Literatura académica sobre el tema "Deep Learning and Perception for Grasping and Manipulation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Deep Learning and Perception for Grasping and Manipulation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Deep Learning and Perception for Grasping and Manipulation"
Han, Dong, Hong Nie, Jinbao Chen, Meng Chen, Zhen Deng y Jianwei Zhang. "Multi-modal haptic image recognition based on deep learning". Sensor Review 38, n.º 4 (17 de septiembre de 2018): 486–93. http://dx.doi.org/10.1108/sr-08-2017-0160.
Texto completoValarezo Añazco, Edwin, Sara Guerrero, Patricio Rivera Lopez, Ji-Heon Oh, Ga-Hyeon Ryu y Tae-Seong Kim. "Deep Learning-Based Ensemble Approach for Autonomous Object Manipulation with an Anthropomorphic Soft Robot Hand". Electronics 13, n.º 2 (17 de enero de 2024): 379. http://dx.doi.org/10.3390/electronics13020379.
Texto completoWang, Cong, Qifeng Zhang, Qiyan Tian, Shuo Li, Xiaohui Wang, David Lane, Yvan Petillot y Sen Wang. "Learning Mobile Manipulation through Deep Reinforcement Learning". Sensors 20, n.º 3 (10 de febrero de 2020): 939. http://dx.doi.org/10.3390/s20030939.
Texto completoZhao, Wenhui, Bin Xu y Xinzhong Wu. "Robot grasping system based on deep learning target detection". Journal of Physics: Conference Series 2450, n.º 1 (1 de marzo de 2023): 012071. http://dx.doi.org/10.1088/1742-6596/2450/1/012071.
Texto completoZhou, Hongyu, Jinhui Xiao, Hanwen Kang, Xing Wang, Wesley Au y Chao Chen. "Learning-Based Slip Detection for Robotic Fruit Grasping and Manipulation under Leaf Interference". Sensors 22, n.º 15 (22 de julio de 2022): 5483. http://dx.doi.org/10.3390/s22155483.
Texto completoZhang, Ruihua, Xujun Chen, Zhengzhong Wan, Meng Wang y Xinqing Xiao. "Deep Learning-Based Oyster Packaging System". Applied Sciences 13, n.º 24 (8 de diciembre de 2023): 13105. http://dx.doi.org/10.3390/app132413105.
Texto completoLiu, Ning, Cangui Guo, Rongzhao Liang y Deping Li. "Collaborative Viewpoint Adjusting and Grasping via Deep Reinforcement Learning in Clutter Scenes". Machines 10, n.º 12 (29 de noviembre de 2022): 1135. http://dx.doi.org/10.3390/machines10121135.
Texto completoHan, Dong, Beni Mulyana, Vladimir Stankovic y Samuel Cheng. "A Survey on Deep Reinforcement Learning Algorithms for Robotic Manipulation". Sensors 23, n.º 7 (5 de abril de 2023): 3762. http://dx.doi.org/10.3390/s23073762.
Texto completoMohammed, Marwan Qaid, Lee Chung Kwek, Shing Chyi Chua, Abdulaziz Salamah Aljaloud, Arafat Al-Dhaqm, Zeyad Ghaleb Al-Mekhlafi y Badiea Abdulkarem Mohammed. "Deep Reinforcement Learning-Based Robotic Grasping in Clutter and Occlusion". Sustainability 13, n.º 24 (10 de diciembre de 2021): 13686. http://dx.doi.org/10.3390/su132413686.
Texto completoSayour, Malak H., Sharbel E. Kozhaya y Samer S. Saab. "Autonomous Robotic Manipulation: Real-Time, Deep-Learning Approach for Grasping of Unknown Objects". Journal of Robotics 2022 (30 de junio de 2022): 1–14. http://dx.doi.org/10.1155/2022/2585656.
Texto completoTesis sobre el tema "Deep Learning and Perception for Grasping and Manipulation"
Zapata-Impata, Brayan S. "Robotic manipulation based on visual and tactile perception". Doctoral thesis, Universidad de Alicante, 2020. http://hdl.handle.net/10045/118217.
Texto completoThis doctoral thesis has been carried out with the support of the Spanish Ministry of Economy, Industry and Competitiveness through the grant BES-2016-078290.
Tahoun, Mohamed. "Object Shape Perception for Autonomous Dexterous Manipulation Based on Multi-Modal Learning Models". Electronic Thesis or Diss., Bourges, INSA Centre Val de Loire, 2021. http://www.theses.fr/2021ISAB0003.
Texto completoThis thesis proposes 3D object reconstruction methods based on multimodal deep learning strategies. The targeted applications concern robotic manipulation. First, the thesis proposes a 3D visual reconstruction method from a single view of the object obtained by an RGB-D sensor. Then, in order to improve the quality of 3D reconstruction of objects from a single view, a new method combining visual and tactile information has been proposed based on a learning reconstruction model. The proposed method has been validated on a visual-tactile dataset respecting the kinematic constraints of a robotic hand. The visual-tactile dataset respecting the kinematic properties of the multi-fingered robotic hand has been created in the framework of this PhD work. This dataset is unique in the literature and is also a contribution of the thesis. The validation results show that the tactile information can have an important contribution for the prediction of the complete shape of an object, especially the part that is not visible to the RGD-D sensor. They also show that the proposed model allows to obtain better results compared to those obtained with the best performing methods of the state of the art
Morrison, Douglas. "Robotic grasping in unstructured and dynamic environments". Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/207886/1/Douglas_Morrison_Thesis.pdf.
Texto completoCapítulos de libros sobre el tema "Deep Learning and Perception for Grasping and Manipulation"
Blank, Andreas, Lukas Zikeli, Sebastian Reitelshöfer, Engin Karlidag y Jörg Franke. "Augmented Virtuality Input Demonstration Refinement Improving Hybrid Manipulation Learning for Bin Picking". En Lecture Notes in Mechanical Engineering, 332–41. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-18326-3_32.
Texto completoMehman Sefat, Amir, Saad Ahmad, Alexandre Angleraud, Esa Rahtu y Roel Pieters. "Robotic grasping in agile production". En Deep Learning for Robot Perception and Cognition, 407–33. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-32-385787-1.00021-x.
Texto completoKantor, George y Francisco Yandun. "Advances in grasping techniques in agricultural robots". En Burleigh Dodds Series in Agricultural Science, 355–86. Burleigh Dodds Science Publishing, 2024. http://dx.doi.org/10.19103/as.2023.0124.09.
Texto completo"Deep learning techniques for modelling human manipulation and its translation for autonomous robotic grasping with soft end-effe". En AI for Emerging Verticals: Human-robot computing, sensing and networking, 3–28. Institution of Engineering and Technology, 2020. http://dx.doi.org/10.1049/pbpc034e_ch1.
Texto completoActas de conferencias sobre el tema "Deep Learning and Perception for Grasping and Manipulation"
Chu, You-Rui, Haiyue Zhu y Zhiping Lin. "Intelligent 6-DoF Robotic Grasping and Manipulation System Using Deep Learning". En International Conference of Asian Society for Precision Engineering and Nanotechnology. Singapore: Research Publishing Services, 2022. http://dx.doi.org/10.3850/978-981-18-6021-8_or-02-0217.html.
Texto completoZhang, Chi y Yingzhao Zhu. "A review of robot grasping tactile perception based on deep learning". En Third International Conference on Control and Intelligent Robotics (ICCIR 2023), editado por Kechao Wang y M. Vijayalakshmi. SPIE, 2023. http://dx.doi.org/10.1117/12.3011588.
Texto completoPavlichenko, Dmytro y Sven Behnke. "Deep Reinforcement Learning of Dexterous Pre-Grasp Manipulation for Human-Like Functional Categorical Grasping". En 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE). IEEE, 2023. http://dx.doi.org/10.1109/case56687.2023.10260385.
Texto completoFang, Jianhao, Weifei Hu, Chuxuan Wang, Zhenyu Liu y Jianrong Tan. "Deep Reinforcement Learning Enhanced Convolutional Neural Networks for Robotic Grasping". En ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-67225.
Texto completoLu, Jingpei, Ambareesh Jayakumari, Florian Richter, Yang Li y Michael C. Yip. "SuPer Deep: A Surgical Perception Framework for Robotic Tissue Manipulation using Deep Learning for Feature Extraction". En 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021. http://dx.doi.org/10.1109/icra48506.2021.9561249.
Texto completoRakhimkul, Sanzhar, Anton Kim, Askarbek Pazylbekov y Almas Shintemirov. "Autonomous Object Detection and Grasping Using Deep Learning for Design of an Intelligent Assistive Robot Manipulation System". En 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE, 2019. http://dx.doi.org/10.1109/smc.2019.8914465.
Texto completoImran, Alishba, William Escobar y Fred Barez. "Design of an Affordable Prosthetic Arm Equipped With Deep Learning Vision-Based Manipulation". En ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-68714.
Texto completoChen, Zhu, Xiao Liang y Minghui Zheng. "Including Image-Based Perception in Disturbance Observer for Warehouse Drones". En ASME 2020 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/dscc2020-3284.
Texto completo