Artículos de revistas sobre el tema "Deep Generatve Models"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Deep Generatve Models".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Mehmood, Rayeesa, Rumaan Bashir y Kaiser J. Giri. "Deep Generative Models: A Review". Indian Journal Of Science And Technology 16, n.º 7 (21 de febrero de 2023): 460–67. http://dx.doi.org/10.17485/ijst/v16i7.2296.
Texto completoRagoza, Matthew, Tomohide Masuda y David Ryan Koes. "Generating 3D molecules conditional on receptor binding sites with deep generative models". Chemical Science 13, n.º 9 (2022): 2701–13. http://dx.doi.org/10.1039/d1sc05976a.
Texto completoSalakhutdinov, Ruslan. "Learning Deep Generative Models". Annual Review of Statistics and Its Application 2, n.º 1 (10 de abril de 2015): 361–85. http://dx.doi.org/10.1146/annurev-statistics-010814-020120.
Texto completoPartaourides, Harris y Sotirios P. Chatzis. "Asymmetric deep generative models". Neurocomputing 241 (junio de 2017): 90–96. http://dx.doi.org/10.1016/j.neucom.2017.02.028.
Texto completoChangsheng Du, Changsheng Du, Yong Li Changsheng Du y Ming Wen Yong Li. "G-DCS: GCN-Based Deep Code Summary Generation Model". 網際網路技術學刊 24, n.º 4 (julio de 2023): 965–73. http://dx.doi.org/10.53106/160792642023072404014.
Texto completoWu, Han. "Face image generation and feature visualization using deep convolutional generative adversarial networks". Journal of Physics: Conference Series 2634, n.º 1 (1 de noviembre de 2023): 012041. http://dx.doi.org/10.1088/1742-6596/2634/1/012041.
Texto completoBerrahal, Mohammed, Mohammed Boukabous, Mimoun Yandouzi, Mounir Grari y Idriss Idrissi. "Investigating the effectiveness of deep learning approaches for deep fake detection". Bulletin of Electrical Engineering and Informatics 12, n.º 6 (1 de diciembre de 2023): 3853–60. http://dx.doi.org/10.11591/eei.v12i6.6221.
Texto completoChe, Tong, Xiaofeng Liu, Site Li, Yubin Ge, Ruixiang Zhang, Caiming Xiong y Yoshua Bengio. "Deep Verifier Networks: Verification of Deep Discriminative Models with Deep Generative Models". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 8 (18 de mayo de 2021): 7002–10. http://dx.doi.org/10.1609/aaai.v35i8.16862.
Texto completoScurto, Hugo, Thomas Similowski, Samuel Bianchini y Baptiste Caramiaux. "Probing Respiratory Care With Generative Deep Learning". Proceedings of the ACM on Human-Computer Interaction 7, CSCW2 (28 de septiembre de 2023): 1–34. http://dx.doi.org/10.1145/3610099.
Texto completoPrakash Patil, Et al. "GAN-Enhanced Medical Image Synthesis: Augmenting CXR Data for Disease Diagnosis and Improving Deep Learning Performance". Journal of Electrical Systems 19, n.º 3 (25 de enero de 2024): 53–61. http://dx.doi.org/10.52783/jes.651.
Texto completoCui, Bo, Guyue Hu y Shan Yu. "DeepCollaboration: Collaborative Generative and Discriminative Models for Class Incremental Learning". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 2 (18 de mayo de 2021): 1175–83. http://dx.doi.org/10.1609/aaai.v35i2.16204.
Texto completoPeng, Shi-Ping, Xin-Yu Yang y Yi Zhao. "Molecular Conditional Generation and Property Analysis of Non-Fullerene Acceptors with Deep Learning". International Journal of Molecular Sciences 22, n.º 16 (23 de agosto de 2021): 9099. http://dx.doi.org/10.3390/ijms22169099.
Texto completoZeng, Jinshan, Qi Chen, Yunxin Liu, Mingwen Wang y Yuan Yao. "StrokeGAN: Reducing Mode Collapse in Chinese Font Generation via Stroke Encoding". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 4 (18 de mayo de 2021): 3270–77. http://dx.doi.org/10.1609/aaai.v35i4.16438.
Texto completoQiang, Zhenping, Libo He, Qinghui Zhang y Junqiu Li. "Face Inpainting with Deep Generative Models". International Journal of Computational Intelligence Systems 12, n.º 2 (2019): 1232. http://dx.doi.org/10.2991/ijcis.d.191016.003.
Texto completoDu, Fang, Jiangshe Zhang, Junying Hu y Rongrong Fei. "Discriminative multi-modal deep generative models". Knowledge-Based Systems 173 (junio de 2019): 74–82. http://dx.doi.org/10.1016/j.knosys.2019.02.023.
Texto completoXu, Jungang, Hui Li y Shilong Zhou. "An Overview of Deep Generative Models". IETE Technical Review 32, n.º 2 (20 de diciembre de 2014): 131–39. http://dx.doi.org/10.1080/02564602.2014.987328.
Texto completoJørgensen, Peter B., Mikkel N. Schmidt y Ole Winther. "Deep Generative Models for Molecular Science". Molecular Informatics 37, n.º 1-2 (enero de 2018): 1700133. http://dx.doi.org/10.1002/minf.201700133.
Texto completoAhmad, Bilal, Jun Sun, Qi You, Vasile Palade y Zhongjie Mao. "Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks". Biomedicines 10, n.º 2 (21 de enero de 2022): 223. http://dx.doi.org/10.3390/biomedicines10020223.
Texto completoAndreu, Sergi y Monica Villanueva Aylagas. "Neural Synthesis of Sound Effects Using Flow-Based Deep Generative Models". Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 18, n.º 1 (11 de octubre de 2022): 2–9. http://dx.doi.org/10.1609/aiide.v18i1.21941.
Texto completoKarimi, Mostafa, Arman Hasanzadeh y Yang Shen. "Network-principled deep generative models for designing drug combinations as graph sets". Bioinformatics 36, Supplement_1 (1 de julio de 2020): i445—i454. http://dx.doi.org/10.1093/bioinformatics/btaa317.
Texto completoHawkins-Hooker, Alex, Florence Depardieu, Sebastien Baur, Guillaume Couairon, Arthur Chen y David Bikard. "Generating functional protein variants with variational autoencoders". PLOS Computational Biology 17, n.º 2 (26 de febrero de 2021): e1008736. http://dx.doi.org/10.1371/journal.pcbi.1008736.
Texto completoHess, Moritz, Maren Hackenberg y Harald Binder. "Exploring generative deep learning for omics data using log-linear models". Bioinformatics 36, n.º 20 (1 de agosto de 2020): 5045–53. http://dx.doi.org/10.1093/bioinformatics/btaa623.
Texto completoTang, Keke, Jianpeng Wu, Weilong Peng, Yawen Shi, Peng Song, Zhaoquan Gu, Zhihong Tian y Wenping Wang. "Deep Manifold Attack on Point Clouds via Parameter Plane Stretching". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 2 (26 de junio de 2023): 2420–28. http://dx.doi.org/10.1609/aaai.v37i2.25338.
Texto completoHe, Yu, Shuai Li, Xin Wen y Jing Xu. "A High-Quality Sample Generation Method for Improving Steel Surface Defect Inspection". Sensors 24, n.º 8 (20 de abril de 2024): 2642. http://dx.doi.org/10.3390/s24082642.
Texto completoSamanta, Bidisha, Abir DE, Gourhari Jana, Pratim Kumar Chattaraj, Niloy Ganguly y Manuel Gomez Rodriguez. "NeVAE: A Deep Generative Model for Molecular Graphs". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julio de 2019): 1110–17. http://dx.doi.org/10.1609/aaai.v33i01.33011110.
Texto completoYue, Yunpeng, Hai Liu, Xu Meng, Yinguang Li y Yanliang Du. "Generation of High-Precision Ground Penetrating Radar Images Using Improved Least Square Generative Adversarial Networks". Remote Sensing 13, n.º 22 (15 de noviembre de 2021): 4590. http://dx.doi.org/10.3390/rs13224590.
Texto completoHe, Junpeng, Lei Luo, Kun Xiao, Xiyu Fang y Yun Li. "Generate qualified adversarial attacks and foster enhanced models based on generative adversarial networks". Intelligent Data Analysis 26, n.º 5 (5 de septiembre de 2022): 1359–77. http://dx.doi.org/10.3233/ida-216134.
Texto completoLiu, Yukai. "Data augmentation-based enhanced fingerprint recognition using deep convolutional generative adversarial network and diffusion models". Applied and Computational Engineering 52, n.º 1 (27 de marzo de 2024): 8–13. http://dx.doi.org/10.54254/2755-2721/52/20241115.
Texto completoLanusse, François, Rachel Mandelbaum, Siamak Ravanbakhsh, Chun-Liang Li, Peter Freeman y Barnabás Póczos. "Deep generative models for galaxy image simulations". Monthly Notices of the Royal Astronomical Society 504, n.º 4 (4 de mayo de 2021): 5543–55. http://dx.doi.org/10.1093/mnras/stab1214.
Texto completoWu, Zachary, Kadina E. Johnston, Frances H. Arnold y Kevin K. Yang. "Protein sequence design with deep generative models". Current Opinion in Chemical Biology 65 (diciembre de 2021): 18–27. http://dx.doi.org/10.1016/j.cbpa.2021.04.004.
Texto completoSensoy, Murat, Lance Kaplan, Federico Cerutti y Maryam Saleki. "Uncertainty-Aware Deep Classifiers Using Generative Models". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 5620–27. http://dx.doi.org/10.1609/aaai.v34i04.6015.
Texto completoBejarano, Gissella, David DeFazio y Arti Ramesh. "Deep Latent Generative Models for Energy Disaggregation". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julio de 2019): 850–57. http://dx.doi.org/10.1609/aaai.v33i01.3301850.
Texto completoKalibhat, Neha Mukund, Yogesh Balaji y Soheil Feizi. "Winning Lottery Tickets in Deep Generative Models". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 9 (18 de mayo de 2021): 8038–46. http://dx.doi.org/10.1609/aaai.v35i9.16980.
Texto completoOjeda, Cesar, Kostadin Cvejoski, Bodgan Georgiev, Christian Bauckhage, Jannis Schuecker y Ramses J. Sanchez. "Learning Deep Generative Models for Queuing Systems". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 10 (18 de mayo de 2021): 9214–22. http://dx.doi.org/10.1609/aaai.v35i10.17112.
Texto completoBerns, Sebastian. "Increasing the Diversity of Deep Generative Models". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 11 (28 de junio de 2022): 12870–71. http://dx.doi.org/10.1609/aaai.v36i11.21572.
Texto completoSuzuki, Masahiro y Yutaka Matsuo. "A survey of multimodal deep generative models". Advanced Robotics 36, n.º 5-6 (21 de febrero de 2022): 261–78. http://dx.doi.org/10.1080/01691864.2022.2035253.
Texto completoKang, Seokho y Kyunghyun Cho. "Conditional Molecular Design with Deep Generative Models". Journal of Chemical Information and Modeling 59, n.º 1 (17 de julio de 2018): 43–52. http://dx.doi.org/10.1021/acs.jcim.8b00263.
Texto completoImrie, Fergus, Anthony R. Bradley, Mihaela van der Schaar y Charlotte M. Deane. "Deep Generative Models for 3D Linker Design". Journal of Chemical Information and Modeling 60, n.º 4 (20 de marzo de 2020): 1983–95. http://dx.doi.org/10.1021/acs.jcim.9b01120.
Texto completoBesedin, Andrey, Pierre Blanchart, Michel Crucianu y Marin Ferecatu. "Deep online classification using pseudo-generative models". Computer Vision and Image Understanding 201 (diciembre de 2020): 103048. http://dx.doi.org/10.1016/j.cviu.2020.103048.
Texto completoBaillif, Benoit, Jason Cole, Patrick McCabe y Andreas Bender. "Deep generative models for 3D molecular structure". Current Opinion in Structural Biology 80 (junio de 2023): 102566. http://dx.doi.org/10.1016/j.sbi.2023.102566.
Texto completoBehnia, Farnaz, Dominik Karbowski y Vadim Sokolov. "Deep generative models for vehicle speed trajectories". Applied Stochastic Models in Business and Industry 39, n.º 5 (septiembre de 2023): 701–19. http://dx.doi.org/10.1002/asmb.2816.
Texto completoJung, Steffen y Margret Keuper. "Spectral Distribution Aware Image Generation". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 2 (18 de mayo de 2021): 1734–42. http://dx.doi.org/10.1609/aaai.v35i2.16267.
Texto completoBazarbaev, Manas, Tserenpurev Chuluunsaikhan, Hyoseok Oh, Ga-Ae Ryu, Aziz Nasridinov y Kwan-Hee Yoo. "Generation of Time-Series Working Patterns for Manufacturing High-Quality Products through Auxiliary Classifier Generative Adversarial Network". Sensors 22, n.º 1 (22 de diciembre de 2021): 29. http://dx.doi.org/10.3390/s22010029.
Texto completoNye, Logan, Hamid Ghaednia y Joseph H. Schwab. "Generating synthetic samples of chondrosarcoma histopathology with a denoising diffusion probabilistic model." Journal of Clinical Oncology 41, n.º 16_suppl (1 de junio de 2023): e13592-e13592. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.e13592.
Texto completoDu, Chuan y Lei Zhang. "Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network". Remote Sensing 13, n.º 21 (29 de octubre de 2021): 4358. http://dx.doi.org/10.3390/rs13214358.
Texto completoRojas-Campos, Adrian, Michael Langguth, Martin Wittenbrink y Gordon Pipa. "Deep learning models for generation of precipitation maps based on numerical weather prediction". Geoscientific Model Development 16, n.º 5 (8 de marzo de 2023): 1467–80. http://dx.doi.org/10.5194/gmd-16-1467-2023.
Texto completoShchetinin, Eugene Yu. "COMPUTER ALGORITHMS FOR SYNTHETIC IMAGES MODELLING BASED ON DIFFUSION MODELS". SOFT MEASUREMENTS AND COMPUTING 11/2, n.º 72 (2023): 48–58. http://dx.doi.org/10.36871/2618-9976.2023.11-2.005.
Texto completoNaman and Sudha Narang, Chaudhary Sarimurrab, Ankita Kesari. "Human Face Generation using Deep Convolution Generative Adversarial Network". January 2021 7, n.º 01 (29 de enero de 2021): 114–20. http://dx.doi.org/10.46501/ijmtst070127.
Texto completoAkande, Timileyin Opeyemi, Oluwaseyi Omotayo Alabi y Julianah B. Oyinloye. "A Review of Generative Models for 3D Vehicle Wheel Generation and Synthesis". Journal of Computing Theories and Applications 2, n.º 2 (21 de marzo de 2024): 148–68. http://dx.doi.org/10.62411/jcta.10125.
Texto completoSeong, Ju Yong, Seung-min Ji, Dong-hyun Choi, Seungjae Lee y Sungchul Lee. "Optimizing Generative Adversarial Network (GAN) Models for Non-Pneumatic Tire Design". Applied Sciences 13, n.º 19 (25 de septiembre de 2023): 10664. http://dx.doi.org/10.3390/app131910664.
Texto completo