Literatura académica sobre el tema "Decellularized matrix"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Decellularized matrix".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Decellularized matrix"
Hashemi, Javad, Ghasem Barati y Bahram Bibak. "Decellularized Matrix Bioscaffolds". Pancreas 50, n.º 7 (agosto de 2021): 942–51. http://dx.doi.org/10.1097/mpa.0000000000001868.
Texto completoHashemi, Javad, Ghasem Barati y Bahram Bibak. "Decellularized Matrix Bioscaffolds". Pancreas 50, n.º 7 (agosto de 2021): 942–51. http://dx.doi.org/10.1097/mpa.0000000000001868.
Texto completoNakamura, Naoko, Ai Ito, Tsuyoshi Kimura y Akio Kishida. "Extracellular Matrix Induces Periodontal Ligament Reconstruction In Vivo". International Journal of Molecular Sciences 20, n.º 13 (3 de julio de 2019): 3277. http://dx.doi.org/10.3390/ijms20133277.
Texto completoMeyer, Tanja, Serghei Cebotari, Gudrun Brandes, Dagmar Hartung, Frank Wacker, Monika Theis, Tim Kaufeld et al. "Decellularized Porcine Pericardium Enhances Autologous Vascularized Matrix as a Prosthesis for Left Ventricular Full-Wall Myocardial Reconstruction". Prosthesis 5, n.º 1 (1 de febrero de 2023): 113–29. http://dx.doi.org/10.3390/prosthesis5010010.
Texto completoBelviso, Immacolata, Anna Maria Sacco, Domenico Cozzolino, Daria Nurzynska, Franca Di Meglio, Clotilde Castaldo y Veronica Romano. "Cardiac-derived extracellular matrix: A decellularization protocol for heart regeneration". PLOS ONE 17, n.º 10 (19 de octubre de 2022): e0276224. http://dx.doi.org/10.1371/journal.pone.0276224.
Texto completoWu, Jinglei, Jiazhu Xu, Yihui Huang, Liping Tang y Yi Hong. "Regional-specific meniscal extracellular matrix hydrogels and their effects on cell–matrix interactions of fibrochondrocytes". Biomedical Materials 17, n.º 1 (23 de diciembre de 2021): 014105. http://dx.doi.org/10.1088/1748-605x/ac4178.
Texto completoLing, You, Weikang Xu, Lifeng Yang, Changyan Liang y Bin Xu. "Improved the biocompatibility of cancellous bone with compound physicochemical decellularization process". Regenerative Biomaterials 7, n.º 5 (30 de agosto de 2020): 443–51. http://dx.doi.org/10.1093/rb/rbaa024.
Texto completoRashidi, Farina, Mahdi Mohammadzadeh, Arash Abdolmaleki, Asadollah Asadi y Mehrdad Sheikhlou. "Acellular carotid scaffold and evaluation the biological and biomechanical properties for tissue engineering". Journal of Cardiovascular and Thoracic Research 16, n.º 1 (13 de marzo de 2024): 28–37. http://dx.doi.org/10.34172/jcvtr.32899.
Texto completoBrennan, Jordan, Michael L. Lu y Yunqing Kang. "A New Model of Esophageal Cancers by Using a Detergent-Free Decellularized Matrix in a Perfusion Bioreactor". Bioengineering 10, n.º 1 (11 de enero de 2023): 96. http://dx.doi.org/10.3390/bioengineering10010096.
Texto completoBobrova, M. M., L. A. Safonova, O. I. Agapova, A. E. Efimov y I. I. Agapov. "The analysis of the proliferative activity of cells on microparticles obtained from decellularized liver and kidney tissue". Russian Journal of Transplantology and Artificial Organs 20, n.º 4 (31 de enero de 2019): 69–75. http://dx.doi.org/10.15825/1995-1191-2018-4-69-75.
Texto completoTesis sobre el tema "Decellularized matrix"
Shah, Mickey. "Cardiac Repair Using A Decellularized Xenogeneic Extracellular Matrix". University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1542631193281779.
Texto completoMarengo, Kaitlyn A. "The Incorporation of Decellularized Cardiac ECM into Fibrin Microthreads". Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-theses/843.
Texto completoYoung, Bethany M. "Novel Small Airway Model Using Electrospun Decellularized Lung Extracellular Matrix". VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4273.
Texto completoLi, Zhaoying. "Adaptive fabrication of biofunctional decellularized extracellular matrix niche towards complex engineered tissues". Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/270349.
Texto completoD'Angelo, Edoardo. "Decellularized colorectal cancer matrix as bioactive microenvironment for in vitro 3D cancer research". Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3426811.
Texto completoI modelli tumorali tridimensionali (3D) si stanno affacciando sul panorama scientifico con l’obiettivo primario di superare le limitazioni di colture cellulari convenzionali (2D) e modelli animali negli approcci di ricerca clinica. In questa tesi di dottorato, si descrive un innovativo approccio di ingegneria tissutale applicata alla ricerca oncologica mediante il quale, partendo da una biopsia tissutale decellularizzata, si genera un modello organo-tipico 3D bioattivo. Questo modello 3D, ricapitola, in vitro, l’ambiente ultra-strutturale del tessuto nativo come dimostrato da indagini istologiche, immunoistochimiche, di immunofluorescenza e di microscopia elettronica a scansione. L’analisi del proteoma e del secretoma mediante spettrometria di massa ha confermato una differente composizione stromale tra la mucosa colica sana decellularizzata e quella della controparte tumorale (CRC) in termini di proteine strutturali (Collagene 1A1, Collagene 1A2, Collagene 3A1) e di proteine secrete, come la Defensina alfa 3. Abbiamo dimostrato che le nostre matrici 3D mantengono le loro proprietà biologiche dopo il processo di decellularizzazione: mediante la CAM, abbiamo osservato un decremento del potenziale angiogenico della matrice decellularizzata di CRC comparata con la mucosa colica sana, causata da un effetto diretto della Defensina alfa 3. Inoltre, abbiamo dimostrato che dopo 5 giorni di ricellularizzazione con cellule HT-29 (linea stabilizzata di cancro del colon), le matrici tumorali 3D (comparate con le rispettive mucose coliche sane ed il metodo di coltura 2D) hanno indotto una sovra-espressione di IL-8, una chemochina a valle del pathway della Defensina alfa 3, che gioca un ruolo molto importante nella crescita e proliferazione tumorale. In conclusione, avendo dimostrato la capacità dei delle nostre matrici acellulari 3D di mucosa colica sana e CRC di mimare gli stimoli ultra-strutturali e biologici dei rispettivi tessuti nativi, crediamo che questo approccio possa essere un efficace strumento per migliorare il livello delle ricerche precliniche e nei test di screening di farmaci.
KC, Pawan. "Development of a Cardiac Patch with Decellularized Myocardial Tissue and Stem Cells". University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron1555413717363006.
Texto completoHansen, Ryan. "Functional and Structural Analysis of Decellularized Liver Tissue Matrix, with Potential Applications in Cancer Tissue Engineering". Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1498650461817088.
Texto completoMiyauchi, Yuya. "A novel three-dimensional culture system maintaining the physiological extracellular matrix of fibrotic model livers accelerates progression of hepatocellular carcinoma cells". Kyoto University, 2018. http://hdl.handle.net/2433/232113.
Texto completoTrignol, Aurélie. "The extracellular matrix as a biomaterial to optimize skeletal muscle regeneration". Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1029.
Texto completoSkeletal muscle exhibits high capacity for regeneration after an injury that relies on resident stem cells. Muscle regeneration is tightly regulated by both the immune response and other resident cells, as well as by cues from the local extracellular matrix (ECM), contributing to a coordinated repair process. Muscle ECM is a network of structural macromolecules with a large majority of collagens and trophic molecules such as glycosaminoglycans (GAGs). In the skeletal muscle tissue, ECM was overlooked due to its complex organization making investigations difficult. Muscle regenerative ability can be overtaken in large muscle wasting, such as in volumetric muscle loss (VML), leading to fibrosis formation and chronic inflammation. This type of injury predominantly occurs in traumatology and in war-wounded patients, with functional disability despite an optimal treatment. The use of biomaterials could provide the biochemical and physical cues that are missing in this pathologic repair. In this work we have focused on obtaining a biomaterial composed of skeletal muscle ECM. We have tested several decellularization protocols both to preserve the three-dimensional architecture of the muscle ECM and to completely remove cell components in order to avoid a deleterious immune response after implantation. However, the protocol did not allow the preservation of trophic molecules such as GAGs, in the scaffold.“ReGenerating Agents” (RGTA®) are functionally analogous of GAGs with a crucial property to resist enzymatic degradation. They function to restore a proper microenvironment for tissue healing with already a clinical application in skin and corneal repair. We have explored the effects of RGTA® in muscle regeneration using an in vivo model in mouse. At early time of regeneration (day 8), we performed histologic analysis. We showed that regenerating myofibers contained more nuclei in the treated animals, in favor of an increase of progenitor fusion, which has been validated in vitro in myogenic cultures. The number of capillaries was higher in favor of a better angiogenesis. Lipid droplets, a marker of impaired regeneration, were reduced by RGTA® administration. At later time of regeneration (day 28), capillary number was still improved in favor of a durable effect of RGTA® on angiogenesis. RGTA® could be incorporated into biomaterials and are particularly resistant in an inflammatory environment, such as that occurring after a VML injury. Chemokines and growth factors could also be added in ECM-based scaffolds to promote the migration of progenitors that are essential for myofiber neoformation. Therapeutic efficacy of these optimized biomaterials will require to be evaluated in an in vivo model of VML
Pouliot, Robert A. "DEVELOPMENT AND CHARACTERIZATION OF LUNG DERIVED EXTRACELLULAR MATRIX HYDROGELS". VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4465.
Texto completoLibros sobre el tema "Decellularized matrix"
Yamaoka, Tetsuji y Takashi Hoshiba, eds. Decellularized Extracellular Matrix. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788015998.
Texto completoYamaoka, Tetsuji y Takashi Hoshiba. Decellularized Extracellular Matrix: Characterization, Fabrication and Applications. Royal Society of Chemistry, The, 2019.
Buscar texto completoCapítulos de libros sobre el tema "Decellularized matrix"
Hoshiba, Takashi y Tetsuji Yamaoka. "CHAPTER 1. Extracellular Matrix Scaffolds for Tissue Engineering and Biological Research". En Decellularized Extracellular Matrix, 1–14. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788015998-00001.
Texto completoYamaoka, Tetsuji. "CHAPTER 2. Preparation Methods for Tissue/Organ-derived dECMs – Effects on Cell Removal and ECM Changes". En Decellularized Extracellular Matrix, 15–28. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788015998-00015.
Texto completoHoshiba, T., N. Kawazoe y G. Chen. "CHAPTER 3. Preparation of Cultured Cell-derived Decellularized Matrix (dECM) – Factors Influencing dECM Formation and Its Ability". En Decellularized Extracellular Matrix, 29–50. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788015998-00029.
Texto completoMochitate, Katsumi, Reiko Nagano y Yukiko Toya-Nakajima. "CHAPTER 4. Bared Basement Membrane Substrata: Design, Cellular Assembly, Decellularization and Application to Tissue Regeneration and Stem Cell Differentiation". En Decellularized Extracellular Matrix, 51–76. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788015998-00051.
Texto completoMorimoto, Naoki, Atsushi Mahara y Tetsuji Yamaoka. "CHAPTER 5. A Novel Treatment for Giant Congenital Melanocytic Nevi Combining Inactivated Nevus Tissue by Pressurization and Cultured Epidermal Autograft". En Decellularized Extracellular Matrix, 77–94. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788015998-00077.
Texto completoScanameo, Alexandra y Nicholas P. Ziats. "CHAPTER 6. Immune Responses to Decellularized Matrices". En Decellularized Extracellular Matrix, 95–115. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788015998-00095.
Texto completoDuran, Pamela, Marianna Alperin y Karen L. Christman. "CHAPTER 7. Decellularized Extracellular Matrix Hydrogels: Fabrication, Properties, Characterization, and Current Applications". En Decellularized Extracellular Matrix, 116–38. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788015998-00116.
Texto completoDas, Sanskrita, Anthony Safaa Mukhtar, Jinah Jang y Jin-Hyung Shim. "CHAPTER 8. Decellularized Extracellular Matrix as Bioink for 3D-Bioprinting". En Decellularized Extracellular Matrix, 139–62. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788015998-00139.
Texto completoHwang, Mintai P. y Kwideok Park. "CHAPTER 9. Mechanical Property Tunable dECM and Their Regenerative Applications". En Decellularized Extracellular Matrix, 163–78. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788015998-00163.
Texto completoHodde, J. P. "CHAPTER 10. Use of Small Intestinal Submucosa dECM in Tissue Engineering and Regenerative Medicine". En Decellularized Extracellular Matrix, 179–98. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788015998-00179.
Texto completoActas de conferencias sobre el tema "Decellularized matrix"
Shchotkina, Nataliia V., Anatoliy A. Sokol, Glib I. Yemets, Oleksandr Yu Galkin, Liudmyla V. Dolinchuk, Iryna M. Skorokhod, Olena V. Shepeleva, Nadiia M. Rudenko y Iliia M. Yemets. "Microarchitectonic of Decellularized Bovine Pericardium Matrix". En The 7th World Congress on New Technologies. Avestia Publishing, 2021. http://dx.doi.org/10.11159/icbb21.167.
Texto completoTas, S., D. A. Bölükbas, H. N. Alsafadi, I. A. Da Silva, M. M. De Santis, E. Rehnberg, I. Tamargo, S. Mohlin, S. Lindstedt y D. E. Wagner. "Decellularized extracellular matrix hydrogels for human airway organoid culture". En ERS Lung Science Conference 2021 abstracts. European Respiratory Society, 2021. http://dx.doi.org/10.1183/23120541.lsc-2021.101.
Texto completoKuhlin, B., J. Kern, D. Gvaramia, N. Rotter, H. Tritschler, Y. Jakob, L. Körber, R. Breiter y RE Brenner. "Detection of matrix metalloproteinases after seeding a decellularized extracellular matrix with chondrogenic progenitor cells". En Abstract- und Posterband – 90. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Digitalisierung in der HNO-Heilkunde. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1686890.
Texto completoGvaramia, D., J. Kern, Y. Jakob, L. Huber y N. Rotter. "The Response of Primary Human Macrophages to Decellularized Cartilage Extracellular Matrix". En Abstract- und Posterband – 91. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Welche Qualität macht den Unterschied. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1711446.
Texto completoPrice, AP, TR Metz y A. Panoskaltsis-Mortari. "Decellularized Lung as a 3-D Matrix for Bioengineering the Lung." En American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a5382.
Texto completoGvaramia, D., J. Kern, Y. Jakob, L. Huber, J. Kzhyshkowska y N. Rotter. "The Response of Primary Human Macrophages to Decellularized Cartilage Extracellular Matrix". En 100 JAHRE DGHNO-KHC: WO KOMMEN WIR HER? WO STEHEN WIR? WO GEHEN WIR HIN? Georg Thieme Verlag KG, 2021. http://dx.doi.org/10.1055/s-0041-1728945.
Texto completoZhao, Shijia, Linxia Gu, James M. Hammel y Haili Lang. "Mechanical Characterization of the Decellularized Porcine Small Intestinal Submucosa Extracellular Matrix". En ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65640.
Texto completoSinem, Tas, Deniz A. Bölükbas, Hani N. Alsafadi, Iran An Da Silva, Martina M. De Santis, Emil Rehnberg, Isabel Tamargo, Sophie Mohlin, Sandra Lindstedt y Darcy E. Wagner. "LSC - 2021 - Decellularized extracellular matrix hydrogels for human airway organoid culture". En ERS International Congress 2021 abstracts. European Respiratory Society, 2021. http://dx.doi.org/10.1183/13993003.congress-2021.oa1614.
Texto completoWirtzfeld, L. A., E. S. L. Berndl y M. C. Kolios. "Ultrasonic characterization of extra-cellular matrix in decellularized murine kidney and liver". En 2015 IEEE International Ultrasonics Symposium (IUS). IEEE, 2015. http://dx.doi.org/10.1109/ultsym.2015.0170.
Texto completoGodin, Lindsay M., Andrew P. Price y Angela Panoskaltsis-Mortari. "Characterization Of Decellularized Lung Matrix After FITC-Induced Lung Injury In Mice". En American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a1030.
Texto completo