, Liqiang, Shian Wei, Long Jiang y Yatao Wang. "Weighted Aggregating Feature Pyramid Network for Object Detection". En 2020 International Conference on Computer Vision, Image and Deep Learning (CVIDL). IEEE, 2020. http://dx.doi.org/10.1109/cvidl51233.2020.00-73.
Texto completoChoi, Jiwoong, Ismail Elezi, Hyuk-Jae Lee, Clement Farabet y Jose M. Alvarez. "Active Learning for Deep Object Detection via Probabilistic Modeling". En 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2021. http://dx.doi.org/10.1109/iccv48922.2021.01010.
Texto completoZhao, Yuanzhang y Shengling Geng. "Object detection of face mask recognition based on improved faster rcnn". En 2nd International Conference on Computer Vision, Image and Deep Learning, editado por Fengjie Cen y Badrul Hisham bin Ahmad. SPIE, 2021. http://dx.doi.org/10.1117/12.2604524.
Texto completoSun, Yue, Shaobo Lin y Long Chen. "A Novel Two-path Backbone Network for Object Detection". En 2020 International Conference on Computer Vision, Image and Deep Learning (CVIDL). IEEE, 2020. http://dx.doi.org/10.1109/cvidl51233.2020.00-91.
Texto completoJaffari, Rabeea, Manzoor Ahmed Hashmani, Constantino Carlos Reyes-Aldasoro, Norshakirah Aziz y Syed Sajjad Hussain Rizvi. "Deep Learning Object Detection Techniques for Thin Objects in Computer Vision: An Experimental Investigation". En 2021 7th International Conference on Control, Automation and Robotics (ICCAR). IEEE, 2021. http://dx.doi.org/10.1109/iccar52225.2021.9463487.
Texto completoInformes sobre el tema "Deep Learning, Computer Vision, Object Detection"
Bragdon, Sophia, Vuong Truong y Jay Clausen. Environmentally informed buried object recognition. Engineer Research and Development Center (U.S.), noviembre de 2022. http://dx.doi.org/10.21079/11681/45902.
Texto completoAlhasson, Haifa F. y Shuaa S. Alharbi. New Trends in image-based Diabetic Foot Ucler Diagnosis Using Machine Learning Approaches: A Systematic Review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, noviembre de 2022. http://dx.doi.org/10.37766/inplasy2022.11.0128.
Texto completo