Artículos de revistas sobre el tema "DBN (Deep Belief Network)"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "DBN (Deep Belief Network)".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Peng, Fan, Suping Peng, Wenfeng Du y Hongshuan Liu. "Coalbed methane content prediction using deep belief network". Interpretation 8, n.º 2 (1 de mayo de 2020): T309—T321. http://dx.doi.org/10.1190/int-2019-0126.1.
Texto completoZhang, Kaiyu, Shanshan Shi, Shu Liu, Junjie Wan y Lijia Ren. "Research on DBN-based Evaluation of Distribution Network Reliability". E3S Web of Conferences 242 (2021): 03004. http://dx.doi.org/10.1051/e3sconf/202124203004.
Texto completoYang, Lei, Chunqing Zhao, Chao Lu, Lianzhen Wei y Jianwei Gong. "Lateral and Longitudinal Driving Behavior Prediction Based on Improved Deep Belief Network". Sensors 21, n.º 24 (20 de diciembre de 2021): 8498. http://dx.doi.org/10.3390/s21248498.
Texto completoSun, Lili. "Optimization of Physical Education Course Resource Allocation Model Based on Deep Belief Network". Mathematical Problems in Engineering 2023 (29 de abril de 2023): 1–8. http://dx.doi.org/10.1155/2023/8457760.
Texto completoPrabowo, Abram Setyo, Agus Sihabuddin y Azhari SN. "Adaptive Moment Estimation On Deep Belief Network For Rupiah Currency Forecasting". IJCCS (Indonesian Journal of Computing and Cybernetics Systems) 13, n.º 1 (31 de enero de 2019): 31. http://dx.doi.org/10.22146/ijccs.39071.
Texto completoTan, Xiaopeng, Shaojing Su, Zhen Zuo, Xiaojun Guo y Xiaoyong Sun. "Intrusion Detection of UAVs Based on the Deep Belief Network Optimized by PSO". Sensors 19, n.º 24 (14 de diciembre de 2019): 5529. http://dx.doi.org/10.3390/s19245529.
Texto completoYan, Yan, Xu-Cheng Yin, Sujian Li, Mingyuan Yang y Hong-Wei Hao. "Learning Document Semantic Representation with Hybrid Deep Belief Network". Computational Intelligence and Neuroscience 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/650527.
Texto completoYang, Huihua, Baichao Hu, Xipeng Pan, Shengke Yan, Yanchun Feng, Xuebo Zhang, Lihui Yin y Changqin Hu. "Deep belief network-based drug identification using near infrared spectroscopy". Journal of Innovative Optical Health Sciences 10, n.º 02 (marzo de 2017): 1630011. http://dx.doi.org/10.1142/s1793545816300111.
Texto completoSharipuddin, Sharipuddin, Eko Arip Winanto, Zulwaqar Zain Mohtar, Kurniabudi Kurniabudi, Ibnu Sani Wijaya y Dodi Sandra. "Improvement detection system on complex network using hybrid deep belief network and selection features". Indonesian Journal of Electrical Engineering and Computer Science 31, n.º 1 (1 de julio de 2023): 470. http://dx.doi.org/10.11591/ijeecs.v31.i1.pp470-479.
Texto completoAnh, Duong Tuan y Ta Ngoc Huy Nam. "Chaotic time series prediction with deep belief networks: an empirical evaluation". Science & Technology Development Journal - Engineering and Technology 3, SI1 (4 de diciembre de 2020): SI102—SI112. http://dx.doi.org/10.32508/stdjet.v3isi1.571.
Texto completoRajadnya, Prof Kirti. "Speech Recognition using Deep Neural Network Neural (DNN) and Deep Belief Network (DBN)". International Journal for Research in Applied Science and Engineering Technology 8, n.º 5 (31 de mayo de 2020): 1543–48. http://dx.doi.org/10.22214/ijraset.2020.5359.
Texto completoTong, Guiying. "Music Emotion Classification Method Using Improved Deep Belief Network". Mobile Information Systems 2022 (18 de marzo de 2022): 1–7. http://dx.doi.org/10.1155/2022/2715765.
Texto completoAlom, Zahangir, Venkata Ramesh Bontupalli y Tarek M. Taha. "Intrusion Detection Using Deep Belief Network and Extreme Learning Machine". International Journal of Monitoring and Surveillance Technologies Research 3, n.º 2 (abril de 2015): 35–56. http://dx.doi.org/10.4018/ijmstr.2015040103.
Texto completoZulfa, Ira y Edi Winarko. "Sentimen Analisis Tweet Berbahasa Indonesia Dengan Deep Belief Network". IJCCS (Indonesian Journal of Computing and Cybernetics Systems) 11, n.º 2 (31 de julio de 2017): 187. http://dx.doi.org/10.22146/ijccs.24716.
Texto completoLi, Chenming, Yongchang Wang, Xiaoke Zhang, Hongmin Gao, Yao Yang y Jiawei Wang. "Deep Belief Network for Spectral–Spatial Classification of Hyperspectral Remote Sensor Data". Sensors 19, n.º 1 (8 de enero de 2019): 204. http://dx.doi.org/10.3390/s19010204.
Texto completoArum, Aprilisa y Pramono Pramono. "Penerapan Algoritma Deep Belief Networks (DBNs) Untuk Prediksi Kanker Serviks". DutaCom 17, n.º 1 (28 de febrero de 2023): 50–57. http://dx.doi.org/10.47701/dutacom.v17i1.3790.
Texto completoConstantin Menteng, Arief Setyanto y Hanif Al Fatta. "MODEL DETEKSI SERANGAN SSH-BRUTE FORCE BERDASARKAN DEEP BELIEF NETWORK". Jurnal Teknologi Informasi: Jurnal Keilmuan dan Aplikasi Bidang Teknik Informatika 7, n.º 2 (5 de agosto de 2023): 101–10. http://dx.doi.org/10.47111/jti.v7i2.8151.
Texto completoJiang, Keruo, Zhen Huang, Xinyan Zhou, Chudong Tong, Minjie Zhu y Heshan Wang. "Deep belief improved bidirectional LSTM for multivariate time series forecasting". Mathematical Biosciences and Engineering 20, n.º 9 (2023): 16596–627. http://dx.doi.org/10.3934/mbe.2023739.
Texto completoRuiz Cárdenas, Luis Carlos, Dario Amaya Hurtado y Robinson Jiménez Moreno. "Predicción de radiación solar mediante deep belief network". Revista Tecnura 20, n.º 47 (18 de febrero de 2016): 39. http://dx.doi.org/10.14483/udistrital.jour.tecnura.2016.1.a03.
Texto completoZhong, P., Z. Q. Gong y C. Schönlieb. "A DIVERSIFIED DEEP BELIEF NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B7 (21 de junio de 2016): 443–49. http://dx.doi.org/10.5194/isprs-archives-xli-b7-443-2016.
Texto completoZhong, P., Z. Q. Gong y C. Schönlieb. "A DIVERSIFIED DEEP BELIEF NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B7 (21 de junio de 2016): 443–49. http://dx.doi.org/10.5194/isprsarchives-xli-b7-443-2016.
Texto completoWang, Shuqin, Gang Hua, Guosheng Hao y Chunli Xie. "A Cycle Deep Belief Network Model for Multivariate Time Series Classification". Mathematical Problems in Engineering 2017 (2017): 1–7. http://dx.doi.org/10.1155/2017/9549323.
Texto completoWang, Hai, Yingfeng Cai y Long Chen. "A Vehicle Detection Algorithm Based on Deep Belief Network". Scientific World Journal 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/647380.
Texto completoGourisaria, Mahendra Kumar, Harshvardhan GM, Rakshit Agrawal, Sudhansu Shekhar Patra, Siddharth Swarup Rautaray y Manjusha Pandey. "Arrhythmia Detection Using Deep Belief Network Extracted Features From ECG Signals". International Journal of E-Health and Medical Communications 12, n.º 6 (noviembre de 2021): 1–24. http://dx.doi.org/10.4018/ijehmc.20211101.oa9.
Texto completoZhang, Yue y Fangai Liu. "An Improved Deep Belief Network Prediction Model Based on Knowledge Transfer". Future Internet 12, n.º 11 (29 de octubre de 2020): 188. http://dx.doi.org/10.3390/fi12110188.
Texto completoXi, Shuyue y Xiaozhong Xu. "Dynamic gaussian deep belief network design and stock market application". Intelligent Data Analysis 27, n.º 2 (15 de marzo de 2023): 519–34. http://dx.doi.org/10.3233/ida-216340.
Texto completoYang, Jianjian, Boshen Chang, Xiaolin Wang, Qiang Zhang, Chao Wang, Fan Wang y Miao Wu. "Design and Application of Deep Belief Network Based on Stochastic Adaptive Particle Swarm Optimization". Mathematical Problems in Engineering 2020 (24 de agosto de 2020): 1–10. http://dx.doi.org/10.1155/2020/6590765.
Texto completoShen, Changqing, Jiaqi Xie, Dong Wang, Xingxing Jiang, Juanjuan Shi y Zhongkui Zhu. "Improved Hierarchical Adaptive Deep Belief Network for Bearing Fault Diagnosis". Applied Sciences 9, n.º 16 (16 de agosto de 2019): 3374. http://dx.doi.org/10.3390/app9163374.
Texto completoSrinivasa Rao, T. C., S. S. Tulasi Ram y J. B. V. Subrahmanyam. "Fault Signal Recognition in Power Distribution System using Deep Belief Network". Journal of Intelligent Systems 29, n.º 1 (13 de marzo de 2018): 459–74. http://dx.doi.org/10.1515/jisys-2017-0499.
Texto completoM., Arshey y Angel Viji K. S. "An optimization-based deep belief network for the detection of phishing e-mails". Data Technologies and Applications 54, n.º 4 (16 de julio de 2020): 529–49. http://dx.doi.org/10.1108/dta-02-2020-0043.
Texto completoSheng, Dali, Jinlian Deng, Wei Zhang, Jie Cai, Weisheng Zhao y Jiawei Xiang. "A Statistical Image Feature-Based Deep Belief Network for Fire Detection". Complexity 2021 (5 de agosto de 2021): 1–12. http://dx.doi.org/10.1155/2021/5554316.
Texto completoKadam, Vinod Jagannath y Shivajirao Manikrao Jadhav. "Optimal weighted feature vector and deep belief network for medical data classification". International Journal of Wavelets, Multiresolution and Information Processing 18, n.º 02 (3 de diciembre de 2019): 2050006. http://dx.doi.org/10.1142/s021969132050006x.
Texto completoMunish, Saran, Kumar Yadav Rajan, Maurya Pranjal, Devi Sangeeta y Nath Tripathi Upendra. "A novel methodology for enhancing intrusion detection system". i-manager’s Journal on Software Engineering 17, n.º 4 (2023): 9. http://dx.doi.org/10.26634/jse.17.4.20009.
Texto completoKamada, Shin, Takumi Ichimura y Toshihide Harada. "Knowledge Extraction of Adaptive Structural Learning of Deep Belief Network for Medical Examination Data". International Journal of Semantic Computing 13, n.º 01 (marzo de 2019): 67–86. http://dx.doi.org/10.1142/s1793351x1940004x.
Texto completoXiao-Hong Qiu, Xiao-Hong Qiu, Jia-Li Chen Xiao-Hong Qiu y Zi-Ying Ao Jia-Li Chen. "Stall Warning Algorithm of Axial Compressor Based on SSA-DBN". 電腦學刊 33, n.º 3 (junio de 2022): 059–71. http://dx.doi.org/10.53106/199115992022063303005.
Texto completoZhao, Huimin, Xiaoxu Yang, Baojie Chen, Huayue Chen y Wu Deng. "Bearing fault diagnosis using transfer learning and optimized deep belief network". Measurement Science and Technology 33, n.º 6 (7 de marzo de 2022): 065009. http://dx.doi.org/10.1088/1361-6501/ac543a.
Texto completoLuu, Do Ngoc, Nguyen Ngoc Phien y Duong Tuan Anh. "Tuning Parameters in Deep Belief Networks for Time Series Prediction through Harmony Search". International Journal of Machine Learning and Computing 11, n.º 4 (agosto de 2021): 274–80. http://dx.doi.org/10.18178/ijmlc.2021.11.4.1047.
Texto completoYe, Zilin. "Application of Improved Deep Belief Network Model in 3D Art Design". Mathematical Problems in Engineering 2022 (5 de abril de 2022): 1–9. http://dx.doi.org/10.1155/2022/2213561.
Texto completoWei, Yuan, Huanchang Zhang, Jiahui Dai, Ruili Zhu, Lihong Qiu, Yuzhuo Dong y Shuai Fang. "Deep Belief Network with Swarm Spider Optimization Method for Renewable Energy Power Forecasting". Processes 11, n.º 4 (26 de marzo de 2023): 1001. http://dx.doi.org/10.3390/pr11041001.
Texto completoPatil, Balasaheb H. "Effect of Optimized Deep Belief Network to Patch-Based Image Inpainting Forensics". International Journal of Swarm Intelligence Research 13, n.º 3 (1 de julio de 2022): 1–21. http://dx.doi.org/10.4018/ijsir.304401.
Texto completoLi, Zhengying, Hong Huang, Zhen Zhang y Guangyao Shi. "Manifold-Based Multi-Deep Belief Network for Feature Extraction of Hyperspectral Image". Remote Sensing 14, n.º 6 (19 de marzo de 2022): 1484. http://dx.doi.org/10.3390/rs14061484.
Texto completoWang, Xiangqian, Fang Huang, Wencong Wan y Chengyuan Zhang. "Academic Activities Transaction Extraction Based on Deep Belief Network". Advances in Multimedia 2017 (2017): 1–7. http://dx.doi.org/10.1155/2017/5067069.
Texto completoCai, Yulin, Puran Fan, Sen Lang, Mengyao Li, Yasir Muhammad y Aixia Liu. "Downscaling of SMAP Soil Moisture Data by Using a Deep Belief Network". Remote Sensing 14, n.º 22 (10 de noviembre de 2022): 5681. http://dx.doi.org/10.3390/rs14225681.
Texto completoZeng, Qingwen, Chunyan Hu, Jiaxian Sun, Yafeng Shen y Keqiang Miao. "Monitoring of Thermoacoustic Combustion Instability via Recurrence Quantification Analysis and Optimized Deep Belief Network". Symmetry 16, n.º 3 (22 de febrero de 2024): 266. http://dx.doi.org/10.3390/sym16030266.
Texto completoYu, He, Zaike Tian, Hongru Li, Baohua Xu y Guoqing An. "A Novel Deep Belief Network Model Constructed by Improved Conditional RBMs and its Application in RUL Prediction for Hydraulic Pumps". International Journal of Acoustics and Vibration 25, n.º 3 (30 de septiembre de 2020): 373–82. http://dx.doi.org/10.20855/ijav.2020.25.31669.
Texto completoWang, Ching-Hsin, Kuo-Ping Lin, Yu-Ming Lu y Chih-Feng Wu. "Deep Belief Network with Seasonal Decomposition for Solar Power Output Forecasting". International Journal of Reliability, Quality and Safety Engineering 26, n.º 06 (diciembre de 2019): 1950029. http://dx.doi.org/10.1142/s0218539319500293.
Texto completoObaid, Ahmed J. y Hassanain K. Alrammahi. "An Intelligent Facial Expression Recognition System Using a Hybrid Deep Convolutional Neural Network for Multimedia Applications". Applied Sciences 13, n.º 21 (5 de noviembre de 2023): 12049. http://dx.doi.org/10.3390/app132112049.
Texto completoTian, Shengwei, Yilin Yan, Long Yu, Mei Wang y Li Li. "Prediction of Anti-Malarial Activity Based on Deep Belief Network". International Journal of Computational Intelligence and Applications 17, n.º 03 (septiembre de 2018): 1850012. http://dx.doi.org/10.1142/s1469026818500128.
Texto completoZhu, Chang-Hao y Jie Zhang. "Developing Soft Sensors for Polymer Melt Index in an Industrial Polymerization Process Using Deep Belief Networks". International Journal of Automation and Computing 17, n.º 1 (5 de noviembre de 2019): 44–54. http://dx.doi.org/10.1007/s11633-019-1203-x.
Texto completoYu, Long, Xinyu Shi, Shengwei Tian, Shuangyin Gao y Li Li. "Classification of Cytochrome P450 1A2 Inhibitors and Noninhibitors Based on Deep Belief Network". International Journal of Computational Intelligence and Applications 16, n.º 01 (marzo de 2017): 1750002. http://dx.doi.org/10.1142/s146902681750002x.
Texto completo