Literatura académica sobre el tema "Dark Matter, Dark Energy, Metrology"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Dark Matter, Dark Energy, Metrology".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Dark Matter, Dark Energy, Metrology"
Sedmik, René I. P. "Casimir and non-Newtonian force experiment (CANNEX): Review, status, and outlook". International Journal of Modern Physics A 35, n.º 02n03 (24 de enero de 2020): 2040008. http://dx.doi.org/10.1142/s0217751x20400084.
Texto completoPerković, Dalibor y Hrvoje Štefančić. "Dark sector unifications: Dark matter-phantom energy, dark matter - constant w dark energy, dark matter-dark energy-dark matter". Physics Letters B 797 (octubre de 2019): 134806. http://dx.doi.org/10.1016/j.physletb.2019.134806.
Texto completoBattersby, Stephen. "Dark matter, dark energy, dark… magnetism?" New Scientist 214, n.º 2867 (junio de 2012): 36–39. http://dx.doi.org/10.1016/s0262-4079(12)61430-4.
Texto completode la Macorra, A. "Dark group: dark energy and dark matter". Physics Letters B 585, n.º 1-2 (abril de 2004): 17–23. http://dx.doi.org/10.1016/j.physletb.2004.02.006.
Texto completoRegmi, Jeevan. "Dark Energy and Dark Matter". Himalayan Physics 4 (23 de diciembre de 2013): 91–94. http://dx.doi.org/10.3126/hj.v4i0.9436.
Texto completoCaldwell, Robert y Marc Kamionkowski. "Dark matter and dark energy". Nature 458, n.º 7238 (abril de 2009): 587–89. http://dx.doi.org/10.1038/458587a.
Texto completoComelli, D., M. Pietroni y A. Riotto. "Dark energy and dark matter". Physics Letters B 571, n.º 3-4 (octubre de 2003): 115–20. http://dx.doi.org/10.1016/j.physletb.2003.05.006.
Texto completoKhuri, Ramzi R. "Dark matter as dark energy". Physics Letters B 568, n.º 1-2 (agosto de 2003): 8–10. http://dx.doi.org/10.1016/j.physletb.2003.06.051.
Texto completoEdmonds, Douglas, Duncan Farrah, Djordje Minic, Y. Jack Ng y Tatsu Takeuchi. "Modified dark matter: Relating dark energy, dark matter and baryonic matter". International Journal of Modern Physics D 27, n.º 02 (enero de 2018): 1830001. http://dx.doi.org/10.1142/s021827181830001x.
Texto completoLusanna, Luca. "Dark matter: a problem in relativistic metrology?" Journal of Physics: Conference Series 845 (mayo de 2017): 012007. http://dx.doi.org/10.1088/1742-6596/845/1/012007.
Texto completoTesis sobre el tema "Dark Matter, Dark Energy, Metrology"
Baldi, Marco. "Interactions between Dark Energy and Dark Matter". Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-101617.
Texto completoCiocia, Giuseppe. "Emerging dark matter from corpuscular dark energy". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23294/.
Texto completoMcEwen, Joseph Eugene McEwen. "The Hidden Universe: Dark Energy, Dark Matter, Baryons". The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1471877488.
Texto completoZsembinszki, Gabriel. "Light scalar fields in a dark universe: models of inflation, dark energy and dark matter". Doctoral thesis, Universitat Autònoma de Barcelona, 2007. http://hdl.handle.net/10803/3390.
Texto completoSegún la cosmología estándar del Big Bang, el universo primitivo consistía en un plasma muy caliente y denso que se expandió y se enfrió continuamente hasta el presente, dando paso a una serie de transiciones de fase cosmológicas, donde las teorías que describen el universo en cada fase son distintas. Dado que las energías del universo primitivo fueron mucho más altas que las alcanzadas en experimentos terrestres, el estudio del universo primitivo podría ofrecernos importantes informaciones sobre nuevas interacciones y nuevas partículas, abriendo nuevas direcciones para la extensión del Modelo Estándar de la física de partículas.
Como ya he mencionado anteriormente, durante la expansión del universo ocurrieron varias transiciones de fase que dejaron su huella sobre el estado presente del universo. Las observaciones sugieren que durante una de estas transiciones de fase, el universo primitivo sufrió un periodo de expansión acelerada, conocido como inflación. Aunque no forma parte de la cosmología estándar, la inflación es capaz de solucionar de una manera simple y elegante casi todos los problemas relacionados con el modelo estándar del Big Bang, y debería tenerse en cuenta en cualquier extensión posible de la teoría. Las observaciones también revelan la existencia de dos formas de energía desconocidas, a saber, materia oscura y energía oscura. La materia oscura es una forma de materia no relativista y no bariónica, que solamente puede ser detectada indirectamente, mediante su interacción con la materia normal. La energía oscura es un tipo de sustancia con presión negativa, que empezó a dominar recientemente y que es la causa de la aceleración de la expansión del universo.
En esta tesis doctoral presento varios modelos originales propuestos para resolver algunos de los problemas de la cosmología estándar, como posibles extensiones del modelo del Big Bang. Algunos de estos modelos introducen nuevas simetrías y partículas con el fin de explicar la inflación y la energía oscura y/o la materia oscura en una descripción unificada. Uno de los modelos es propuesto para explicar la energía oscura del universo, a través de un nuevo campo escalar que oscila en un potencial.
The most successful scientific theory today about the origin and evolution of the universe is known as the standard Big Bang model, which is one of the most ambitious intellectual constructions of the humanity. It is based on two consolidated branches of theoretical physics, namely, the theory of General Relativity and the Standard Model of particle physics, and is able to make robust predictions, such as the expansion of the universe, the existence of the cosmic microwave background radiation and the relative primordial abundance of light elements. Some of the theoretical predictions have already been confirmed by very precise observations.
According to the standard Big Bang cosmology, the early universe consisted of a very hot and dense plasma that continuously expanded and cooled up to the present, giving place to a series of cosmological phase transitions, where the theories describing the universe in each phase are different. Given that the energies of the early universe were much higher than those reached in terrestrial experiments, the study of the early universe might give us important information about new interactions and new particles, opening new directions for extending the Standard Model of particle physics.
As already mentioned above, during the expansion of the universe, different phase transitions occurred, which left their imprint on the present state of the universe. Observations suggest that during a very early phase transition the universe suffered a stage of accelerated expansion, known as inflation. Although inflation is not included in the standard cosmology, it is able to solve in a simple and elegant manner almost all of the shortcomings related to the standard Big Bang model, and should be taken into account in any possible extension of the theory. Observations also reveal evidence of the existence of two unknown forms of energy, i.e., dark matter and dark energy. Dark matter is a form of non-relativistic and non-baryonic matter, which can only be detected indirectly, by its gravitational interactions with normal matter. Dark energy is a kind of substance with negative pressure, which started to dominate recently and causes the accelerated expansion of the universe.
In this PhD Thesis, I present a few original models proposed to solve some of the shortcomings of the standard cosmology, as possible extensions of the Big Bang model. Some of these models introduce new symmetries and particles in order to explain inflation and dark energy and/or dark matter in a unified description. One of the models is proposed for explaining the dark energy of the universe, by means of a new scalar field oscillating in a potential.
The most successful scientific theory today about the origin and evolution of the universe is known as the standard Big Bang model, which is one of the most ambitious intellectual constructions of the humanity. It is based on two consolidated branches of theoretical physics, namely, the theory of General Relativity and the Standard Model of particle physics, and is able to make robust predictions, such as the expansion of the universe, the existence of the cosmic microwave background radiation and the relative primordial abundance of light elements. Some of the theoretical predictions have already been confirmed by very precise observations.
According to the standard Big Bang cosmology, the early universe consisted of a very hot and dense plasma that continuously expanded and cooled up to the present, giving place to a series of cosmological phase transitions, where the theories describing the universe in each phase are different. Given that the energies of the early universe were much higher than those reached in terrestrial experiments, the study of the early universe might give us important information about new interactions and new particles, opening new directions for extending the Standard Model of particle physics.
As already mentioned above, during the expansion of the universe, different phase transitions occurred, which left their imprint on the present state of the universe. Observations suggest that during a very early phase transition the universe suffered a stage of accelerated expansion, known as inflation. Although inflation is not included in the standard cosmology, it is able to solve in a simple and elegant manner almost all of the shortcomings related to the standard Big Bang model, and should be taken into account in any possible extension of the theory. Observations also reveal evidence of the existence of two unknown forms of energy, i.e., dark matter and dark energy. Dark matter is a form of non-relativistic and non-baryonic matter, which can only be detected indirectly, by its gravitational interactions with normal matter. Dark energy is a kind of substance with negative pressure, which started to dominate recently and causes the accelerated expansion of the universe.
In this PhD Thesis, I present a few original models proposed to solve some of the shortcomings of the standard cosmology, as possible extensions of the Big Bang model. Some of these models introduce new symmetries and particles in order to explain inflation and dark energy and/or dark matter in a unified description. One of the models is proposed for explaining the dark energy of the universe, by means of a new scalar field oscillating in a potential.
Alles, Alexandre. "Inhomogeneous cosmology : an answer to the Dark Matter and Dark Energy problems?" Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10165/document.
Texto completoThe standard model of cosmology describes the formation of large scale structures in the late Universe within a quasi–Newtonian theory. This model requires the presence of unknown compounds of the Universe, Dark Matter and Dark Energy, to properly fit the observations. These two quantities, according to the Standard Model, represent almost 95% of the content of the Universe. Although the dark components are searched for by the scientific community, there exist several alternatives which try to deal with the problem of the large scale structures. Inhomogeneous theories describe the impact of the kinematical fluctuations on the global behaviour of the Universe. Or some theories proposed to go beyond general relativity. During my Ph.D. thesis, I developed key–elements of a fully relativistic Lagrangian theory of structure formation. Assuming a specific space–time slicing, I solved the first order system of equations to obtain solutions which describe the matter evolution within the perturbed geometry, and I developed higher order schemes and their correspondences with the Lagrangian perturbation solutions in the Newtonian approach. I also worked on some applications of these results like the description of a silent Universe or the Weyl curvature hypothesis and the problem of gravitational entropy. Further objectives are the description of physical observables and the development of direct applications. Next step of the development is an interaction between theoretical and numerical approaches, a study which would require strong cooperation with observers
Scott, Pat. "Searches for Particle Dark Matter Dark stars, dark galaxies, dark halos and global supersymmetric fits /". Doctoral thesis, Stockholm : Department of Physics, Stockholm University, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-38221.
Texto completoAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Accepted. Paper 6: Submitted. Härtill 6 uppsatser.
Mishra-Sharma, Siddharth. "Extragalactic Searches for Dark Matter Annihilation". Thesis, Princeton University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10928813.
Texto completoWe are at the dawn of a data-driven era in astrophysics and cosmology. A large number of ongoing and forthcoming experiments combined with an increasingly open approach to data availability offer great potential in unlocking some of the deepest mysteries of the Universe. Among these is understanding the nature of dark matter (DM)—one of the major unsolved problems in particle physics. Characterizing DM through its astrophysical signatures will require a robust understanding of its distribution in the sky and the use of novel statistical methods.
The first part of this thesis describes the implementation of a novel statistical technique which leverages the “clumpiness” of photons originating from point sources (PSs) to derive the properties of PS populations hidden in astrophysical datasets. This is applied to data from the Fermi satellite at high latitudes (|b| ≥ 30°) to characterize the contribution of PSs of extragalactic origin. We find that the majority of extragalactic gamma-ray emission can be ascribed to unresolved PSs having properties consistent with known sources such as active galactic nuclei. This leaves considerably less room for significant dark matter contribution.
The second part of this thesis poses the question: “what is the best way to look for annihilating dark matter in extragalactic sources?” and attempts to answer it by constructing a pipeline to robustly map out the distribution of dark matter outside the Milky Way using galaxy group catalogs. This framework is then applied to Fermi data and existing group catalogs to search for annihilating dark matter in extragalactic galaxies and clusters.
Palmese, Antonella. "Unveiling the unseen with the Dark Energy Survey : gravitational waves and dark matter". Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10055879/.
Texto completoCosta, André Alencar da. "Observational Constraints on Models with an Interaction between Dark Energy and Dark Matter". Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-20012015-123002/.
Texto completoNesta tese vamos além do modelo cosmológico padrão, o LCDM, e estudamos o efeito de uma interação entre a matéria e a energia escuras. Embora o modelo LCDM esteja de acordo com as observações, ele sofre sérios problemas teóricos. Com o objetivo de resolver tais problemas, nós primeiro consideramos um modelo alternativo, onde ambas, a matéria e a energia escuras, são descritas por fluidos com uma interação fenomenológica dada como uma combinação das densidades de energia. Além desse modelo, propomos um modelo mais realista baseado em uma densidade Lagrangiana com uma interação tipo Yukawa. Para vincular os parâmetros cosmológicos usamos dados cosmológicos recentes como as medidas da CMB feitas pelo satélite Planck, bem como medidas de BAO, SNIa, H0 e Lookback time.
Laycock, Thomas Daniel. "Dark matter excitations via massive vector bosons". Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=21959.
Texto completoUn model d'excitations matière sombre est etudié dans une tentative d'explication de la ligne d'emission anormalement large observé par le spectrographe SPI sur INTEGRAL originaire du bulbe galactique de la Voie Lactée. La matière sombre WIMP proposée possède un partenaire ayant une masse de quelques MeV supplémentaires. La diffusion entre les particules de matière sombre mène aux excitations et à la désintégration ultérieure en une paire électron-positron. De cette façon, l'énergie cinétique des particules de matière sombre peut être convertie en paires électron-positron se déplaçant suffisement lentement pour produire l'étroite ligne d'annihilation observée. Avec un espacement en masse suffisement grand, les considérations cinématique et un profil de densité de la matière sombre cuspy contraignent les excitations au bulbe galactique, où la vitesse d'échappement, et donc la fraction de particules matière sombre au-dessus du seuil cinétique, est grande.
Libros sobre el tema "Dark Matter, Dark Energy, Metrology"
Matarrese, Sabino, Monica Colpi, Vittorio Gorini y Ugo Moschella, eds. Dark Matter and Dark Energy. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8685-3.
Texto completoGinzburg, Vladimir B. Prime elements of ordinary matter, dark matter, & dark energy. Pittsburgh, PA: Helicola Press, 2007.
Buscar texto completoPapantonopoulos, E. The invisible universe: Dark matter and dark energy. [New York]: Springer-Verlag Berlin Heidelberg, 2010.
Buscar texto completoPapantonopoulos, Lefteris, ed. The Invisible Universe: Dark Matter and Dark Energy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71013-4.
Texto completoS, Wesson Paul, ed. The light/dark universe: Light from galaxies, dark matter and dark energy. New Jersey: World Scientific, 2008.
Buscar texto completoOverduin, J. M. The light/dark universe: Light from galaxies, dark matter and dark energy. New Jersey: World Scientific, 2008.
Buscar texto completoDark side of the universe: Dark matter, dark energy, and the fate of the cosmos. Bristol: Canopus, 2007.
Buscar texto completoDark energy: Observational and theoretical approaches. Cambridge, UK: Cambridge University Press, 2010.
Buscar texto completoPrime elements of ordinary matter, dark matter & dark energy: Beyond standard model & string theory. 2a ed. Boca Raton, FL: Universal Publishers, 2007.
Buscar texto completoP, Ruiz-Lapuente, ed. Dark energy: Observational and theoretical approaches. New York: Cambridge University Press, 2010.
Buscar texto completoCapítulos de libros sobre el tema "Dark Matter, Dark Energy, Metrology"
Perlov, Delia y Alex Vilenkin. "Dark Matter and Dark Energy". En Cosmology for the Curious, 131–41. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57040-2_9.
Texto completoManoukian, E. B. "Dark Matter and Dark Energy". En 100 Years of Fundamental Theoretical Physics in the Palm of Your Hand, 535–39. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51081-7_92.
Texto completoKöhler, Nicolas Maximilian. "Dark Matter and Dark Energy". En Springer Theses, 17–25. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25988-4_3.
Texto completoGrupen, Claus. "Dark Energy and Dark Matter". En Astroparticle Physics, 401–34. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-27339-2_13.
Texto completoJacquart, Melissa. "Dark Matter And Dark Energy". En The Routledge Companion to Philosophy of Physics, 731–43. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781315623818-68.
Texto completoD’Amico, Guido, Marc Kamionkowski y Kris Sigurdson. "Dark Matter Astrophysics". En Dark Matter and Dark Energy, 241–72. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8685-3_5.
Texto completoTsujikawa, Shinji. "Dark Energy: Investigation and Modeling". En Dark Matter and Dark Energy, 331–402. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8685-3_8.
Texto completoStraumann, Norbert. "Relativistic Cosmology". En Dark Matter and Dark Energy, 3–131. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8685-3_1.
Texto completoVerde, Licia. "Cosmology with Cosmic Microwave Background and Large-Scale Structure Observations". En Dark Matter and Dark Energy, 133–76. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8685-3_2.
Texto completoHeavens, Alan. "Cosmology with Gravitational Lensing". En Dark Matter and Dark Energy, 177–216. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8685-3_3.
Texto completoActas de conferencias sobre el tema "Dark Matter, Dark Energy, Metrology"
de la Macorra, A. y T. Matos. "Dark Energy and Dark Matter". En PARTICLES AND FIELDS: X Mexican Workshop on Particles and Fields. AIP, 2006. http://dx.doi.org/10.1063/1.2359404.
Texto completoULLIO, P. "DARK MATTER AND DARK ENERGY". En Proceedings of the 7th School. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701893_0007.
Texto completoKolb, Edward W. "Inflation, Dark Matter, Dark Energy". En Proceedings of the International School of Subnuclear Physics. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701794_0006.
Texto completoMATHEWS, GRANT J., NGUYEN Q. LAN y JAMES R. WILSON. "DARK ENERGY AND DECAYING DARK MATTER". En Proceedings of the MG11 Meeting on General Relativity. World Scientific Publishing Company, 2008. http://dx.doi.org/10.1142/9789812834300_0253.
Texto completoTURNER, Michael S. "DARK MATTER, DARK ENERGY, AND FUNDAMENTAL PHYSICS". En Physics in Collision 19. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792648_0014.
Texto completoSaridakis, Emmanuel N. "Soft dark energy and soft dark matter". En Proceedings of the MG16 Meeting on General Relativity. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811269776_0155.
Texto completoRiess, Adam. "Seeing Dark Energy". En Identification of dark matter 2008. Trieste, Italy: Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.064.0043.
Texto completoBettini, Alessandro. "Dark Matter Searches". En International Europhysics Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2007. http://dx.doi.org/10.22323/1.021.0412.
Texto completoSarkar, Utpal y Aalok Misra. "Leptogenesis, Dark Energy, Dark Matter and the neutrinos". En THEORETICAL HIGH ENERGY PHYSICS: International Workshop on Theoretical High Energy Physics. AIP, 2007. http://dx.doi.org/10.1063/1.2803796.
Texto completoMoore, David C. "Optomechanical searches for dark matter". En Optical and Quantum Sensing and Precision Metrology II, editado por Selim M. Shahriar y Jacob Scheuer. SPIE, 2022. http://dx.doi.org/10.1117/12.2616910.
Texto completoInformes sobre el tema "Dark Matter, Dark Energy, Metrology"
Miller, Jonah Maxwell. A Universe of Unknowns: Dark Matter and Dark Energy. Office of Scientific and Technical Information (OSTI), febrero de 2020. http://dx.doi.org/10.2172/1602719.
Texto completoPalmese, Antonella. Unveiling the unseen with the Dark Energy Survey: gravitational waves and dark matter. Office of Scientific and Technical Information (OSTI), enero de 2018. http://dx.doi.org/10.2172/1497090.
Texto completoEllis, Richard, S. Understanding the Fundamental Properties of Dark Matter & Dark Energy in Structure formation and Cosmology. Office of Scientific and Technical Information (OSTI), febrero de 2008. http://dx.doi.org/10.2172/923329.
Texto completoEllis, Richard S. Understanding the Fundamental Properties of Dark Matter and Dark Energy in Structure Formation and Cosmology. Office of Scientific and Technical Information (OSTI), septiembre de 2012. http://dx.doi.org/10.2172/1067853.
Texto completoCrotty, Patrick R. High-energy neutrino fluxes from the supermassive dark matter. Office of Scientific and Technical Information (OSTI), enero de 2002. http://dx.doi.org/10.2172/1420932.
Texto completoChen, Yu. High-Energy Neutron Backgrounds for Underground Dark Matter Experiments. Office of Scientific and Technical Information (OSTI), enero de 2016. http://dx.doi.org/10.2172/1350521.
Texto completoBaltz, Edward A., Marco Battaglia, Michael E. Peskin y Tommer Wizansky. Determination of Dark Matter Properties at High-Energy Collider. Office of Scientific and Technical Information (OSTI), febrero de 2006. http://dx.doi.org/10.2172/876594.
Texto completoWitherell, Michael. Experimental High Energy Physics Research: Direct Detection of Dark Matter. Office of Scientific and Technical Information (OSTI), octubre de 2014. http://dx.doi.org/10.2172/1158940.
Texto completoKolb, Rocky, Harry Weerts, Natalia Toro, Richard Van de Water, Rouven Essig, Dan McKinsey, Kathryn Zurek et al. Basic Research Needs for Dark-Matter Small Projects New Initiatives: Report of the Department of Energy’s High Energy Physics Workshop on Dark Matter. Office of Scientific and Technical Information (OSTI), octubre de 2018. http://dx.doi.org/10.2172/1659757.
Texto completoKurinsky, Noah Alexander. The Low-Mass Limit: Dark Matter Detectors with eV-Scale Energy Resolution. Office of Scientific and Technical Information (OSTI), enero de 2018. http://dx.doi.org/10.2172/1472104.
Texto completo