Artículos de revistas sobre el tema "Debiased machine learning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Debiased machine learning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Ahrens, Achim, Christian B. Hansen, Mark E. Schaffer y Thomas Wiemann. "ddml: Double/debiased machine learning in Stata". Stata Journal: Promoting communications on statistics and Stata 24, n.º 1 (marzo de 2024): 3–45. http://dx.doi.org/10.1177/1536867x241233641.
Texto completoChernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen y Whitney Newey. "Double/Debiased/Neyman Machine Learning of Treatment Effects". American Economic Review 107, n.º 5 (1 de mayo de 2017): 261–65. http://dx.doi.org/10.1257/aer.p20171038.
Texto completoChen, Jau-er, Chien-Hsun Huang y Jia-Jyun Tien. "Debiased/Double Machine Learning for Instrumental Variable Quantile Regressions". Econometrics 9, n.º 2 (2 de abril de 2021): 15. http://dx.doi.org/10.3390/econometrics9020015.
Texto completoChernozhukov, Victor, Whitney K. Newey y Rahul Singh. "Automatic Debiased Machine Learning of Causal and Structural Effects". Econometrica 90, n.º 3 (2022): 967–1027. http://dx.doi.org/10.3982/ecta18515.
Texto completoLiu, Molei, Yi Zhang y Doudou Zhou. "Double/debiased machine learning for logistic partially linear model". Econometrics Journal 24, n.º 3 (11 de junio de 2021): 559–88. http://dx.doi.org/10.1093/ectj/utab019.
Texto completoChernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey y James Robins. "Double/debiased machine learning for treatment and structural parameters". Econometrics Journal 21, n.º 1 (16 de enero de 2018): C1—C68. http://dx.doi.org/10.1111/ectj.12097.
Texto completoChang, Neng-Chieh. "Double/debiased machine learning for difference-in-differences models". Econometrics Journal 23, n.º 2 (4 de febrero de 2020): 177–91. http://dx.doi.org/10.1093/ectj/utaa001.
Texto completoFu, Runshan, Yan Huang y Param Vir Singh. "Crowds, Lending, Machine, and Bias". Information Systems Research 32, n.º 1 (1 de marzo de 2021): 72–92. http://dx.doi.org/10.1287/isre.2020.0990.
Texto completoJung, Yonghan, Jin Tian y Elias Bareinboim. "Estimating Identifiable Causal Effects through Double Machine Learning". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 13 (18 de mayo de 2021): 12113–22. http://dx.doi.org/10.1609/aaai.v35i13.17438.
Texto completoTsai, Yun-Da, Cayon Liow, Yin Sheng Siang y Shou-De Lin. "Toward More Generalized Malicious URL Detection Models". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 19 (24 de marzo de 2024): 21628–36. http://dx.doi.org/10.1609/aaai.v38i19.30161.
Texto completoHridi, Anurata Prabha, Rajeev Sahay, Seyyedali Hosseinalipour y Bita Akram. "Revolutionizing AI-Assisted Education with Federated Learning: A Pathway to Distributed, Privacy-Preserving, and Debiased Learning Ecosystems". Proceedings of the AAAI Symposium Series 3, n.º 1 (20 de mayo de 2024): 297–303. http://dx.doi.org/10.1609/aaaiss.v3i1.31217.
Texto completoJiang, Xiangxiang, Gang Lv, Minghui Li y Kevin Lu. "CAUSAL EFFECT OF ANTI-DEMENTIA DRUGS ON PATIENTS’ ECONOMIC BURDEN USING DOUBLE/DEBIASED MACHINE LEARNING APPROACH". Innovation in Aging 7, Supplement_1 (1 de diciembre de 2023): 1000. http://dx.doi.org/10.1093/geroni/igad104.3213.
Texto completoWei, Rongrong y Yueming Xia. "Digital transformation and corporate green total factor productivity: Based on double/debiased machine learning robustness estimation". Economic Analysis and Policy 84 (diciembre de 2024): 808–27. http://dx.doi.org/10.1016/j.eap.2024.09.023.
Texto completoChernozhukov, Victor, Juan Carlos Escanciano, Hidehiko Ichimura, Whitney K. Newey y James M. Robins. "Locally Robust Semiparametric Estimation". Econometrica 90, n.º 4 (2022): 1501–35. http://dx.doi.org/10.3982/ecta16294.
Texto completoZhang, Yingheng, Haojie Li y Gang Ren. "Quantifying the social impacts of the London Night Tube with a double/debiased machine learning based difference-in-differences approach". Transportation Research Part A: Policy and Practice 163 (septiembre de 2022): 288–303. http://dx.doi.org/10.1016/j.tra.2022.07.015.
Texto completoGuo, Yaming, Meng Li, Keqiang Li, Huiping Li y Yunxuan Li. "Unraveling the determinants of traffic incident duration: A causal investigation using the framework of causal forests with debiased machine learning". Accident Analysis & Prevention 208 (diciembre de 2024): 107806. http://dx.doi.org/10.1016/j.aap.2024.107806.
Texto completoIchimura, Hidehiko y Whitney K. Newey. "The influence function of semiparametric estimators". Quantitative Economics 13, n.º 1 (2022): 29–61. http://dx.doi.org/10.3982/qe826.
Texto completoZhang, Guidong, Jianlong Wang y Yong Liu. "How does auditing outgoing officials' natural resource asset management policies affect carbon emission efficiency? Evidence from a debiased machine learning model". Journal of Cleaner Production 478 (noviembre de 2024): 143932. http://dx.doi.org/10.1016/j.jclepro.2024.143932.
Texto completo包, 娣娜. "The Impact of Carbon Emission Trading on the Environmental Performance of Emission Control Enterprises—Based on Double/Debiased Machine Learning Model". Journal of Low Carbon Economy 13, n.º 04 (2024): 276–84. http://dx.doi.org/10.12677/jlce.2024.134027.
Texto completoZhang, Qinghua, Yuhang Chen, Yilin Zhong y Junhao Zhong. "The positive effects of the higher education expansion policy on urban innovation in China". AIMS Mathematics 9, n.º 2 (2024): 2985–3010. http://dx.doi.org/10.3934/math.2024147.
Texto completoGirma, Sourafel y David Paton. "Using double-debiased machine learning to estimate the impact of Covid-19 vaccination on mortality and staff absences in elderly care homes." European Economic Review 170 (noviembre de 2024): 104882. http://dx.doi.org/10.1016/j.euroecorev.2024.104882.
Texto completoNguyen-Phung, Hang Thu y Hai Le. "Energy Poverty and Health Expenditure: Empirical Evidence from Vietnam". Social Sciences 13, n.º 5 (6 de mayo de 2024): 253. http://dx.doi.org/10.3390/socsci13050253.
Texto completoOlivares, Barlin O., Juan C. Rey, Guillermo Perichi y Deyanira Lobo. "Relationship of Microbial Activity with Soil Properties in Banana Plantations in Venezuela". Sustainability 14, n.º 20 (19 de octubre de 2022): 13531. http://dx.doi.org/10.3390/su142013531.
Texto completoLi, Hairui, Xuemei Liu, Xiaolu Chen y Xianfeng Huai. "Robust Anomaly Recognition in Hydraulic Structural Safety Monitoring: A Methodology Based on Deconfounding Boosted Regression Trees". Mathematical Problems in Engineering 2023 (16 de agosto de 2023): 1–15. http://dx.doi.org/10.1155/2023/7854792.
Texto completoLi, Enji, Qing Chen, Xinyan Zhang y Chen Zhang. "Digital Government Development, Local Governments’ Attention Distribution and Enterprise Total Factor Productivity: Evidence from China". Sustainability 15, n.º 3 (30 de enero de 2023): 2472. http://dx.doi.org/10.3390/su15032472.
Texto completoPinkava, Thomas, Jack McFarland y Afra Mashhadi. "A Model- and Data-Agnostic Debiasing System for Achieving Equalized Odds". Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society 7 (16 de octubre de 2024): 1123–31. http://dx.doi.org/10.1609/aies.v7i1.31709.
Texto completoChowdhury, Somnath Basu Roy y Snigdha Chaturvedi. "Learning Fair Representations via Rate-Distortion Maximization". Transactions of the Association for Computational Linguistics 10 (2022): 1159–74. http://dx.doi.org/10.1162/tacl_a_00512.
Texto completoIslam, Rashidul, Huiyuan Chen y Yiwei Cai. "Fairness without Demographics through Shared Latent Space-Based Debiasing". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 11 (24 de marzo de 2024): 12717–25. http://dx.doi.org/10.1609/aaai.v38i11.29167.
Texto completoRana, Saadia Afzal, Zati Hakim Azizul y Ali Afzal Awan. "A step toward building a unified framework for managing AI bias". PeerJ Computer Science 9 (26 de octubre de 2023): e1630. http://dx.doi.org/10.7717/peerj-cs.1630.
Texto completoMaasoumi, Esfandiar Essie, Jianqiu Wang, Zhuo Wang y Ke Wu. "Identifying Factors via Automatic Debiased Machine Learning". SSRN Electronic Journal, 2022. http://dx.doi.org/10.2139/ssrn.4223091.
Texto completoChiang, Harold D., Kengo Kato, Yukun Ma y Yuya Sasaki. "Multiway Cluster Robust Double/Debiased Machine Learning". Journal of Business & Economic Statistics, 19 de abril de 2021, 1–11. http://dx.doi.org/10.1080/07350015.2021.1895815.
Texto completoAhrens, Achim, Christian Hansen, Mark Schaffer y Thomas T. Wiemann. "Ddml: Double/Debiased Machine Learning in Stata". SSRN Electronic Journal, 2023. http://dx.doi.org/10.2139/ssrn.4368837.
Texto completoMaasoumi, Esfandiar, Jianqiu Wang, Zhuo Wang y Ke Wu. "Identifying factors via automatic debiased machine learning". Journal of Applied Econometrics, 13 de febrero de 2024. http://dx.doi.org/10.1002/jae.3031.
Texto completoSemenova, Vira. "Debiased machine learning of set-identified linear models". Journal of Econometrics, enero de 2023. http://dx.doi.org/10.1016/j.jeconom.2022.12.010.
Texto completoChernozhukov, V., W. K. Newey y R. Singh. "A Simple and General Debiased Machine Learning Theorem with Finite Sample Guarantees". Biometrika, 14 de junio de 2022. http://dx.doi.org/10.1093/biomet/asac033.
Texto completoDai, Xiaowu y Lexin Li. "Orthogonalized Kernel Debiased Machine Learning for Multimodal Data Analysis". Journal of the American Statistical Association, 3 de febrero de 2022, 1–15. http://dx.doi.org/10.1080/01621459.2021.2013851.
Texto completoKim, Gene Hyungjin. "Double/Debiased Machine Learning for Static Games with Incomplete Information". SSRN Electronic Journal, 2023. http://dx.doi.org/10.2139/ssrn.4377695.
Texto completoSemenova, Vira y Victor Chernozhukov. "Debiased machine learning of conditional average treatment effects and other causal functions". Econometrics Journal, 29 de agosto de 2020. http://dx.doi.org/10.1093/ectj/utaa027.
Texto completoJin, Zequn, Lihua Lin y Zhengyu Zhang. "Identification and Auto-debiased Machine Learning for Outcome-Conditioned Average Structural Derivatives". Journal of Business & Economic Statistics, 24 de enero de 2024, 1–27. http://dx.doi.org/10.1080/07350015.2024.2310022.
Texto completoShi, Bowen, Xiaojie Mao, Mochen Yang y Bo Li. "What, Why, and How: An Empiricist's Guide to Double/Debiased Machine Learning". SSRN Electronic Journal, 2024. http://dx.doi.org/10.2139/ssrn.4677153.
Texto completoDíaz, Iván. "Machine learning in the estimation of causal effects: targeted minimum loss-based estimation and double/debiased machine learning". Biostatistics, 19 de noviembre de 2019. http://dx.doi.org/10.1093/biostatistics/kxz042.
Texto completoMoccia, Chiara, Giovenale Moirano, Maja Popovic, Costanza Pizzi, Piero Fariselli, Lorenzo Richiardi, Claus Thorn Ekstrøm y Milena Maule. "Machine learning in causal inference for epidemiology". European Journal of Epidemiology, 13 de noviembre de 2024. http://dx.doi.org/10.1007/s10654-024-01173-x.
Texto completoFeyzollahi, Maryam y Nima Rafizadeh. "Double/Debiased Machine Learning for Economists: Practical Guidelines, Best Practices, and Common Pitfalls". SSRN Electronic Journal, 2024. http://dx.doi.org/10.2139/ssrn.4703243.
Texto completoBhagavathula, Akshaya Srikanth. "Causal Analysis of PFAS Exposure and Cardiovascular Risk Using Double/Debiased Machine Learning". Annals of Epidemiology, agosto de 2024. http://dx.doi.org/10.1016/j.annepidem.2024.07.050.
Texto completoKabata, Daijiro y Mototsugu Shintani. "Variable selection in double/debiased machine learning for causal inference: an outcome-adaptive approach". Communications in Statistics - Simulation and Computation, 15 de noviembre de 2021, 1–14. http://dx.doi.org/10.1080/03610918.2021.2001655.
Texto completoLoecher, Markus. "Debiasing SHAP scores in random forests". AStA Advances in Statistical Analysis, 22 de agosto de 2023. http://dx.doi.org/10.1007/s10182-023-00479-7.
Texto completoWang, Clarice, Kathryn Wang, Andrew Y. Bian, Rashidul Islam, Kamrun Naher Keya, James Foulds y Shimei Pan. "When Biased Humans Meet Debiased AI: A Case Study in College Major Recommendation". ACM Transactions on Interactive Intelligent Systems, agosto de 2023. http://dx.doi.org/10.1145/3611313.
Texto completoZhong, Junhao, Zhenzhen Wang y Yunfeng Deng. "Driving the Green Transformation of Enterprises: The Role of Patent Insurance". Managerial and Decision Economics, 21 de noviembre de 2024. http://dx.doi.org/10.1002/mde.4439.
Texto completoKamal, Kimia y Bilal Farooq. "Debiased Machine Learning for Estimating the Causal Effect of Urban Traffic on Pedestrian Crossing Behavior". Transportation Research Record: Journal of the Transportation Research Board, 8 de febrero de 2023, 036119812311522. http://dx.doi.org/10.1177/03611981231152246.
Texto completoKovács, Dávid Péter, William McCorkindale y Alpha A. Lee. "Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias". Nature Communications 12, n.º 1 (16 de marzo de 2021). http://dx.doi.org/10.1038/s41467-021-21895-w.
Texto completo