Literatura académica sobre el tema "Dataset VISION"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Dataset VISION".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Dataset VISION"
Scheuerman, Morgan Klaus, Alex Hanna y Emily Denton. "Do Datasets Have Politics? Disciplinary Values in Computer Vision Dataset Development". Proceedings of the ACM on Human-Computer Interaction 5, CSCW2 (13 de octubre de 2021): 1–37. http://dx.doi.org/10.1145/3476058.
Texto completoGeiger, A., P. Lenz, C. Stiller y R. Urtasun. "Vision meets robotics: The KITTI dataset". International Journal of Robotics Research 32, n.º 11 (23 de agosto de 2013): 1231–37. http://dx.doi.org/10.1177/0278364913491297.
Texto completoLiew, Yu Liang y Jeng Feng Chin. "Vision-based biomechanical markerless motion classification". Machine Graphics and Vision 32, n.º 1 (16 de febrero de 2023): 3–24. http://dx.doi.org/10.22630/mgv.2023.32.1.1.
Texto completoAlyami, Hashem, Abdullah Alharbi y Irfan Uddin. "Lifelong Machine Learning for Regional-Based Image Classification in Open Datasets". Symmetry 12, n.º 12 (16 de diciembre de 2020): 2094. http://dx.doi.org/10.3390/sym12122094.
Texto completoBai, Long, Liangyu Wang, Tong Chen, Yuanhao Zhao y Hongliang Ren. "Transformer-Based Disease Identification for Small-Scale Imbalanced Capsule Endoscopy Dataset". Electronics 11, n.º 17 (31 de agosto de 2022): 2747. http://dx.doi.org/10.3390/electronics11172747.
Texto completoWang, Zhixue, Yu Zhang, Lin Luo y Nan Wang. "AnoDFDNet: A Deep Feature Difference Network for Anomaly Detection". Journal of Sensors 2022 (16 de agosto de 2022): 1–14. http://dx.doi.org/10.1155/2022/3538541.
Texto completoVoytov, D. Y., S. B. Vasil’ev y D. V. Kormilitsyn. "Technology development for determining tree species using computer vision". FORESTRY BULLETIN 27, n.º 1 (febrero de 2023): 60–66. http://dx.doi.org/10.18698/2542-1468-2023-1-60-66.
Texto completoAyana, Gelan y Se-woon Choe. "BUViTNet: Breast Ultrasound Detection via Vision Transformers". Diagnostics 12, n.º 11 (1 de noviembre de 2022): 2654. http://dx.doi.org/10.3390/diagnostics12112654.
Texto completoHanji, Param, Muhammad Z. Alam, Nicola Giuliani, Hu Chen y Rafał K. Mantiuk. "HDR4CV: High Dynamic Range Dataset with Adversarial Illumination for Testing Computer Vision Methods". Journal of Imaging Science and Technology 65, n.º 4 (1 de julio de 2021): 40404–1. http://dx.doi.org/10.2352/j.imagingsci.technol.2021.65.4.040404.
Texto completoJing Li, Jing Li y Xueping Luo Jing Li. "Malware Family Classification Based on Vision Transformer". 電腦學刊 34, n.º 1 (febrero de 2023): 087–99. http://dx.doi.org/10.53106/199115992023023401007.
Texto completoTesis sobre el tema "Dataset VISION"
Toll, Abigail. "Matrices of Vision : Sonic Disruption of a Dataset". Thesis, Kungl. Musikhögskolan, Institutionen för komposition, dirigering och musikteori, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kmh:diva-4152.
Texto completoBerriel, Rodrigo Ferreira. "Vision-based ego-lane analysis system : dataset and algorithms". Mestrado em Informática, 2016. http://repositorio.ufes.br/handle/10/6775.
Texto completoApproved for entry into archive by Patricia Barros (patricia.barros@ufes.br) on 2017-04-13T14:00:19Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) dissertacao Rodrigo Ferreira Berriel.pdf: 18168750 bytes, checksum: 52805e1f943170ef4d6cc96046ea48ec (MD5)
Made available in DSpace on 2017-04-13T14:00:19Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) dissertacao Rodrigo Ferreira Berriel.pdf: 18168750 bytes, checksum: 52805e1f943170ef4d6cc96046ea48ec (MD5)
FAPES
A detecção e análise da faixa de trânsito são tarefas importantes e desafiadoras em sistemas avançados de assistência ao motorista e direção autônoma. Essas tarefas são necessárias para auxiliar veículos autônomos e semi-autônomos a operarem com segurança. A queda no custo dos sensores de visão e os avanços em hardware embarcado impulsionaram as pesquisas relacionadas a faixa de trânsito –detecção, estimativa, rastreamento, etc. – nas últimas duas décadas. O interesse nesse tópico aumentou ainda mais com a demanda por sistemas avançados de assistência ao motorista (ADAS) e carros autônomos. Embora amplamente estudado de forma independente, ainda há necessidade de estudos que propõem uma solução combinada para os vários problemas relacionados a faixa do veículo, tal como aviso de saída de faixa (LDW), detecção de troca de faixa, classificação do tipo de linhas de divisão de fluxo (LMT), detecção e classificação de inscrições no pavimento, e detecção da presença de faixas ajdacentes. Esse trabalho propõe um sistema de análise da faixa do veículo (ELAS) em tempo real capaz de estimar a posição da faixa do veículo, classificar as linhas de divisão de fluxo e inscrições na faixa, realizar aviso de saída de faixa e detectar eventos de troca de faixa. O sistema proposto, baseado em visão, funciona em uma sequência temporal de imagens. Características das marcações de faixa são extraídas tanto na perspectiva original quanto em images mapeadas para a vista aérea, que então são combinadas para aumentar a robustez. A estimativa final da faixa é modelada como uma spline usando uma combinação de métodos (linhas de Hough, filtro de Kalman e filtro de partículas). Baseado na faixa estimada, todos os outros eventos são detectados. Além disso, o sistema proposto foi integrado para experimentação em um sistema para carros autônomos que está sendo desenvolvido pelo Laboratório de Computação de Alto Desempenho (LCAD) da Universidade Federal do Espírito Santo (UFES). Para validar os algorítmos propostos e cobrir a falta de base de dados para essas tarefas na literatura, uma nova base dados com mais de 20 cenas diferentes (com mais de 15.000 imagens) e considerando uma variedade de cenários (estrada urbana, rodovias, tráfego, sombras, etc.) foi criada. Essa base de dados foi manualmente anotada e disponilizada publicamente para possibilitar a avaliação de diversos eventos que são de interesse para a comunidade de pesquisa (i.e. estimativa, mudança e centralização da faixa; inscrições no pavimento; cruzamentos; tipos de linhas de divisão de fluxo; faixas de pedestre e faixas adjacentes). Além disso, o sistema também foi validado qualitativamente com base na integração com o veículo autônomo. O sistema alcançou altas taxas de detecção em todos os eventos do mundo real e provou estar pronto para aplicações em tempo real.
Lane detection and analysis are important and challenging tasks in advanced driver assistance systems and autonomous driving. These tasks are required in order to help autonomous and semi-autonomous vehicles to operate safely. Decreasing costs of vision sensors and advances in embedded hardware boosted lane related research – detection, estimation, tracking, etc. – in the past two decades. The interest in this topic has increased even more with the demand for advanced driver assistance systems (ADAS) and self-driving cars. Although extensively studied independently, there is still need for studies that propose a combined solution for the multiple problems related to the ego-lane, such as lane departure warning (LDW), lane change detection, lane marking type (LMT) classification, road markings detection and classification, and detection of adjacent lanes presence. This work proposes a real-time Ego-Lane Analysis System (ELAS) capable of estimating ego-lane position, classifying LMTs and road markings, performing LDW and detecting lane change events. The proposed vision-based system works on a temporal sequence of images. Lane marking features are extracted in perspective and Inverse Perspective Mapping (IPM) images that are combined to increase robustness. The final estimated lane is modeled as a spline using a combination of methods (Hough lines, Kalman filter and Particle filter). Based on the estimated lane, all other events are detected. Moreover, the proposed system was integrated for experimentation into an autonomous car that is being developed by the High Performance Computing Laboratory of the Universidade Federal do Espírito Santo. To validate the proposed algorithms and cover the lack of lane datasets in the literature, a new dataset with more than 20 different scenes (in more than 15,000 frames) and considering a variety of scenarios (urban road, highways, traffic, shadows, etc.) was created. The dataset was manually annotated and made publicly available to enable evaluation of several events that are of interest for the research community (i.e. lane estimation, change, and centering; road markings; intersections; LMTs; crosswalks and adjacent lanes). Furthermore, the system was also validated qualitatively based on the integration with the autonomous vehicle. ELAS achieved high detection rates in all real-world events and proved to be ready for real-time applications.
RAGONESI, RUGGERO. "Addressing Dataset Bias in Deep Neural Networks". Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1069001.
Texto completoXie, Shuang. "A Tiny Diagnostic Dataset and Diverse Modules for Learning-Based Optical Flow Estimation". Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39634.
Texto completoNett, Ryan. "Dataset and Evaluation of Self-Supervised Learning for Panoramic Depth Estimation". DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2234.
Texto completoAndruccioli, Matteo. "Previsione del Successo di Prodotti di Moda Prima della Commercializzazione: un Nuovo Dataset e Modello di Vision-Language Transformer". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24956/.
Texto completoJoubert, Deon. "Saliency grouped landmarks for use in vision-based simultaneous localisation and mapping". Diss., University of Pretoria, 2013. http://hdl.handle.net/2263/40834.
Texto completoDissertation (MEng)--University of Pretoria, 2013.
gm2014
Electrical, Electronic and Computer Engineering
unrestricted
Horečný, Peter. "Metody segmentace obrazu s malými trénovacími množinami". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-412996.
Texto completoTagebrand, Emil y Ek Emil Gustafsson. "Dataset Generation in a Simulated Environment Using Real Flight Data for Reliable Runway Detection Capabilities". Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-54974.
Texto completoSievert, Rolf. "Instance Segmentation of Multiclass Litter and Imbalanced Dataset Handling : A Deep Learning Model Comparison". Thesis, Linköpings universitet, Datorseende, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-175173.
Texto completoLibros sobre el tema "Dataset VISION"
Geiger, Andreas, Joel Janai, Fatma Güney y Aseem Behl. Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art. Now Publishers, 2020.
Buscar texto completoChirimuuta, Mazviita. The Development and Application of Efficient Coding Explanation in Neuroscience. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198777946.003.0009.
Texto completoCapítulos de libros sobre el tema "Dataset VISION"
Damen, Dima, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Davide Moltisanti et al. "Scaling Egocentric Vision: The Dataset". En Computer Vision – ECCV 2018, 753–71. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01225-0_44.
Texto completoJalal, Ahsan y Usman Tariq. "The LFW-Gender Dataset". En Computer Vision – ACCV 2016 Workshops, 531–40. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54526-4_39.
Texto completoZhang, Lvmin, Yi Ji y Chunping Liu. "DanbooRegion: An Illustration Region Dataset". En Computer Vision – ECCV 2020, 137–54. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58601-0_9.
Texto completoAntequera, Manuel López, Pau Gargallo, Markus Hofinger, Samuel Rota Bulò, Yubin Kuang y Peter Kontschieder. "Mapillary Planet-Scale Depth Dataset". En Computer Vision – ECCV 2020, 589–604. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58536-5_35.
Texto completoHu, Yang, Dong Yi, Shengcai Liao, Zhen Lei y Stan Z. Li. "Cross Dataset Person Re-identification". En Computer Vision - ACCV 2014 Workshops, 650–64. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16634-6_47.
Texto completoKhosla, Aditya, Tinghui Zhou, Tomasz Malisiewicz, Alexei A. Efros y Antonio Torralba. "Undoing the Damage of Dataset Bias". En Computer Vision – ECCV 2012, 158–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33718-5_12.
Texto completoAliakbarian, Mohammad Sadegh, Fatemeh Sadat Saleh, Mathieu Salzmann, Basura Fernando, Lars Petersson y Lars Andersson. "VIENA $$^2$$ : A Driving Anticipation Dataset". En Computer Vision – ACCV 2018, 449–66. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20887-5_28.
Texto completoNeumann, Lukáš, Michelle Karg, Shanshan Zhang, Christian Scharfenberger, Eric Piegert, Sarah Mistr, Olga Prokofyeva et al. "NightOwls: A Pedestrians at Night Dataset". En Computer Vision – ACCV 2018, 691–705. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20887-5_43.
Texto completoFollmann, Patrick, Tobias Böttger, Philipp Härtinger, Rebecca König y Markus Ulrich. "MVTec D2S: Densely Segmented Supermarket Dataset". En Computer Vision – ECCV 2018, 581–97. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01249-6_35.
Texto completoTommasi, Tatiana y Tinne Tuytelaars. "A Testbed for Cross-Dataset Analysis". En Computer Vision - ECCV 2014 Workshops, 18–31. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16199-0_2.
Texto completoActas de conferencias sobre el tema "Dataset VISION"
Ammirato, Phil, Alexander C. Berg y Jana Kosecka. "Active Vision Dataset Benchmark". En 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2018. http://dx.doi.org/10.1109/cvprw.2018.00277.
Texto completoBama, B. Sathya, S. Mohamed Mansoor Roomi, D. Sabarinathan, M. Senthilarasi y G. Manimala. "Idol dataset". En ICVGIP '21: Indian Conference on Computer Vision, Graphics and Image Processing. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3490035.3490295.
Texto completoRamisa, Arnau, Fei Yan, Francesc Moreno-Noguer y Krystian Mikolajczyk. "The BreakingNews Dataset". En Proceedings of the Sixth Workshop on Vision and Language. Stroudsburg, PA, USA: Association for Computational Linguistics, 2017. http://dx.doi.org/10.18653/v1/w17-2005.
Texto completoTursun, Osman y Sinan Kalkan. "METU dataset: A big dataset for benchmarking trademark retrieval". En 2015 14th IAPR International Conference on Machine Vision Applications (MVA). IEEE, 2015. http://dx.doi.org/10.1109/mva.2015.7153243.
Texto completoDelgado, Kevin, Juan Manuel Origgi, Tania Hasanpoor, Hao Yu, Danielle Allessio, Ivon Arroyo, William Lee, Margrit Betke, Beverly Woolf y Sarah Adel Bargal. "Student Engagement Dataset". En 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). IEEE, 2021. http://dx.doi.org/10.1109/iccvw54120.2021.00405.
Texto completoBeigpour, Shida, MaiLan Ha, Sven Kunz, Andreas Kolb y Volker Blanz. "Multi-view Multi-illuminant Intrinsic Dataset". En British Machine Vision Conference 2016. British Machine Vision Association, 2016. http://dx.doi.org/10.5244/c.30.10.
Texto completoShugrina, Maria, Ziheng Liang, Amlan Kar, Jiaman Li, Angad Singh, Karan Singh y Sanja Fidler. "Creative Flow+ Dataset". En 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019. http://dx.doi.org/10.1109/cvpr.2019.00553.
Texto completoGhafourian, Sarvenaz, Ramin Sharifi y Amirali Baniasadi. "Facial Emotion Recognition in Imbalanced Datasets". En 9th International Conference on Artificial Intelligence and Applications (AIAPP 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.120920.
Texto completoSaint, Alexandre, Eman Ahmed, Abd El Rahman Shabayek, Kseniya Cherenkova, Gleb Gusev, Djamila Aouada y Bjorn Ottersten. "3DBodyTex: Textured 3D Body Dataset". En 2018 International Conference on 3D Vision (3DV). IEEE, 2018. http://dx.doi.org/10.1109/3dv.2018.00063.
Texto completoTausch, Frederic, Simon Stock, Julian Fricke y Olaf Klein. "Bumblebee Re-Identification Dataset". En 2020 IEEE Winter Applications of Computer Vision Workshops (WACVW). IEEE, 2020. http://dx.doi.org/10.1109/wacvw50321.2020.9096909.
Texto completoInformes sobre el tema "Dataset VISION"
Ferrell, Regina, Deniz Aykac, Thomas Karnowski y Nisha Srinivas. A Publicly Available, Annotated Dataset for Naturalistic Driving Study and Computer Vision Algorithm Development. Office of Scientific and Technical Information (OSTI), enero de 2021. http://dx.doi.org/10.2172/1760158.
Texto completoBragdon, Sophia, Vuong Truong y Jay Clausen. Environmentally informed buried object recognition. Engineer Research and Development Center (U.S.), noviembre de 2022. http://dx.doi.org/10.21079/11681/45902.
Texto completoChen, Z., S. E. Grasby, C. Deblonde y X. Liu. AI-enabled remote sensing data interpretation for geothermal resource evaluation as applied to the Mount Meager geothermal prospective area. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330008.
Texto completoHuang, Haohang, Erol Tutumluer, Jiayi Luo, Kelin Ding, Issam Qamhia y John Hart. 3D Image Analysis Using Deep Learning for Size and Shape Characterization of Stockpile Riprap Aggregates—Phase 2. Illinois Center for Transportation, septiembre de 2022. http://dx.doi.org/10.36501/0197-9191/22-017.
Texto completoТарасова, Олена Юріївна y Ірина Сергіївна Мінтій. Web application for facial wrinkle recognition. Кривий Ріг, КДПУ, 2022. http://dx.doi.org/10.31812/123456789/7012.
Texto completoHudgens, Bian, Jene Michaud, Megan Ross, Pamela Scheffler, Anne Brasher, Megan Donahue, Alan Friedlander et al. Natural resource condition assessment: Puʻuhonua o Hōnaunau National Historical Park. National Park Service, septiembre de 2022. http://dx.doi.org/10.36967/2293943.
Texto completoEncuesta a firmas exportadoras de América Latina y el Caribe: buscando comprender el nuevo ADN exportador: segunda edición, septiembre 2021 - Dataset. Inter-American Development Bank, septiembre de 2021. http://dx.doi.org/10.18235/0003637.
Texto completo