Literatura académica sobre el tema "Decoupled lateral and longitudinal control"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Decoupled lateral and longitudinal control".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Decoupled lateral and longitudinal control":

1

Al Shibli, Murad. "UAV autonomous decoupled dynamic longitudinal-lateral motion control using full-order state observer". International Journal of Unmanned Systems Engineering 2, n.º 4 (1 de octubre de 2014): 1–15. http://dx.doi.org/10.14323/ijuseng.2014.14.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Wolniakowski, Adam y Arkadiusz Mystkowski. "Application of Unfalsified Control Theory in Controlling MAV". Solid State Phenomena 198 (marzo de 2013): 171–75. http://dx.doi.org/10.4028/www.scientific.net/ssp.198.171.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Controlling the flight of Micro Aerial Vehicles (MAV) is a highly challenging task, mostly due to nonlinearity of their models and highly varying longitudinal and lateral derivatives coefficients [. As such, it requires a proper form of robust control. The demand for such control is very high, as it is required in many applications. The following paper presents the application of Unfalsified Control Theory developed by Michael G. Safonov [1, 2, 6, . This interesting approach is based on the adaptive switching control, and does not require any previous knowledge of the controlled plant. The controlled dynamics is decoupled due to longitudinal and lateral motion of the Bell 540 single-delta wing micro aerial vehicle. The work involves design and simulation of the proper robust controller. The simulation is based on already obtained nominal model of the Bell 540 vehicle [. The developed controllers were proved to be efficient, based on performed calculations and simulation in Matlab.
3

DeSantis, R. M. "Modeling and path-tracking control of a mobile wheeled robot with a differential drive". Robotica 13, n.º 4 (julio de 1995): 401–10. http://dx.doi.org/10.1017/s026357470001883x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
SummaryTopics relevant to modeling and control of mobile wheeled robots with a differential drive are discussed by assuming a motion that is planar and free from lateral and longitudinal slippages, and by taking into account dynamic and kinematic properties of the vehicle. Based on the concept of geometric path-tracking, a controller is designed that is a memoryless function of the lateral, heading, and velocity path-tracking offsets. If these offsets are kept small and the assigned tracking velocity is constant, then this controller may be given a linear, time-invariant and decoupled PID (Proportional + integral + derivative) structure.
4

Mystkowski, Arkadiusz. "Robust Optimal Control of MAV Based on Linear-Time Varying Decoupled Model Dynamics". Solid State Phenomena 198 (marzo de 2013): 571–76. http://dx.doi.org/10.4028/www.scientific.net/ssp.198.571.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
This paper discusses a nonlinear robust control design procedure to micro air vehicle that uses the singular value (μ) and μ-synthesis technique. The optimal robust control law that combines a linear parameters varying (LPV) of UAV (unmanned aerial vehicle) are realized by using serial connection of the Kestrel autopilot and the Gumstix microprocessor. Thus, the robust control feedback loops, which handle the uncertainty of aerodynamics derivatives, are used to ensure robustness stability of the UAV local dynamics in longitudinal and lateral control directions.
5

Wu, HaiDong, ZiHan Li y ZhenLi Si. "Trajectory tracking control for four-wheel independent drive intelligent vehicle based on model predictive control and sliding mode control". Advances in Mechanical Engineering 13, n.º 9 (septiembre de 2021): 168781402110451. http://dx.doi.org/10.1177/16878140211045142.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
For four-wheel independent drive intelligent vehicle, the longitudinal and lateral motion control of the vehicle is decoupled and a hierarchical controller is designed: the upper layer is the motion controller, and the lower layer is the control distributor. In the motion controller, the model predictive control (MPC) is used to calculate the steering wheel angle and the total yaw moment for lateral control, and the sliding mode control (SMC) is used to calculate the total driving force for longitudinal control. In order to improve the control algorithm adaptability and the tracking accuracy at high speed, the UniTire model that can accurately express the complex coupling characteristics of tire under different working conditions are used and the numerical partial derivative of the state equation is used in MPC controller to ensure the feasibility of the algorithm. The control distributor distributes the total yaw moment and driving force calculated by the motion controller of the four wheels through the objective optimization function, and the constraints on road adhesion condition and the constraints on actuators are considered at the same time. A co-simulation platform is built in the CarSim/Simulink environment and the MPC-SMC controller is compared with the previously established MPC controller.
6

Kim, Jinsoo, Jahng-Hyon Park y Kyung-Young Jhang. "Decoupled Longitudinal and Lateral Vehicle Control Based Autonomous Lane Change System Adaptable to Driving Surroundings". IEEE Access 9 (2021): 4315–34. http://dx.doi.org/10.1109/access.2020.3047189.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Deng, Zhao, Fuqiang Bing, Zhiming Guo y Liaoni Wu. "Rope-Hook Recovery Controller Designed for a Flying-Wing UAV". Aerospace 8, n.º 12 (7 de diciembre de 2021): 384. http://dx.doi.org/10.3390/aerospace8120384.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Due to the complexity of landing environments, precision guidance and high-precision control technology have become key to the rope-hook recovery of shipborne unmanned aerial vehicles (UAVs). The recovery process was divided into three stages and a reasonable guidance strategy had been designed for them, respectively. This study separated the guidance and control issues into an outer guidance loop and an inner control loop. The inner loop (attitude control loop) controled the UAV to follow the acceleration commands generated by the outer loop (trajectory tracking loop). The inner loop of the longitudinal controller and the lateral controller were designed based on active disturbance rejection control (ADRC), which has strong anti-interference ability. In the last phase, the outer loop of the longitudinal controller switched from a total energy control system (TECS), which greatly decoupled the altitude channel and speed channel, to the proportional navigation (PN) guidance law, while the outer loop of lateral controller switches from the proportional control law based on the L1 guidance law, which can reduce the tracking error and deviation, to the PN guidance law, which considerably enhances the tracking precision. Finally, the simulation data and flight test data show that the controller has strong robustness and good tracking precision, which ensures safe rope-hook recovery.
8

Zeng, Di, Ling Zheng, Yinong Li, Jie Zeng y Kan Wang. "A Personalized Motion Planning Method with Driver Characteristics in Longitudinal and Lateral Directions". Electronics 12, n.º 24 (15 de diciembre de 2023): 5021. http://dx.doi.org/10.3390/electronics12245021.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Humanlike driving is significant in improving the safety and comfort of automated vehicles. This paper proposes a personalized motion planning method with driver characteristics in longitudinal and lateral directions for highway automated driving. The motion planning is decoupled into path optimization and speed optimization under the framework of the Baidu Apollo EM motion planner. For modeling driver behavior in the longitudinal direction, a car-following model is developed and integrated into the speed optimizer based on a weight ratio hypothesis model of the objective functional, whose parameters are obtained by Bayesian optimization and leave-one-out cross validation using the driving data. For modeling driver behavior in the lateral direction, a Bayesian network (BN), which maps the physical states of the ego vehicle and surrounding vehicles and the lateral intentions of the surrounding vehicles to the driver’s lateral intentions, is built in an efficient and lightweight way using driving data. Further, a personalized reference trajectory decider is developed based on the BN, considering traffic regulations, the driver’s preference, and the costs of the trajectories. According to the actual traffic scenarios in the driving data, a simulation is constructed, and the results validate the human likeness of the proposed motion planning method.
9

Deng, Zhao, Liaoni Wu y Yancheng You. "Modeling and Design of an Aircraft-Mode Controller for a Fixed-Wing VTOL UAV". Mathematical Problems in Engineering 2021 (29 de septiembre de 2021): 1–17. http://dx.doi.org/10.1155/2021/7902134.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Vertical takeoff and landing (VTOL) is an essential feature of unmanned aerial vehicles (UAVs). On the one hand, VTOL can expand and enhance the applications of UAVs; yet, on the other hand, it makes the design of control systems for UAVs more complicated. The most challenging demand in designing the control system is to achieve satisfactory response sharpness of fixed-wing UAVs to control commands and ensure that the aircraft mode channels are effectively decoupled. In this work, a six-degree-of-freedom (6-DoF) model with forces and moments is established based on the aerodynamic analysis, which is carried out through computational fluid dynamics (CFD) numerical simulation. The improved proportional derivative (PD) controller based on the extended state observer (ESO) is proposed to design the inner-loop attitude control, which increases the anti-interference ability for internal and external uncertainty of the UAV system. The motion equations of the UAV are established and divided into independent components of longitudinal and lateral motion to design the outer loop control law under minor disturbance conditions. A total energy control system (TECS) for the longitudinal height channel is proposed, which separates speed control and track control. L1 nonlinear path tracking guidance algorithm is used for lateral trajectory tracking so as to improve curve tracking ability and wind resistance. Effectiveness of this approach is proved by actual flight experiment data. Finally, a controller based on angular velocity control is designed to prevent the attitude and head reference system (AHRS) from malfunctioning. Its effectiveness is verified by the response test of the control system.
10

Moreno-Gonzalez, Marcos, Antonio Artuñedo, Jorge Villagra, Cédric Join y Michel Fliess. "Speed-Adaptive Model-Free Path-Tracking Control for Autonomous Vehicles: Analysis and Design". Vehicles 5, n.º 2 (13 de junio de 2023): 698–717. http://dx.doi.org/10.3390/vehicles5020038.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
One of the challenges of autonomous driving is to increase the number of situations in which an intelligent vehicle can continue to operate without human intervention. This requires path-tracking control to keep the vehicle stable while following the road, regardless of the shape of the road or the longitudinal speed at which it is moving. In this work, a control strategy framed in the Model-Free Control paradigm is presented to control the lateral vehicle dynamics in a decoupled control architecture. This strategy is designed to guide the vehicle through trajectories with diverse dynamic constraints and over a wide speed range. A design method for this control strategy is proposed, and metrics for trajectory tracking quality, system stability, and passenger comfort are applied to evaluate the controller’s performance. Finally, simulation and real-world tests show that the developed strategy is able to track realistic trajectories with a high degree of accuracy, safety, and comfort.

Tesis sobre el tema "Decoupled lateral and longitudinal control":

1

Legrand, Romain. "Suivi de trajectoire autonome et robuste en milieu agricole". Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2022. http://www.theses.fr/2022IMTA0330.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
L’automatisation des véhicules agricoles est aujourd’hui un enjeu majeur de la mutation des pratiques agricoles. Munis des capteurs ad hoc, il est question ici de leur capacité à suivre une trajectoire prédéfinie, de manière robuste afin d’assurer leur mission en dépit d’un sol complexe. Cette thèse contribue au sujet en revisitant les problématiques de contrôle des dynamiques latérales et longitudinales. Dans le but de générer une commande robuste des angles de braquage, le suivi latéral du chemin de référence proposé s’appuie sur une approche multi-objectif H2/H∞ et multi-modèle, de manière à optimiser le compromis performances/robustesse à partir des incertitudes explicitées. Le contrôle longitudinal proposé est novateur à plusieurs points de vue. Quoique conçu indépendamment du contrôle latéral, il tient compte des aspects liés à la dynamique latérale, et vise à prévenir les pertes d’adhérence et risques de renversement. La prise en compte de telles contraintes et la nécessité d’anticipation ont induit le choix d’une commande prédictive non-linéaire. Au final, la pertinence de la solution et de la méthode est illustrée par le biais d’un simulateur réaliste, sur la base de scénarios faisant intervenir des configurations multiples de pentes et de vitesses
The automation of off-road vehicles has become nowadays a strategic line of research given the recent and profound mutations of agricultural practices. This thesis deals with the conception of two independent controllers of an off-road vehicle, regulating both longitudinal and lateral dynamics. The first regulator aims to minimize the deviations with respect to a reference path by controlling the steering angles. It relies on anextended bicycle model that accounts for the slopes and load transfers. The H2/H∞ multi-objective synthesis allows the consideration of large model uncertainties. The adaptability of this controller is enhanced by the feedback/feedforward architecture which ensures the global robustness of the regulator. The second controller regulates the longitudinal dynamics of the vehicle. It lies on model predictive control. Anti-slip and anti-rollover constraints are explicitly defined during the synthesis of the regulator to ensure the stability of the off-road vehicle operating on slippery sloping grounds. The designed controllers have been tested on a realistic simulator which takes account of great load transfers within the vehicle, which are common in agricultural context. Both controllers have demonstrated satisfactory performances while exploring a variety of slopes and speeds
2

Agostinho, Solander Patrício Lopes. "Controle longitudinal e lateral para veículos terrestres de categoria pesada". Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/18/18153/tde-16122015-082915/.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Este projeto apresenta o desenvolvimento de um controle longitudinal e lateral para um veículo terrestre de categoria pesada, usando o conceito de geração de curvas de Clothoids. O controle é em malha fechada, com realimentação de velocidade e posição global (X,Y) do veículo no plano bi-dimensional. Dentro de uma arquitetura de controle autônomo para um veículo, o controle longitudinal ajusta a velocidade de cruzeiro em função da trajetória e o lateral é responsável por regular a direção do volante e a sua correspondência para com os pneus, que por sua vez direcionam o veículo dentro da trajetória dada. Para este controle, para o modelo do veículo foi apenas considerado a estrutura do cavalo mecânico (conjunto monolítico formado pela cabine, motor e rodas de tração do caminhão), desprezando qualquer carga traseira engatado nele. Primeiramente será apresentada uma breve introdução abordando a história e projetos atuas de veículos autônomos, em seguida é feito uma revisão dos conceitos básicos usados no projeto. No capitulo seguinte é abordado o modelo matemático do veículo (cinemática e dinâmica) e logo em seguida teremos a secção que aborda sobre a estrutura de controle proposta. A seguir será apresentado a seção de discussão sobre a implementação e resultados práticos. Finalmente é apresentado a conclusão e uma breve descrição sobre trabalhos futuros.
This project presents the development of a longitudinal and lateral control for a Heavy Category Ground Vehicles, using the concept of generation of curves Clothoids. This control is closed loop with feedback speed and position (X,Y) ofvehicle in two-dimensional plane. Within an autonomous control architecture for a vehicle, the longitudinal control adjusts cruising speed on the path and the lateral control is responsible for regulating direction of steering wheel and its correspondence to the tires, which in turn drive the vehicle within the given path. For this control, the vehicle model we are only considering the horse (monolithic assembly formed by the cab, engine and truck drive wheels), disregarding any rear cargo engaged in it. First a brief introduction will be presented addressing the history and projects of autonomous vehicles, then it is made a review of the basic concepts used in the project. The next chapter is discussed the mathematical model of the vehicle (kinematics and dynamics) and soon we will have a section dealing on the proposed control structure.The following will show the discussion section on the implementation and practical results, then the conclusion and a brief description of future work.
3

Olsson, Christian. "Model Complexity and Coupling of Longitudinal and Lateral Control in Autonomous Vehicles Using Model Predictive Control". Thesis, KTH, Reglerteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-175389.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Autonomous vehicles and research pertaining to them have been an important topicin academia and industry in recent years. Developing controllers that enable vehiclesto performpath and trajectory following is a diverse topic where many differentcontrol strategies are available. In this thesis, we focus on lateral and longitudinalcontrol of autonomous vehicles and two different control strategies are considered:a standard decoupled control and a new suggested coupled control.In the decoupled control, the lateral controller consists of a linear time-varying modelpredictive controller (LTV-MPC) together with a PI-controller for the longitudinalcontrol. The coupled controller is a more complex LTV-MPC which handles bothlateral and longitudinal control. The objective is to develop both control strategiesand evaluate their design and performance through path following simulations in aMATLAB environment.When designing the LTV-MPC, two vehicle models are considered: a kinematic modelwithout tyre dynamics and a dynamic bicycle model with tyre forces derived froma linear Pacejka model. A research on how model complexity affects tracking performanceand solver times is also performed. In the end, the thesis presents thefindings of the different control strategies and evaluate them in terms of trackingperformance, solver time, and ease of implementation.
4

Schnelle, Scott C. "Development of Personalized Lateral and Longitudinal Driver Behavior Models for Optimal Human-Vehicle Interactive Control". The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1480362246357462.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Alvarez, Juan Camilo. "Estimation of the Longitudinal and Lateral Velocities of a Vehicle using Extended Kalman Filters". Thesis, Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/13951.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Vehicle motion and tire forces have been estimated using extended Kalman filters for many years. The use of extended Kalman filters is primarily motivated by the simultaneous presence of nonlinear dynamics and sensor noise. Two versions of extended Kalman filters are employed in this thesis: one using a deterministic tire-force model and the other using a stochastic tire-force model. Previous literature has focused on linear stochastic tire-force models and on linear deterministic tire-force models. However, it is well known that there exists a nonlinear relationship between slip variables and tire-force variables. For this reason, it is suitable to use a nonlinear deterministic tire-force model for the extended Kalman filter, and this is the novel aspect at this work. The objective of this research is to show the improvement of the extended Kalman filter using a nonlinear deterministic tire-force model in comparison to linear stochastic tire-force model. The simulation model is a seven degree-of-freedom bicycle model that includes vertical suspension dynamics but neglects the roll motion. A comparison between the linear stochastic tire-force model and the nonlinear deterministic tire-force model confirms the expected results. Simulation studies are performed on some illustrative examples obtaining good tracking performance.
6

Rojek, Fredric W. "Development of a mathematical model that simulates the longitudinal, and lateral-directional response of the F/A-18 for the study of flight control reconfiguration". Thesis, Monterey, California: U.S. Naval Postgraduate School, 1986. http://hdl.handle.net/10945/21787.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Polack, Philip. "Cohérence et stabilité des systèmes hiérarchiques de planification et de contrôle pour la conduite automatisée". Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEM025/document.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
La voiture autonome pourrait réduire le nombre de morts et de blessés sur les routes tout en améliorant l'efficacité du trafic. Cependant, afin d'assurer leur déploiement en masse sur les routes ouvertes au public, leur sécurité doit être garantie en toutes circonstances. Cette thèse traite de l'architecture de planification et de contrôle pour la conduite automatisée et défend l'idée que l'intention du véhicule doit correspondre aux actions réalisées afin de garantir la sécurité à tout moment. Pour cela, la faisabilité cinématique et dynamique de la trajectoire de référence doit être assurée. Sinon, le contrôleur, aveugle aux obstacles, n'est pas capable de la suivre, entraînant un danger pour la voiture elle-même et les autres usagers de la route. L'architecture proposée repose sur la commande à modèle prédictif fondée sur un modèle bicyclette cinématique afin de planifier des trajectoires de référence sûres. La faisabilité de la trajectoire de référence est assurée en ajoutant une contrainte dynamique sur l'angle au volant, contrainte issue de ces travaux, afin d'assurer que le modèle bicyclette cinématique reste valide. Plusieurs contrôleurs à haute-fréquence sont ensuite comparés afin de souligner leurs avantages et inconvénients. Enfin, quelques résultats préliminaires sur les contrôleurs à base de commande sans modèle et leur application au contrôle automobile sont présentés. En particulier, une méthode efficace pour ajuster les paramètres est proposée et implémentée avec succès sur la voiture expérimentale de l'ENSIAME en partenariat avec le laboratoire LAMIH de Valenciennes
Autonomous vehicles are believed to reduce the number of deaths and casualties on the roads while improving the traffic efficiency. However, before their mass deployment on open public roads, their safety must be guaranteed at all time.Therefore, this thesis deals with the motion planning and control architecture for autonomous vehicles and claims that the intention of the vehicle must match with its actual actions. For that purpose, the kinematic and dynamic feasibility of the reference trajectory should be ensured. Otherwise, the controller which is blind to obstacles is unable to track it, setting the ego-vehicle and other traffic participants in jeopardy. The proposed architecture uses Model Predictive Control based on a kinematic bicycle model for planning safe reference trajectories. Its feasibility is ensured by adding a dynamic constraint on the steering angle which has been derived in this work in order to ensure the validity of the kinematic bicycle model. Several high-frequency controllers are then compared and their assets and drawbacks are highlighted. Finally, some preliminary work on model-free controllers and their application to automotive control are presented. In particular, an efficient tuning method is proposed and implemented successfully on the experimental vehicle of ENSIAME in collaboration with the laboratory LAMIH of Valenciennes
8

Guillet, Audrey. "Commande locale décentralisée de robots mobiles en formation en milieu naturel". Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22609/document.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
La problématique étudiée dans cette thèse concerne le guidage en formation d’une flotte de robots mobiles en environnement naturel. L’objectif poursuivi par les robots est de suivre une trajectoire connue (totalement ou partiellement) en se coordonnant avec les autres robots pour maintenir une formation décrite comme un ensemble de distances désirées entre les véhicules. Le contexte d’évolution en environnement naturel doit être pris en compte par les effets qu’il induit sur le déplacement des robots. En effet, les conditions d’adhérence sont variables et créent des glissements significatifs des roues sur le sol. Ces glissements n’étant pas directement mesurables, un observateur est mis en place, permettant d’obtenir une estimation de leur valeur. Les glissements sont alors intégrés au modèle d’évolution, décrivant ainsi un modèle cinématique étendu. En s’appuyant sur ce modèle, des lois de commande adaptatives sur l’angle de braquage et la vitesse d’avance d’un robot sont alors conçues indépendamment, asservissant respectivement son écart latéral à la trajectoire et l’interdistance curviligne de ce robot à une cible. Dans un second temps, ces lois de commande sont enrichies par un algorithme prédictif, permettant de prendre en compte le comportement de réponse des actionneurs et ainsi d’éviter les erreurs conséquentes aux retards de la réponse du système aux commandes. À partir de la loi de commande élémentaire en vitesse permettant d’assurer un asservissement précis d’un robot par rapport à une cible, une stratégie de commande globale au niveau de la flotte est établie. Celle-ci décline l’objectif de maintien de la formation en consigne d’asservissement désiré pour chaque robot. La stratégie de commande bidirectionnelle conçue stipule que chaque robot définit deux cibles que sont le robot immédiatement précédent et le robot immédiatement suivant dans la formation. La commande de vitesse de chaque robot de la formation est obtenue par une combinaison linéaire des vitesses calculées par la commande élémentaire par rapport à chacune des cibles. L’utilisation de coefficients de combinaison constants au sein de la flotte permet de prouver la stabilité de la commande en formation, puis la définition de coefficients variables est envisagée pour adapter en temps réel le comportement de la flotte. La formation peut en effet être amenée à évoluer, notamment en fonction des impératifs de sécurisation des véhicules. Pour répondre à ce besoin, chaque robot estime en temps réel une distance d’arrêt minimale en cas d’urgence et des trajectoires d’urgence pour l’évitement du robot précédent. D’après la configuration de la formation et les comportements d’urgence calculés, les distances désirées au sein de la flotte peuvent alors être modifiées en ligne afin de décrire une configuration sûre de la formation
This thesis focuses on the issue of the control of a formation of wheeled mobile robots travelling in off-road conditions. The goal of the application is to follow a reference trajectory (entirely or partially) known beforehand. Each robot of the fleet has to track this trajectory while coordinating its motion with the other robots in order to maintain a formation described as a set of desired distances between vehicles. The off-road context has to be considered thoroughly as it creates perturbations in the motion of the robots. The contact of the tire on an irregular and slippery ground induces significant slipping and skidding. These phenomena are hardly measurable with direct sensors, therefore an observer is set up in order to get an estimation of their value. The skidding effect is included in the evolution of each robot as a side-slip angle, thus creating an extended kinematic model of evolution. From this model, adaptive control laws on steering angle and velocity for each robot are designed independently. These permit to control respectively the lateral distance to the trajectory and the curvilinear interdistance of the robot to a target. Predictive control techniques lead then to extend these control laws in order to account for the actuators behavior so that positioning errors due to the delay of the robot response to the commands are cancelled. The elementary control law on the velocity control ensures an accurate longitudinal positioning of a robot with respect to a target. It serves as a base for a global fleet control strategy which declines the overall formation maintaining goal in local positioning objective for each robot. A bidirectionnal control strategy is designed, in which each robot defines 2 targets, the immediate preceding and following robot in the fleet. The velocity control of a robot is finally defined as a linear combination of the two velocity commands obtained by the elementary control law for each target. The linear combination parameters are investigated, first defining constant parameters for which the stability of the formation is proved through Lyapunov techniques, then considering the effect of variable coefficients in order to adapt in real time the overall behavior of the formation. The formation configuration can indeed be prone to evolve, for application purposes and to guarantee the security of the robots. To fulfill this latter requirement, each robot of the fleet estimates in real time a minimal stopping distance in case of emergency and two avoidance trajectories to get around the preceding vehicle if this one suddenly stops. Given the initial configuration of the formation and the emergency behaviors calculated, the desired distances between the robots can be adapted so that the new configuration thus described ensures the security of each and every robot of the formation against potential collisions
9

Penco, Dario. "Contrôle véhicule autonome. Contrôle robuste et haute performance pour permettre les manœuvres à haute dynamique des véhicules autonomes". Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG039.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Le travail abordé dans ces travaux de thèse se place dans le contexte de la conduite autonome. Plus particulièrement, l'objectif est le développement d'une loi de commande pour le suivi de trajectoire d'un véhicule autonome pour des manœuvres d'évitement d'obstacles à haute dynamique.Plusieurs modèles non-linéaires de dynamique du véhicule, capables de représenter son comportement dans des manœuvres à haute dynamique, sont proposés. Le but de la modélisation est d'obtenir un modèle pour la synthèse des correcteurs. L'ensemble de modèles proposés considère les dynamiques des vitesses longitudinale, latérale et de lacet du véhicule, en vue de la synthèse des correcteurs abordant simultanément le contrôle longitudinale et latérale du véhicule. De plus, un modèle non-linéaire des forces des pneus et une représentation variable du transfert de charge ont été utilisés, très importants pour des manouvres à haute dynamique. Des simulations permettent de comparer les différents modèles entre eux et de choisir le plus approprié pour la synthèse du correcteur.Un modèle linéaire variable dans le temps est formulé grâce à une linéarisation le long d'une trajectoire de référence du modèle non-linéaire choisi. En utilisant les approches LPV polytopique et grid-based, ce modèle linéarisé est utilisé pour la définition de deux modèles LPV.Les deux modèles LPV sont donc utilisés pour la synthèse de plusieurs correcteurs, statiques et dynamiques, qui combinent le braquage et le couple aux roues pour stabiliser le véhicule et garantir le suivi de trajectoire sur un ensemble varié de manœuvres d'évitement d'obstacles. La synthèse des correcteurs est effectuée en utilisant la commande robuste et optimale multi-objectif, au moyen de la résolution de problèmes d'optimisation sous contraintes LMI. La prise en compte des saturations des signaux de commande et des forces des pneus permet de maximiser la taille de la région d'attraction du système en boucle fermée pendant la synthèse des correcteurs.Des simulations exploitant un modèle du véhicule à haute représentativité permettent d'analyser la performance du système en boucle fermée en cas des conditions initiales différentes de zéro et de dispersions paramétriques
The work proposed in this thesis is in the context of autonomous driving. In particular, the objective is the development of a control law for path tracking of collision avoidance maneuvers for an autonomous vehicle.Several non-linear models of the vehicle, capable of representing its behavior in high dynamics maneuvers, are presented. The purpose is to obtain a model for the synthesis of the controllers. The different vehicle models proposed take into consideration the dynamics of the longitudinal, lateral and yaw vehicle speeds. That allows to use the models for the synthesis of controllers that deals simultaneously with vehicle longitudinal and lateral control. Moreover, a non-linear model for tire forces and the variable representation for load transfer have been used for the vehicle models. In fact, the representation of the non-linear behavior of the tires, influenced by the load transfer, is critical in high dynamics maneuvers. Some simulation results allow to compare the different vehicle models and to choose the model used for the controllers synthesis.A linear time-variant model is obtained through the linearization of the chosen non-linear model. The LPV polytopic and grid-based approaches are then used to define two LPV models.Several controllers, static and dynamic, have been developed using the two LPV models. These controllers combine the wheels steering ang torques to stabilize the vehicle and to guarantee the vehicle path tracking on a set of collision avoidance maneuvers. The synthesis of the controllers is done using robust and optimal control methods, through the resolution of optimization problems subjected to LMI constraints. The saturations of the control signals and of the tire forces are taken into consideration in the control synthesis in order to maximize the region of attraction of the system in closed loop.Several simulation results, obtained using a high representativity simulation model, allow to asses the closed loop system performances in presence of non-zero initial conditions and parameter dispersions
10

Zhao, Jin. "Contribution à la commande d'un train de véhicules intelligents". Phd thesis, Ecole Centrale de Lille, 2010. http://tel.archives-ouvertes.fr/tel-00586081.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Ce mémoire est consacré à la mise en œuvre de commandes d'un train de véhicules intelligents sur autoroute ayant pour objectifs principaux de réduire la congestion et d'améliorer la sécurité routière. Après avoir présenté l'état de l'art sur des systèmes de conduite automatisée, des modèles de la dynamique longitudinale et latérale du véhicule sont présentés. Ensuite, des stratégies de contrôle longitudinal et latéral sont étudiées.D'abord, le contrôle longitudinal est conçu pour être hiérarchique avec un contrôleur de niveau supérieur et un contrôleur de niveau inférieur. Pour celui de niveau supérieur, une régulation d'inter-distance SSP (Safety Spacing Policy) est proposée. Nous avons constaté que la SSP peut assurer la stabilité de la chaîne et la stabilité des flux de trafic et augmenter ainsi la capacité de trafic. Puis, pour celui de niveau inférieur, une loi de commande floue coordonnée est proposée pour gérer l'accélérateur et le freinage. Ensuite, une loi de commande multi-modèle floue est conçue pour le contrôle latéral. De plus, pour réaliser des transformations lisses entre les différentes opérations latérales, une architecture de contrôle hiérarchique est proposée. Puis, l'intégration des commandes longitudinale et latérale est étudiée. Enfin, l'estimation des variables d'états du véhicule est discutée. Un filtre de Kalman-Bucy est conçu pour estimer les états du véhicule. En outre, un prototype de véhicule intelligent à échelle réduite est également présenté. Les performances des divers algorithmes de commande proposés ont été testées par simulations, et les résultats ont été confirmés par les premières expériences en utilisant le prototype

Libros sobre el tema "Decoupled lateral and longitudinal control":

1

Center, Langley Research, ed. Fuzzy logic decoupled lateral control for general aviation airplanes. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Center, Langley Research, ed. Fuzzy logic decoupled longitudinal control for general aviation airplanes. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Suit, William T. Lateral and longitudinal stability and control parameters for the space shuttle Discovery as determined from flight test data. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1988.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Suit, William T. Lateral and longitudinal aerodynamic stability and control parameters of the basic vortex flap research aircraft as determined from flight test data. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1986.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Reubush, David E. Effects of the installation and operation of jet-exhaust yaw vanes on the longitudinal and lateral-directional characteristics of the F-14 airplane. Hampton, Va: Langley Research Center, 1987.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

L, Berrier Bobby y United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. Effects of the installation and operation of jet-exhaust yaw vanes on the longitudinal and lateral-directional characteristics of the F-14 airplane. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1988.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Rojek, Fredric W. Development of a mathematical model that simulates the longitudinal, and lateral-directional response of the F/A-18 for the study of flight control reconfiguration. Monterey, Calif: Naval Postgraduate School, 1986.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

George C. Marshall Space Flight Center., ed. Transonic aerodynamic characteristics of a proposed wing-body reusable launch vehicle concept. MSFC, Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Fuzzy logic decoupled lateral control for general aviation airplanes. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

National Aeronautics and Space Administration (NASA) Staff. Fuzzy Logic Decoupled Lateral Control for General Aviation Airplanes. Independently Published, 2018.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Decoupled lateral and longitudinal control":

1

Sinha, Nandan K. y N. Ananthkrishnan. "Coupled Lateral–Longitudinal Flight Dynamics". En Advanced Flight Dynamics with Elements of Flight Control, 257–302. Boca Raton : Taylor & Francis, CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315151977-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Hofauer, Sonja, Britta Michel, Sigrun Weise, Anna Julia Karmann, Frank Diermeyer, Amelie Stephan, Julia Drüke, Carsten Semmler y Lennart Bendewald. "HMI Strategy – Lateral and Longitudinal Control". En UR:BAN Human Factors in Traffic, 105–18. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-15418-9_6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Vepa, Ranjan. "Longitudinal and Lateral Linear Stability and Control". En Flight Dynamics, Simulation, and Control, 177–255. 2a ed. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003266310-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Isermann, Rolf. "Advanced Driver Assistance Systems for Longitudinal and Lateral Guidance". En Automotive Control, 491–506. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-642-39440-9_17.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Wielitzka, M., S. Eicke, A. Busch, M. Dagen y T. Ortmaier. "Unscented Kalman filter for combined longitudinal and lateral vehicle dynamics". En Advanced Vehicle Control AVEC’16, 515–20. CRC Press/Balkema, P.O. Box 11320, 2301 EH Leiden, The Netherlands, e-mail: Pub.NL@taylorandfrancis.com, www.crcpress.com – www.taylorandfrancis.com: Crc Press, 2016. http://dx.doi.org/10.1201/9781315265285-82.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Suárez, J. I., B. M. Vinagre, A. J. Calderón, C. A. Monje y Y. Q. Chen. "Using Fractional Calculus for Lateral and Longitudinal Control of Autonomous Vehicles". En Computer Aided Systems Theory - EUROCAST 2003, 337–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45210-2_31.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Fu, Tengfei, Chenwei Yao, Mohan Long, Mingqin Gu y Zhiyuan Liu. "Overview of Longitudinal and Lateral Control for Intelligent Vehicle Path Tracking". En Lecture Notes in Electrical Engineering, 672–82. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9050-1_76.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Kageyama, Ichiro, Yukiyo Kuriyagawa y Yiyun Wang. "Fundamental study on driver model for lateral and longitudinal control to advanced driver assistance systems". En Advanced Vehicle Control AVEC’16, 323–28. CRC Press/Balkema, P.O. Box 11320, 2301 EH Leiden, The Netherlands, e-mail: Pub.NL@taylorandfrancis.com, www.crcpress.com – www.taylorandfrancis.com: Crc Press, 2016. http://dx.doi.org/10.1201/9781315265285-52.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Wei, Chongfeng, Richard Romano, Natasha Merat, Foroogh Hajiseyedjavadi, Albert Solernou, Evangelos Paschalidis y Erwin R. Boer. "Achieving Driving Comfort of AVs by Combined Longitudinal and Lateral Motion Control". En Lecture Notes in Mechanical Engineering, 1107–13. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38077-9_129.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Lee, Dongpil, Kyoungsu Yi y Matthijs Klomp. "Combined Lateral and Longitudinal Control with Variable Reference Path for Automated Driving". En Lecture Notes in Mechanical Engineering, 1114–20. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38077-9_130.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Decoupled lateral and longitudinal control":

1

Azar, Ahmad Taher, Fernando E. Serrano, Nashwa Ahmad Kamal y Anis Koubaa. "Decoupled Lateral-Longitudinal Dynamic Modeling and Control of Unmanned Aerial Vehicles". En 2021 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). IEEE, 2021. http://dx.doi.org/10.1109/icarsc52212.2021.9429784.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Menhour, Lghani, Brigitte d'Andrea-novel, Michel Fliess y Hugues Mounier. "Multivariable decoupled longitudinal and lateral vehicle control: A model-free design". En 2013 IEEE 52nd Annual Conference on Decision and Control (CDC). IEEE, 2013. http://dx.doi.org/10.1109/cdc.2013.6760313.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Erdogan, Gurkan, Lee Alexander y Rajesh Rajamani. "Wireless Piezoelectric Sensor for the Measurement of Tire Deformations and the Estimation of Slip Angle". En ASME 2009 Dynamic Systems and Control Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/dscc2009-2627.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
This paper introduces a wireless piezoelectric tire sensor whose readings can be utilized for the estimation of various tire variables such as slip angle, slip ratio, tire forces and tire road friction coefficient. In this paper, the proposed sensor is demonstrated for the estimation of tire slip angle. Lateral deformation of the tire is decoupled from radial and longitudinal tire deformations using a special sensor design. The decoupled lateral deflection profile of the tire is employed to estimate the slip angle. A new tire test rig is constructed to experimentally evaluate the performance of the developed sensor. Results show that the tire sensor can accurately estimate slip angles up to values of 5.0 degrees.
4

Ali, Alan, Gaetan Garcia y Philippe Martinet. "Minimizing the inter-vehicle distances of the time headway policy for urban platoon control with decoupled longitudinal and lateral control". En 2013 16th International IEEE Conference on Intelligent Transportation Systems - (ITSC 2013). IEEE, 2013. http://dx.doi.org/10.1109/itsc.2013.6728490.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Zheng, Zhibo, Jorge Estrela da Silva, Joa˜o B. de Sousa y Anouck R. Girard. "Underwater Vehicle Autopilots With Adaptive Dynamic Surface Control". En ASME 2008 Dynamic Systems and Control Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/dscc2008-2198.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
This paper presents an overview of the state-of-the-art for underwater vehicle autopilots. We start by reviewing reference frames, vehicle states, typical control surfaces, equations of motion, the different coefficients and how they are obtained, and disturbance models as well. We then consider different possible configurations for the autopilot, including decoupled lateral and longitudinal loops, maneuver and waypoint control. Adaptive dynamic surface control of nonlinear tracking of a single underwater vehicle is designed with the corroboration with numerical simulations. Finally, we describe current hardware implementations for autonomous underwater vehicles.
6

Wang, Fengchen y Yan Chen. "Hierarchical Input-Output Decoupling Control for Vehicle Rollover Mitigation". En ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-9166.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
In this paper, a hierarchical input-output decoupling controller is proposed to simultaneously prevent vehicle rollover and keep the input-output stability of vehicle planar motion. A four-degree-of-freedom nonlinear vehicle dynamics model with four-wheel steering (4WS) and four in-wheel motors (4IWMs) is first developed. Then, in the high-level control design, the roll dynamics is decoupled from the planar motion using the general longitudinal and lateral forces. The decoupled roll dynamics is proved to perform as a linear system with an exponentially stable equilibrium. Moreover, the general yaw moment is also determined in the high-level control through the input-output stability analysis for tracking a yaw rate reference. In the low-level control design, the active 4WS control and direct yaw moment control are applied through a control allocation method to satisfy and distribute the virtual control obtained from the high-level control. Demonstrated by co-simulations integrating with CarSim® and MATLAB/Simulink®, the proposed hierarchical input-output decoupling control can successfully prevent the impending rollover and stabilize the vehicle planar motion.
7

Coleman, David y Moble Benedict. "Flight Dynamics Identification, Maneuverability, and Gust Tolerance of a Robotic Hummingbird in Hover". En Vertical Flight Society 75th Annual Forum & Technology Display. The Vertical Flight Society, 2019. http://dx.doi.org/10.4050/f-0075-2019-14485.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
This paper discusses an endeavor to experimentally identify the flight dynamics of the AVFL Hummingbird, and quantify its maneuverability and gust tolerance using a control theoretic framework. The AVFL hummingbird is a 62gram, truly biomimetic robotic hummingbird developed to understand and characterize hummingbird flight. It has a pair of biologically inspired, aeroelastically tailored wings flapping at 20Hz, and is fully hover capable. Additionally, like its biological counterpart, it utilizes wing kinematic modulation techniques for control and stability. The vehicle states were measured during targeted flight tests from which a linearized, state-space model was derived. The model contained damping aerodynamic coefficients, decoupled longitudinal, lateral and directional dynamics, as well as large control coefficients. The control theoretic framework, which quantifies the maximum controllable states of the system under unit inputs, was utilized to calculate the maximum gusts tolerable by the control system. The results showed exceptional gust tolerant capabilities. The maximum gusts tolerable were (1) longitudinal gust: 21.2 ft/s (6.4 m/s); (2) lateral gust: 17.7 ft/s (5.4 m/s); (3) lateral rotational gust: 149.8 rad/s; and (4) longitudinal rotational gust: 20.5 rad/s. These are much greater than comparable rotary-wing based systems. This study represents the first time the maneuverability and gust tolerance of a hummingbird-like system has been experimentally characterized, and has shown quantitatively the exceptional flight capabilities offered by biomimetic design and control.
8

Denton, Hunter, Hao Kang, Moble Benedict y Grant McCurdy. "System Identification of a Thrust-vectoring, Coaxial-rotor-based Gun-launched Micro Air Vehicle in Hover". En Vertical Flight Society 77th Annual Forum & Technology Display. The Vertical Flight Society, 2021. http://dx.doi.org/10.4050/f-0077-2021-16706.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
This paper discusses the flight testing and system identification of a compact, re-configurable, rotary-wing micro air vehicle concept capable of sustained hover and could potentially be launched from a 40mm grenade launcher. By launching these energy-constrained platforms to a target area, the mission range could be significantly improved. The vehicles used in the paper has a mass of 345 grams. The vehicle design features coaxial rotors with foldable blades, and a thrust-vectoring mechanism for pitch and roll control. Yaw control was accomplished with a specialized counterrotating motor system composed of two independently controlled motors. A comprehensive set of flight experiments were performed to excite the longitudinal, lateral, directional, and heave modes of the vehicle. A linearized statespace model was derived from the flight test data. The model showed that lateral and longitudinal dynamic modes were decoupled from each other and from the other modes of the vehicle. Due to the axisymmetric nature the vehicle design, the longitudinal and lateral stability and control coefficients and their eigenvalues were nearly identical. All of the aerodynamic damping terms were negative and stabilizing except for the pitch and roll acceleration modes. These two unstable modes necessitated the need for pitch and roll feedback control. The final flight dynamics model was compared against flight test data for each state, and the model shown good agreement with the experimental data.
9

Chen, Yuanyan, J. Jim Zhu y Letian Lin. "Integrated Forward and Reverse Trajectory Tracking Control for Car-Like Ground Vehicle". En ASME 2019 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/dscc2019-9104.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Abstract Conventional automatic trajectory tracking control technics for car-like ground vehicles typically decompose the controller into separate longitudinal driving control and lateral-directional steering control, owing to the nonholonomic kinematic constraint, highly nonlinear dynamics and control under-actuation of such vehicles. However, such decoupled control techniques inevitably impose operational constraints on agile maneuvers that may be critical in evading impending collisions, preventing loss-of-control of the vehicle, and special maneuvers that are needed for law enforcement missions. Thus, integrated three-Degree-of-Freedom (3DOF) tracking control of car-like ground vehicles are highly desirable but remains a challenging problem. There also appears to be a lack of research on automated reverse driving. In our previous work [ASME DSCC2017-5372, DSCC2018-9148], design and hardware validation test results of an integrated 3DOF trajectory tracking controller based on nonlinear kinematics and dynamics vehicle model using Trajectory Linearization Control (TLC) for forward driving have been reported. The present paper supplements that work with design and hardware validation test results on vehicle backward driving at fast and low speeds. The reverse driving control incurs minimal alteration to the original design with minimal tuning efforts due to the model-based TLC control approach, and it should be readily scaled-up to full-size vehicles and adapted to different types of autonomous ground vehicles with the knowledge of vehicles’ kinematics and dynamics parameters.
10

Tammi, Kari y Valtteri Hyvarinen. "Lateral and longitudinal control of bus platoon". En 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC). IEEE, 2018. http://dx.doi.org/10.1109/esars-itec.2018.8607431.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Decoupled lateral and longitudinal control":

1

Event-Triggered Adaptive Robust Control for Lateral Stability of Steer-by-Wire Vehicles with Abrupt Nonlinear Faults. SAE International, julio de 2022. http://dx.doi.org/10.4271/2022-01-5056.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Because autonomous vehicles (AVs) equipped with active front steering have the features of time varying, uncertainties, high rate of fault, and high burden on the in-vehicle networks, this article studies the adaptive robust control problem for improving lateral stability in steer-by-wire (SBW) vehicles in the presence of abrupt nonlinear faults. First, an upper-level robust H∞ controller is designed to obtain the desired front-wheel steering angle for driving both the yaw rate and the sideslip angle to reach their correct values. Takagi-Sugeno (T-S) fuzzy modeling method, which has shown the extraordinary ability in coping with the issue of nonlinear, is applied to deal with the challenge of the changing longitudinal velocity. The output of the upper controller can be calculated by a parallel distributed compensation (PDC) scheme. Then an event-triggered adaptive fault-tolerant lower controller (ET-AFTC) is proposed to drive the whole SBW system driving the desired steering angle offered by the upper controller with fewer communication resources and strong robustness. By employing a backstepping technique, the tracking performance is improved. The dynamic surface control (DSC) approach is used to avoid the problem of repeated differentiations, and Nussbaum function is adopted to overcome the difficulty of unknown nonlinear control gain. Both the stability of the upper and lower controllers can be guaranteed by Lyapunov functions. Finally, the simulations of Matlab/Simulink are given to show that the proposed control strategy is effectively able to deal with the abrupt nonlinear fault via less communication resources and perform better in ensuring the yaw stability of the vehicle.

Pasar a la bibliografía