Literatura académica sobre el tema "DBN (Deep Belief Network)"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "DBN (Deep Belief Network)".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "DBN (Deep Belief Network)"
Peng, Fan, Suping Peng, Wenfeng Du y Hongshuan Liu. "Coalbed methane content prediction using deep belief network". Interpretation 8, n.º 2 (1 de mayo de 2020): T309—T321. http://dx.doi.org/10.1190/int-2019-0126.1.
Texto completoZhang, Kaiyu, Shanshan Shi, Shu Liu, Junjie Wan y Lijia Ren. "Research on DBN-based Evaluation of Distribution Network Reliability". E3S Web of Conferences 242 (2021): 03004. http://dx.doi.org/10.1051/e3sconf/202124203004.
Texto completoYang, Lei, Chunqing Zhao, Chao Lu, Lianzhen Wei y Jianwei Gong. "Lateral and Longitudinal Driving Behavior Prediction Based on Improved Deep Belief Network". Sensors 21, n.º 24 (20 de diciembre de 2021): 8498. http://dx.doi.org/10.3390/s21248498.
Texto completoSun, Lili. "Optimization of Physical Education Course Resource Allocation Model Based on Deep Belief Network". Mathematical Problems in Engineering 2023 (29 de abril de 2023): 1–8. http://dx.doi.org/10.1155/2023/8457760.
Texto completoPrabowo, Abram Setyo, Agus Sihabuddin y Azhari SN. "Adaptive Moment Estimation On Deep Belief Network For Rupiah Currency Forecasting". IJCCS (Indonesian Journal of Computing and Cybernetics Systems) 13, n.º 1 (31 de enero de 2019): 31. http://dx.doi.org/10.22146/ijccs.39071.
Texto completoTan, Xiaopeng, Shaojing Su, Zhen Zuo, Xiaojun Guo y Xiaoyong Sun. "Intrusion Detection of UAVs Based on the Deep Belief Network Optimized by PSO". Sensors 19, n.º 24 (14 de diciembre de 2019): 5529. http://dx.doi.org/10.3390/s19245529.
Texto completoYan, Yan, Xu-Cheng Yin, Sujian Li, Mingyuan Yang y Hong-Wei Hao. "Learning Document Semantic Representation with Hybrid Deep Belief Network". Computational Intelligence and Neuroscience 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/650527.
Texto completoYang, Huihua, Baichao Hu, Xipeng Pan, Shengke Yan, Yanchun Feng, Xuebo Zhang, Lihui Yin y Changqin Hu. "Deep belief network-based drug identification using near infrared spectroscopy". Journal of Innovative Optical Health Sciences 10, n.º 02 (marzo de 2017): 1630011. http://dx.doi.org/10.1142/s1793545816300111.
Texto completoSharipuddin, Sharipuddin, Eko Arip Winanto, Zulwaqar Zain Mohtar, Kurniabudi Kurniabudi, Ibnu Sani Wijaya y Dodi Sandra. "Improvement detection system on complex network using hybrid deep belief network and selection features". Indonesian Journal of Electrical Engineering and Computer Science 31, n.º 1 (1 de julio de 2023): 470. http://dx.doi.org/10.11591/ijeecs.v31.i1.pp470-479.
Texto completoAnh, Duong Tuan y Ta Ngoc Huy Nam. "Chaotic time series prediction with deep belief networks: an empirical evaluation". Science & Technology Development Journal - Engineering and Technology 3, SI1 (4 de diciembre de 2020): SI102—SI112. http://dx.doi.org/10.32508/stdjet.v3isi1.571.
Texto completoTesis sobre el tema "DBN (Deep Belief Network)"
Faulkner, Ryan. "Dyna learning with deep belief networks". Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97177.
Texto completoL'objectif de l'apprentissage par renforcement est de choisir de bonnes actions dansun environnement où les informations sont fournies par une récompense numérique, etl'état actuel (données sensorielles) est supposé être disponible à chaque pas de temps. Lanotion de "correct" est définie comme étant la maximisation des rendements attendus cumulatifsdans le temps. Il est parfois utile de construire des modèles de l'environnementpour aider à résoudre le problème. Nous étudions l'apprentissage par renforcement destyleDyna, une approche performante dans les situations où les données réelles disponiblesne sont pas nombreuses. L'idée principale est de compléter les trajectoires réelles aveccelles simulées échantillonnées partir d'un modèle appri de l'environnement. Toutefois,dans les domaines à plusieurs états, le problème de l'apprentissage d'un bon modèlegénératif de l'environnement est jusqu'à présent resté ouvert. Nous proposons d'utiliserles réseaux profonds de croyance pour apprendre un modèle de l'environnement. Lesréseaux de croyance profonds (Hinton, 2006) sont des modèles génératifs qui sont efficaces pourl'apprentissage des relations de dépendance temporelle parmi des données complexes. Ila été démontré que de tels modèles peuvent être appris dans un laps de temps raisonnablequand ils sont construits en utilisant des modèles de l'énergie. Nous présentons notre algorithmepour l'utilisation des réseaux de croyance profonds en tant que modèle génératifpour simuler l'environnement dans l'architecture Dyna, ainsi que des résultats empiriquesprometteurs.
Kaabi, Rabeb. "Apprentissage profond et traitement d'images pour la détection de fumée". Electronic Thesis or Diss., Toulon, 2020. http://www.theses.fr/2020TOUL0017.
Texto completoThis thesis deals with the problem of forest fire detection using image processing and machine learning tools. A forest fire is a fire that spreads over a wooded area. It can be of natural origin (due to lightning or a volcanic eruption) or human. Around the world, the impact of forest fires on many aspects of our daily lives is becoming more and more apparent on the entire ecosystem.Many methods have been shown to be effective in detecting forest fires. The originality of the present work lies in the early detection of fires through the detection of forest smoke and the classification of smoky and non-smoky regions using deep learning and image processing tools. A set of pre-processing techniques helped us to have an important database which allowed us afterwards to test the robustness of the model based on deep belief network we proposed and to evaluate the performance by calculating the following metrics (IoU, Accuracy, Recall, F1 score). Finally, the proposed algorithm is tested on several images in order to validate its efficiency. The simulations of our algorithm have been compared with those processed in the state of the art (Deep CNN, SVM...) and have provided very good results. The results of the proposed methods gave an average classification accuracy of about 96.5% for the early detection of smoke
Bosello, Michael. "Integrating BDI and Reinforcement Learning: the Case Study of Autonomous Driving". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21467/.
Texto completode, Giorgio Andrea. "A study on the similarities of Deep Belief Networks and Stacked Autoencoders". Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-174341.
Texto completoLarsson, Marcus y Christoffer Möckelind. "The effects of Deep Belief Network pre-training of a Multilayered perceptron under varied labeled data conditions". Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-187374.
Texto completoMärkt data kan ibland vara svårt att hitta för maskininlärningsuppgifter. Detta är ett problem för modeller som bygger på övervakad inlärning, exem- pelvis Multilayerd Perceptron(MLP). Ett Discriminative Deep Belief Network (DDBN) är en semi-övervakad modell som kan använda både märkt och omärkt data. Denna forskning syftar till att närma sig en tumregel om när det är för- delaktigt att använda en DDBN i stället för en MLP, vid olika proportioner av märkt och omärkt data. Flera försök med olika mängd märkt data, från MNIST och Rectangle-Images datamängderna, genomfördes för att jämföra de två mo- dellerna. Det konstaterades att för dessa datamängder hade DDBNerna bättre precision när ett fåtal märkt data fanns tillgängligt. När 50% eller mer av datan var märkt, hade DDBNerna och MLPerna jämförbar noggrannhet. Slutsatsen är att en tumregel att använda en DDBN när mindre än 50% av av träningsdatan är märkt, skulle vara i linje med resultaten. Det behövs dock mer forskning för att göra några generella slutsatser.
Sadli, Rahmad. "Étude et développement d'un dispositif routier d'anticollision basé sur un radar ultra large bande pour la détection et l'identification notamment des usagers vulnérables". Thesis, Valenciennes, 2019. http://www.theses.fr/2019VALE0005.
Texto completoIn this thesis work, we focused on the study and development of a system identification using UWB-Ultra-Wide-Band short range radar to detect the objects and particularly the vulnerable road users (VRUs) that have low RCS-Radar Cross Section- such as cyclist and pedestrian. This work is composed of two stages i.e. detection and recognition. In the first approach of detection stage, we have proposed and studied a robust UWB radar detector that works on one dimension 1-D radar data ( A-scan). It relies on a combination of Higher Order Statistics (HOS) and the well-known CA-CFAR (Cell-Averaging Constant False Alarm Rate) detector. This combination is performed by firstly applying the HOS to the received radar signal in order to suppress the noise. After eliminating the noise of the received radar signal, we apply the CA-CFAR detector. By doing this combination, we finally have an UWB radar detector which is robust against the noise and works with the adaptive threshold. In order to enhance the detection performance, we have evaluated the approach of using two dimensions 2-D (B-Scan) radar data. In this 2-D radar approach, we proposed a new method of noise suppression, which works on this B-Scan data. The proposed method is a combination of WSD (Wavelet Shrinkage Denoising) and HOS. To evaluate the performance of this method, we performed a comparative study with the other noise removal methods in literature including Principal Component Analysis (PCA), Singular Value Decomposition (SVD), WSD and HOS. The Signal-to-Noise Ratio (SNR) of the final result has been computed to compare the effectiveness of individual noise removal techniques. It is observed that a combination of WSD and HOS has better capability to remove the noise compared to that of the other applied techniques in the literature; especially it is found that it allows to distinguish efficiency the pedestrian and cyclist over the noise and clutters whereas other techniques are not showing significant result. In the recognition phase, we have exploited the data from the two approaches 1-D and 2-D, obtained from the detection method. In the first 1-D approach, Support Vector Machines (SVM) and Deep Belief Networks (DBN) have been used and evaluated to identify the target based on the radar signature. The results show that the SVM gives good performances for the proposed system where the total recognition accuracy rate could achieve up to 96,24%. In the second approach of this 1-D radar data, the performance of several DBN architectures compose of different layers have been evaluated and compared. We realised that the DBN architecture with four hidden layers performs better than those of with two or three hidden layers. The results show also that this architecture achieves up to 97.80% of accuracy. This result also proves that the performance of DBN is better than that of SVM (96.24%) in the case of UWB radar target recognition system using 1-D radar signature. In the 2-D approach, the Convolutional Neural Network (CNN) has been exploited and evaluated. In this work, we have proposed and investigated three CNN architectures. The first architecture is the modified of Alexnet model, the second is an architecture with three convolutional layers and one fully connected layer, and the third is an architecture with five convolutional layers and two fully connected layers. The performance of these proposed architectures have been evaluated and compared. We found that the third architecture has a good performance where it achieves up to 99.59% of accuracy. Finally, we compared the performances obtained using CNN, DBN and SVM. The results show that CNN gives a better result in terms of accuracy compared to that of DBN and SVM. It allows to classify correctly the UWB radar targets like cyclist and pedestrian
Tong, Zheng. "Evidential deep neural network in the framework of Dempster-Shafer theory". Thesis, Compiègne, 2022. http://www.theses.fr/2022COMP2661.
Texto completoDeep neural networks (DNNs) have achieved remarkable success on many realworld applications (e.g., pattern recognition and semantic segmentation) but still face the problem of managing uncertainty. Dempster-Shafer theory (DST) provides a wellfounded and elegant framework to represent and reason with uncertain information. In this thesis, we have proposed a new framework using DST and DNNs to solve the problems of uncertainty. In the proposed framework, we first hybridize DST and DNNs by plugging a DSTbased neural-network layer followed by a utility layer at the output of a convolutional neural network for set-valued classification. We also extend the idea to semantic segmentation by combining fully convolutional networks and DST. The proposed approach enhances the performance of DNN models by assigning ambiguous patterns with high uncertainty, as well as outliers, to multi-class sets. The learning strategy using soft labels further improves the performance of the DNNs by converting imprecise and unreliable label data into belief functions. We have also proposed a modular fusion strategy using this proposed framework, in which a fusion module aggregates the belief-function outputs of evidential DNNs by Dempster’s rule. We use this strategy to combine DNNs trained from heterogeneous datasets with different sets of classes while keeping at least as good performance as those of the individual networks on their respective datasets. Further, we apply the strategy to combine several shallow networks and achieve a similar performance of an advanced DNN for a complicated task
Pasa, Luca. "Linear Models and Deep Learning: Learning in Sequential Domains". Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3425865.
Texto completoCon la diffusione di dispositivi a basso costo, e reti di sensori (come ad esempio l'Internet of Things), nonché lo sviluppo di interfacce di interazione uomo-macchina a basso costo, la capacità di processare dati sequenziali in maniera veloce, e assicurando un basso consumo di risorse, è diventato sempre più importante. Molti sono i compiti che trarrebbero beneficio da un avanzamento in questo ambito, dal monitoraggio e classificazione di comportamenti umani fino alla predizioni di eventi futuri. Molti dei task citati richiedono l'uso di tecniche di pattern recognition e di abilità correlate con metodi tipici dell’apprendimento automatico. Molti sono gli approcci per eseguire apprendimento su domini sequenziali proposti nel recente passato, e molti sono basati su tecniche tipiche dell'ambito del Deep Learning. I metodi di Deep Learning sono tipicamente basati su sistemi fortemente non lineari, capaci di ottenere ottimi risultati in problemi di predizione/classificazione, ma che risultano anche essere molto costosi dal punto di vista computazionale. Quando si cerca di eseguire un compito di apprendimento su domini sequenziali, e più in generale su dati strutturati, tipicamente si ricorre all'utilizzo di sistemi non lineari. Non è però sempre vero che i task considerati richiedono modelli non lineari. Quindi il rischio è di andare ad utilizzare metodi troppo complessi, e computazionalmente costosi, per poi ottenere alla fine soluzioni che migliorano di un’epsilon (o anche no migliorano) i risultati ottenibili tramite l'utilizzo di sistemi lineari dinamici, che risultano essere molto meno costosi dal punto di vista dell'apprendimento, e del costo computazionale. L'obiettivo di questa tesi è di discutere del ruolo che i sistemi lineari dinamici possono avere nelle esecuzioni di compiti di apprendimento su dati strutturati. In questa tesi vogliamo mettere in luce le capacità dei sistemi lineari dinamici (LDS) di ottenere soluzioni molto buone ad un costo computazionale relativamente basso. Inoltre risulta interessante vedere come, nel caso in cui un sistema lineare non sia sufficiente per ottenere il risultato sperato, esso possa essere usato come base per costruire modelli più complessi, oppure possa essere utilizzato per eseguire la fase di pre-training per un modello non lineare, come ad esempio Echo State Networks (ESNs) e Recurrent Neural Networks (RNNs). Nello specifico in questa tesi è stato considerato un task di predizione dell'evento successivo, data una sequenza di eventi. I dataset usati per testare i vari modelli proposti nella tesi, contengono sequenze di musica polifonica, che risultano essere particolarmente lunghe e complesse. Nella prima parte della tesi viene proposto l'utilizzo del semplice modello LDS per affrontare il compito considerato. In particolare vengono considerati tre approcci diversi per eseguire l'apprendimento con questo modello. Viene poi introdotti nuovi modelli, ispirati al modello LDS, che hanno l'obiettivo di migliorare le prestazioni di quest'ultimo nei compiti di predizione/classificazione. Vengono poi considerati i più comuni modelli non lineari, in particolare il modello RNN il quale risulta essere significativamente più complesso e computazionalmente costoso da utilizzare. Viene quindi empiricamente dimostrato che, almeno per quanto riguarda il compito di predizione e i dataset considerati, l'introduzione di una fase di pre-training basati su sistemi lineari porta ad un significativo miglioramento delle prestazioni e della accuratezza nell'eseguire la predizione. In particolare 2 metodi di pre-training vengono proposti, il primo chiamato pre-training via Linear Autoencoder, ed il secondo basato su Hidden Markov Models (HMMs). I risultati sperimentali suggeriscono che i sistemi lineari possono giocare un ruolo importante per quanto riguarda il compito di apprendimento in domini sequenziali, sia che siano direttamente usati oppure siano usati indirettamente (come base per eseguire la fase di pre-training): infatti, usandoli direttamente, essi hanno permesso di raggiungere risultati che rappresentano lo stato dell'arte, andando però a richiedere uno sforzo computazionale molto limitato se confrontato con i più comuni modelli non lineari. Inoltre, anche quando le performance ottenute sono risultate non soddisfacenti, si è dimostrato che è possibile utilizzarli con successo per eseguire la fase di pre-training di sistemi non lineari.
Nassar, Alaa S. N. "A Hybrid Multibiometric System for Personal Identification Based on Face and Iris Traits. The Development of an automated computer system for the identification of humans by integrating facial and iris features using Localization, Feature Extraction, Handcrafted and Deep learning Techniques". Thesis, University of Bradford, 2018. http://hdl.handle.net/10454/16917.
Texto completoHigher Committee for Education Development in Iraq
Nguyen, Tien Dung. "Multimodal emotion recognition using deep learning techniques". Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/180753/1/Tien%20Dung_Nguyen_Thesis.pdf.
Texto completoLibros sobre el tema "DBN (Deep Belief Network)"
Dutsch, Dorota M. Pythagorean Women Philosophers. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198859031.001.0001.
Texto completovan Onselen, Charles. The Night Trains. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780197568651.001.0001.
Texto completoCapítulos de libros sobre el tema "DBN (Deep Belief Network)"
Srikanth, M., D. Pravena y D. Govind. "Tamil Speech Emotion Recognition Using Deep Belief Network(DBN)". En Advances in Intelligent Systems and Computing, 328–36. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67934-1_29.
Texto completoJi, Jinbao, Zongxiang Hu, Weiqi Zhang y Sen Yang. "Development of Deep Learning Algorithms, Frameworks and Hardwares". En Proceeding of 2021 International Conference on Wireless Communications, Networking and Applications, 696–710. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2456-9_71.
Texto completoLopes, Noel y Bernardete Ribeiro. "Deep Belief Networks (DBNs)". En Studies in Big Data, 155–86. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06938-8_8.
Texto completoDuan, Tiehang y Sargur N. Srihari. "Pseudo Boosted Deep Belief Network". En Artificial Neural Networks and Machine Learning – ICANN 2016, 105–12. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44781-0_13.
Texto completoNdehedehe, Christopher. "Deep Belief Network for Groundwater Modeling". En Springer Climate, 279–324. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-37727-3_8.
Texto completoXu, Shaoxun, Yufei Chen, Chao Ma y Xiaodong Yue. "Deep Evidential Fusion Network for Image Classification". En Belief Functions: Theory and Applications, 185–93. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88601-1_19.
Texto completoXue, Like y Feng Su. "Auditory Scene Classification with Deep Belief Network". En MultiMedia Modeling, 348–59. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14445-0_30.
Texto completoGhojogh, Benyamin, Mark Crowley, Fakhri Karray y Ali Ghodsi. "Restricted Boltzmann Machine and Deep Belief Network". En Elements of Dimensionality Reduction and Manifold Learning, 501–29. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10602-6_18.
Texto completoVerma, Maneesh Kumar, Shankar Yadav, Bhoopesh Kumar Goyal, Bakshi Rohit Prasad y Sonali Agarawal. "Phishing Website Detection Using Neural Network and Deep Belief Network". En Advances in Intelligent Systems and Computing, 293–300. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8639-7_30.
Texto completoHu, Dan, Xingshe Zhou y Junjie Wu. "Visual Tracking Based on Convolutional Deep Belief Network". En Lecture Notes in Computer Science, 103–15. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23216-4_8.
Texto completoActas de conferencias sobre el tema "DBN (Deep Belief Network)"
Tamilselvan, Prasanna, Pingfeng Wang y Byeng D. Youn. "Multi-Sensor Health Diagnosis Using Deep Belief Network Based State Classification". En ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48352.
Texto completoWang, Weiyan, Chen Jia y Huijuan Gao. "LAI Inversion from MODIS Data Using Deep Belief Network (DBN)". En IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2020. http://dx.doi.org/10.1109/igarss39084.2020.9323211.
Texto completoLi, Yaqiong, Xuhui Fan, Ling Chen, Bin Li, Zheng Yu y Scott A. Sisson. "Recurrent Dirichlet Belief Networks for interpretable Dynamic Relational Data Modelling". En Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/342.
Texto completoDeshmukh, Monika S. y Pavan Ravikesh Bhaladhare. "Intrusion Detection System (DBN-IDS) for IoT using Optimization Enabled Deep Belief Neural Network". En 2021 5th International Conference on Information Systems and Computer Networks (ISCON). IEEE, 2021. http://dx.doi.org/10.1109/iscon52037.2021.9702505.
Texto completoRini Novitasari, Dian Candra, Ahmad Zoebad Foeady, Muhammad Thohir, Ahmad Zaenal Arifin, Khoirun Niam y Ahmad Hanif Asyhar. "Automatic Approach for Cervical Cancer Detection Based on Deep Belief Network (DBN) Using Colposcopy Data". En 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). IEEE, 2020. http://dx.doi.org/10.1109/icaiic48513.2020.9065196.
Texto completoJin, Xiaoming, Tao He, Cheng Wan, Lan Yi, Guiguang Ding y Dou Shen. "Automatic Gating of Attributes in Deep Structure". En Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/319.
Texto completoColbert, Ian, Ken Kreutz-Delgado y Srinjoy Das. "AX-DBN: An Approximate Computing Framework for the Design of Low-Power Discriminative Deep Belief Networks". En 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019. http://dx.doi.org/10.1109/ijcnn.2019.8852476.
Texto completoLV, Zhining, Ziheng HU, Baifeng NING, Lifu DING, Gangfeng YAN y Xiasheng SHI. "Non-intrusive Runtime Monitoring for Power System Intelligent Terminal Based on Improved Deep Belief Networks (I-DBN)". En 2019 4th International Conference on Power and Renewable Energy (ICPRE). IEEE, 2019. http://dx.doi.org/10.1109/icpre48497.2019.9034805.
Texto completosingh, Kunal y K. James Mathai. "Performance Comparison of Intrusion Detection System Between Deep Belief Network (DBN)Algorithm and State Preserving Extreme Learning Machine (SPELM) Algorithm". En 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). IEEE, 2019. http://dx.doi.org/10.1109/icecct.2019.8869492.
Texto completoRavikumaran, P., K. Vimala Devi y K. Valarmathi. "Prediction of Chronic and Non- Chronic Kidney disease using Modified DBN with Map and Reduce Framework". En 8th International Conference on Artificial Intelligence and Fuzzy Logic System (AIFZ 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.121615.
Texto completo