Tesis sobre el tema "Cyle du carbone"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Cyle du carbone".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Planchat, Alban. "Alkalinity and calcium carbonate in Earth system models, and implications for the ocean carbon cycle". Electronic Thesis or Diss., Université Paris sciences et lettres, 2023. http://www.theses.fr/2023UPSLE005.
Texto completoOcean alkalinity (Alk) is critical for the uptake of atmospheric carbon and provides buffering capacity against acidification. Within the context of projections of ocean carbon uptake and potential ecosystem impacts, the representation of Alk and the main driver of its distribution in the ocean interior, the calcium carbonate (CaCO3) cycle, have often been overlooked. This thesis addresses the lack of consideration given to Alk and the CaCO3 cycle in Earth system models (ESMs) and explores the implications for the carbon cycle in a pre-industrial ocean as well as under climate change scenarios. Through an ESM intercomparison, a reduction in simulated Alk biases in the 6th phase of the Coupled Model Intercomparison Project (CMIP6) is reported. This reduction can be partially explained by increased pelagic calcification, redistributing Alk at the surface and strengthening its vertical gradient in the water column. A review of the ocean biogeochemical models used in current ESMs reveals a diverse representation of the CaCO3 cycle and processes affecting Alk. Parameterization schemes for CaCO3 production, export, dissolution, and burial vary substantially, with no benthic calcification and generally only calcite considered. This diversity leads to contrasting projections of carbon export associated with CaCO3 from the surface ocean to the ocean interior in future scenarios. However, sensitivity simulations performed with the NEMO-PISCES ocean biogeochemical model indicate that the feedback of this on anthropogenic carbon fluxes and ocean acidification remains limited. Through an ensemble of NEMO-PISCES simulations, careful consideration of the Alk budget is shown to be critical to estimating pre-industrial ocean carbon outgassing due to riverine discharge and the burial of organic matter and CaCO3. Such estimates are fundamental to assessing anthropogenic air-sea carbon fluxes using observational data and highlight the need for greater constraints on the ocean Alk budget
Hellequin, Eve. "Effets des biostimulants sur le fonctionnement biologique de sols d’agrosystèmes : réponses des communautés microbiennes et dynamique de minéralisation du carbone organique". Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1B029.
Texto completoModern agriculture is undergoing important changes toward agroecological practices that rely on biodiversity and ecological processes. In agrosystems, the organic matter is the key of the soil fertility and an important reserve of carbon. Organic fertilization by crop residues is therefore an agricultural practice that improve the organic matter content in soil. Soil microorganisms have an important role in the organic carbon (orgC) dynamic because they are key players of its mineralization and are involved in the nutrients recycling. Thus, the use of agricultural biostimulant (BS) intended to enhance this microbial function is proposed as an alternative solution to improve indirectly plant growth while reducing chemical inputs. This thesis aimed to i) identify the effect of soil biostimulant on heterotrophic microbial communities, the orgC mineralization and the nutrient releases, ii) evaluate its genericity by testing different experimental conditions and iii) identify the environmental filters that control both the microbial communities and the mineralization function. We showed that the orgC dynamic was different according to contrasted physico-chemical and biological characteristics of different soils. We showed that plants can also influence the orgC dynamic by returning litter to the soil and through its root effect on the bacterial and fungal communities. Unlike plants, the amount of orgC provided by the two tested BS was negligible. However, we evaluated the effect of one BS as at least similar or even higher than those of plant on active bacterial and fungal abundances, richness and diversity. Among the two BS tested we showed that one enhanced the orgC mineralization by recruiting indigenous soil bacterial and fungal decomposers and that the other did not affect the orgC mineralization but activated indigenous soil plant-growth-promoting bacteria as well as soil bacterial and fungal decomposers. Furthermore, our study call for new normative methodological and systemic approach by monitoring simultaneously several descriptors for advancing our knowledge on BS action on microbial soil functioning
Barral, Cuesta Abel. "The carbon isotope composition of the fossil conifer Frenelopsis as a proxy for reconstructing Cretaceous atmospheric CO2". Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1148.
Texto completoThe Cretaceous was a period characterized by strongly marked climate change and major carbon cycle instability. Atmospheric CO2 has repeatedly been pointed out as a major agent involved in these changing conditions during the period. However, long-term trends in CO2 described for the Cretaceous are not consistent with those of temperature and the large disturbance events of the carbon cycle described for the period. This raises a double question of whether descriptions of the long-term evolution of atmospheric CO2 made so far are accurate or, if so, atmospheric CO2 was actually a major driver of carbon cycle and climate dynamics as usually stated. In this thesis the close relationship between the carbon isotope composition of plants and atmospheric CO2 is used to address this question. Based on its ecological significance, distribution, morphological features and its excellent preservation, the fossil conifer genus Frenelopsis is proposed as a new plant proxy for climate reconstructions during the Cretaceous. The capacity of carbon isotope compositions of Frenelopsis leaves (d13Cleaf) to reconstruct past atmospheric CO2, with regards to both carbon isotope composition (d13CCO2) and concentration (pCO2), is tested based on materials coming from twelve Cretaceous episodes. To provide a framework to test the capacity of d13Cleaf to reconstruct d13CCO2 and allowing for climate estimates from carbon isotope discrimination by plants (?13Cleaf), a new d13CCO2 curve for the Cretaceous based on carbon isotope compositions of marine carbonates has been constructed. Comparison with d13Cleaf-based d13CCO2 estimates reveals that although d13CCO2 and d13Cleaf values follow consistent trends, models developed so far to estimate d13CCO2 from d13Cleaf tend to exaggerate d13CCO2 trends because of assuming a linear relationship between both values. However, given the hyperbolic relationship between ?13Cleaf and pCO2, by considering an independently-estimated correction factor for pCO2 for a given episode, d13Cleaf values may be a valuable proxy for d13CCO2 reconstructions. ?13Cleaf estimates obtained from d13CCO2 and d13Cleaf values were used to reconstruct the long-term evolution of pCO2. The magnitude of estimated pCO2 values is in accordance with that of the most recent and relevant model- and proxy-based pCO2 reconstructions. However, these new results evidence long-term drawdowns of pCO2 for Cretaceous time intervals in which temperature maxima have been described
Piccoli, Francesca. "High-pressure carbonation : a petrological and geochemical study of carbonated metasomatic rocks from Alpine Corsica". Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066448/document.
Texto completoThe balance between the carbon input in subduction zone, mainly by carbonate mineral-bearing rock subduction, and the output of CO2 to the atmosphere by volcanic and metamorphic degassing is critical to the carbon cycle. At fore arc-subarc conditions (75-100 km), carbon is thought to be released from the subducting rocks by devolatilization reactions and by fluid-induced dissolution of carbonate minerals. All together, devolatilization, dissolution, coupled with other processes like decarbonation melting and diapirism, are thought to be responsible for the complete transfer of the subducted carbon into the crust and lithospheric mantle during subduction metamorphism. Carbon-bearing fluids will form after devolatilization and dissolution reactions. The percolation of these fluids through the slab- and mantle-forming rocks is not only critical to carbon cycling, but also for non-volatile element mass transfer, slab and mantle RedOx conditions, as well as slab- and mantle-rock rheology. The evolution of such fluids through interactions with rocks at high-pressure conditions is, however, poorly constrained. This study focuses on the petrological, geochemical and isotopic characteristic of carbonated-metasomatic rocks from the lawsonite-eclogite unit in Alpine Corsica (France). The study rocks are found along major, inherited lithospheric lithological boundaries of the subducted oceanic-to-transitional plate and can inform on the evolution of carbon-bearing high-pressure fluids during subduction. In this work, it will be demonstrated that the interaction of carbon-bearing fluids with slab lithologies can lead to high-pressure carbonation (modeled conditions: 2 to 2.3 GPa and 490-530°C), characterized by silicate dissolution and Ca-carbonate mineral precipitation. A detailed petrological and geochemical characterization of selected samples, coupled with oxygen, carbon and strontium, neodymium isotopic systematic will be used to infer composition and multi-source origin of the fluids involved. Geochemical fluid-rock interactions will be quantified by mass balance and time-integrated fluid fluxes estimations. This study highlights the importance of carbonate-bearing fluids decompressing along down-T paths, such as along slab-parallel lithological boundaries, for the sequestration of carbon in subduction zones. Moreover, rock-carbonation by fluid-rock interactions may have an important impact on the residence time of carbon and oxygen in subduction zones and lithospheric mantle reservoirs as well as carbonate isotopic signatures in subduction zones. Lastly, carbonation may modulate the emission of CO2 at volcanic arcs over geological time scales
Suchéras-Marx, Baptiste. "Émergence de la production carbonatée pélagique au Jurassique moyen (180-160 Ma) : la conquête des océans par les coccolithophoridés du genre Watznaueria". Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10024.
Texto completoCoccolithophorids are photosynthetic and planktonic marine algae that produce micrometric calcium carbonate (CaCO3) platelets called coccoliths. These algae appeared about 210 Ma ago and produce today most of the CaCO3 in the modern oceans, hence playing a major role in the carbon cycle. Nevertheless, the onset of oceanic CaCO3 production by these organisms during the Jurassic and its impact on carbon cycling remain poorly understood. This study therefore focused on the Middle Jurassic interval (Early Bajocian, -170 Ma) which records the diversification of Watznaueria, an evolutionary important coccolith genus that subsequently dominated oceanic CaCO3 production for more than 80 Myr. The analysis of coccolith assemblages from the Middle Jurassic of southern France and Portugal, based on an automaticcoccolith recognition device used for the first time on Jurassic coccoliths, allowed quantifying the impact of this diversification on CaCO3 production. In addition, the duration of this key interval has been revaluated by the cyclostratigraphic analysis of sedimentary strata from southern France. The reconstructed changes in CaCO3 production were compared to carbon cycle perturbations recorded by carbon isotope ratios and indicate a probable link with a marked increase of ocean fertility. Besides, paleontological analyses show that this diversification episode correspond to the successive appearance of different, probably opportunistic Watznaueria species. The obtained fluxes of pelagic CaCO3 production, by far lower than those recorded in modern oceans, seems too low to have significantly impacted theMiddle Jurassic carbon cycle
Maffre, Pierre. "Interactions entre tectonique, érosion, altération des roches silicatées et climat à l'échelle des temps géologiques : rôle des chaînes de montagnes". Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30287.
Texto completoThis thesis explores how orogenies may affect the Earth climate through the quantification of the interactions between climate dynamics, continental erosion, silicate rock weathering rate and geological carbon cycle. The first chapter describes the mechanisms linking the continental topography and its impacts on the atmospheric and oceanic circulations, with emphasis on the thermohaline circulation. The second chapter compares the effects on continental weatherability of climate dynamics and erosional changes related to the presence of mountains. The third chapter describes a dynamic model of regolith designed for global scale simulations, and describes its transient behavior, as well as its response to a CO2 degassing. Finally, the last chapter presents a numerical model of the continental isotopic cycle of lithium, so that its reliability as a proxy of the past weathering can be tested. The model explores the case study of the Amazon lithium cycle
Crichton, Katherine. "The role of permafrost soils in the global carbon-cycle on the timescales of centuries to multi-millennia : a modelling study". Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENU049/document.
Texto completoThis study aimed to develop a permafrost-carbon dynamic model to incorporate into the CLIMBER-2 Earth system model and to carry out simulations with a view to contributing to the knowledge of the carbon cycle. The work would, for the first time, allow a fully coupled modelling study with an earth system model which included dynamic atmosphere, ocean, vegetation and cryosphere components including frozen land to study paleoclimates. The availability of recent ice core data for CO2 and δ13C of atmospheric CO2 was to provide a means of validating model findings to identify whether a permafrost-carbon dynamic could have played a significant role in past changing climates.The deep Southern Ocean is an area of particular interest for glacial-interglacial CO2 variability, and current modelling efforts aim to recreate the observed CO2 changes using ocean mechanisms. These are often related to deep southern ocean carbon storage and release. So far the terrestrial biosphere has not been well-considered in transient simulations of the carbon cycle in Earth system models.A simplified permafrost-carbon mechanism was developed and validated and tuned using data from termination 1. It was found that in order to reproduce atmospheric CO2 and δ13C data (for atmosphere and ocean) during the termination, a combination of glacial ocean mechanisms and the permafrost-carbon mechanism was required. Following this finding, several glacial cycles were modelled to study the sensitivity of the permafrost-carbon mechanisms to CO2, ice sheets and insolation. Ice sheet extent was found to be particularly important in controlling the land area available for permafrost and therefore the carbon dynamics of permafrost-carbon. The permafrost-carbon mechanism, via carbon release from thawing soils responding to increasing summer insolation in higher northern latitudes, was found to very likely be the source of initial rises in CO2 on glacial terminations.Termination 1 CO2 data could be well reproduced, including the B-A/YD CO2 plateau, when fresh water forcing was applied to the north Atlantic. Fresh water forcing experiments pointed to the importance of the permafrost-carbon mechanism in fast changing climates. Very fast increases in atmospheric CO2 levels may be explained by fast soil-carbon release responding to increased heat transport to the northern hemisphere on AMOC resumption following an AMOC switch-off/reduction event, such as D/O events seen in the Greenland δ18O record. Future climate change projections represent fast warming events. Driving the model by emissions projections (RCP database) predicted increased peak CO2 and much longer term elevated CO2 levels relative to model outputs which did not include the permafrost carbon feedback.Analysis of ocean δ13C must take into account the dynamics of permafrost and land carbon in general and its effect on atmospheric δ13C levels. If this is not taken into account then ocean circulation may be over-invoked in attempting to explain changes in ocean δ13C and atmospheric CO2. The Earth system is not simply atmosphere and ocean. The findings in this work highlight that it is essential to consider land carbon dynamics when interpreting paleo-indicators for the carbon cycle.The permafrost-carbon mechanism reacts to temperature changes and amplifies the carbon cycle's response. It is stongly dependent not only on energy input (that determines soil temperature and permafrost location), but also on the area of land available globally on which it can exist. In order to properly model and understand the Earth system response to forcing in both future and past climates, the permafrost-carbon feedback mechanism is an important system component. This work has been a first step to address the role that the land cryosphere plays in the carbon cycle and climate system on long timescales, and further studies are essential
Leloup, Gaëlle. "Le climat du prochain million d'années : quels scénarios pour le futur ?" Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASJ001.
Texto completoWhile many studies focus on the impacts of anthropogenic greenhouse gas on climate on the timescale of the next century, very few have investigated the impacts on a longer timescale, from tens of millennia to a million years. However, due to the long lifetime of CO2 in Earth's surface reservoirs, current anthropogenic emissions are expected to impact the climate on a much longer timescale than the coming century.The objective of this thesis is to broaden the scope of existing studies on the climate of the next million years, by revisiting some of their classical hypotheses. Existing studies rarely consider a partial or total melt of the Antarctic ice sheet, and assume that atmospheric CO2 concentrations come back to pre-industrial levels after hundreds of thousands years, due to silicate weathering.In this study, we explore potential evolutions of the Antarctic ice sheet.More precisely, I have investigated the long term equilibrium of the Antarctic ice sheet under different CO2 levels, using the Earth System model of intermediate complexity iLOVECLIM, coupled to the GRISLI Antarctic ice sheet model, by first applying increasing CO2 levels until the Antarctic ice sheet retreats entirely, and then applying decreasing CO2 levels until the ice sheet regrows. Our results show that the ice sheet exhibits a strong hysteresis behavior. Due to the inclusion of the albedo-melt feedback in our setup, the transition between a glaciated Antarctic ice sheet and an ice-free Antarctic and conversely is more brutal than in previous studies not including this feedback. The CO2 threshold for both Antarctic glaciation and deglaciation varies with the orbital configuration.Additionally, I have developed a conceptual model for the geological carbon cycle that includes multiple equilibria in order to reproduce multi million year cycles in the d13C that are coherent with the data. These potential multiple equilibria in the carbon cycle could lead to a widely different atmospheric CO2 concentration evolution on long timescales, compared to existing studies.Finally, we discuss the implications of our results on a potential end of the Quaternary in the future, with a disappearance of Northern Hemisphere glaciations, but also a disappearance of the Antarctic ice sheet
Danhiez, François-Pierre. "Relations entre les propriétés optiques de la matière organique dissoute colorée et le carbone organique dissous dans des eaux côtières aux caractéristiques contrastées". Thesis, Littoral, 2015. http://www.theses.fr/2015DUNK0395/document.
Texto completoThe coastal ocean represents an important component of the global carbon cycle however its participation to the overall carbon flux is currently not well constrained. Information on DOC stock and its variability in the coastel ocean is however still very scarce and its represents a strong limitation to our current understanding of the exact role of these ecosystems in the oceanic carbon cycle. In this context, the general aims of this study was to get more insights on dissolved organic carbon dynamics in the coastal ocean through the optical properties of dissolved organic matter (CDOM) that present the advantage to be easily measured from in situ or satellite observations. In practice, in situ data gathered during several sampling cruises conducted in three constrasted continental margins (Eastern Channel, French Guiana, Vietnam) have allowed : (i) the characterization of the strong regional discrepancies in the CDOM-DOC relationships between the three coastal sites investigated, (ii) the possible use of a generalized parameterization to retrieve DOC concentrations from CDOM optical properties (estimated in situ or from ocean color remote sensing)over a large range of coastal sites dominated by terrestrial imput of DOM. A further objective of this work was to investigate the impact on DOM dynamics of the phytoplankton bloom event of Phaeocystis.globosa known to affect the coastal waters of the eastern English Channel during the spring period. In practice, this DOM production was investigated during a 45 days mesocom experiment coupled to field survey data (2012-1014) leading to the identification of an optical marker of this marine CDOM production (i.e. S320-412). We further demonstrated that this optical parameter provides useful information to enhance our ability to retrieve DIC 1 from CDOM optical properties in a context of an algal bloom event
Qiu, Chunjing. "Modélisation de la dynamique du carbone et des surfaces dans les tourbières du nord". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLV022.
Texto completoNorthern peatlands play an important role in the global carbon (C) cycle as a long-term CO2 sink and the one of the largest natural methane (CH4) sources. Meanwhile, these substantial carbon stores will be exposed in the future to large warming and wetter conditions that characterize climate change in the high latitudes and, because of the large amount of C stored in northern peatlands, their fate is of concern. In this thesis, I integrated a representation of peatlands water and carbon cycling into the ORCHIDEE-MICT land surface model (LSM), with the aim to improve the understanding of peatland C and area dynamics since the Holocene, to explore effects of projected climate change to northern peatlands, and to quantify the role of northern peatlands in the global C cycle.Firstly (Chapter 2), I implemented peatland as an independent sub-grid hydrological soil unit (HSU) which receives runoff from surrounding non-peatland HSUs in each grid cell and has no bottom drainage, following the concept of Largeron et al. (2018). To model vertical water fluxes of peatland and non-peatland soils, I represented peat-specific hydrological parameters for the peatland HSU while in other HSUs the hydrological parameters are determined by the dominant soil texture of the grid cell. I chose a diplotelmic model to simulate peat C decomposition and accumulation. This two-layered model includes an upper layer (acrotelm) that is variably inundated and a lower layer (catotelm) that is permanently inundated. This model showed good performance in simulating peatland hydrology, C and energy fluxes at 30 northern peatland sites on daily to annual time scales. But the over simplification of the C dynamics may limit its capacity to predict northern peatland response to future climate change.Secondly (Chapter 3), I replaced the diplotelmic peat carbon model with a multi-layered model to account for vertical heterogeneities in temperature and moisture along the peat profile. I then adapted the cost-efficient version of TOPMODEL and peatland establishment criteria from Stocker et al. (2014) to simulate the dynamics of peatland area within a grid cell. Here the flooded area given by TOPMODEL is crossed with suitable peat growing conditions to set the area that is occupied by a peat HSU. This model was tested across a range of northern peatland sites and for gridded simulations over the Northern Hemisphere (>30 °N). Simulated total northern peatlands area and C stock by 2010 is 3.9 million km2 and 463 PgC, fall well within observation-based reported range of northern peatlands area (3.4 – 4.0 million km2) and C stock (270 – 540 PgC).Lastly (Chapter 4), with the multi-layered model, I conducted factorial simulations using representative concentration pathway (RCP)-driven bias-corrected past and future climate data from two general circulation models (GCMs) to explore responses of northern peatlands to climate change. The impacts of peatlands on future C balance of the Northern Hemisphere were discussed, including the direct response of the C balance of the (simulated) extant peatland area, and indirect effects of peatlands on the terrestrial C balance when peatlands area change in the future.Future work will focus on including influences of land use change and fires on peatland into the model, given that substantial losses of C could occur due to these disturbances. To have a complete picture of peatland C balance, CH4 and dissolved organic C (DOC) losses must be considered
Cachier-Rivault, Hélène. "Approche isotopique du cycle atmospherique du carbone particulaire". Paris 7, 1987. http://www.theses.fr/1987PA077061.
Texto completoWalker, Jessica Mary. "Role of macromolecules in coccolithophore biomineralization". Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31401.
Texto completoDenis, Marie. "Mécanismes de solubilisation et transfert de matières organiques dissoutes à l'échelle d'un bassin versant agricole : apport de l'étude de la composition moléculaire". Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S045/document.
Texto completoDissolved organic matter (DOM), as sources of nutrient or pollutant dissemination pathway are implied in numerous environmental issues. Although DOM have been the subject of numerous studies for several decades, the mechanisms implied for their solubilization and their transport from soils to aquatic systems are still a matter of discussion. Based on DOM molecular composition determined using thermally assisted hydrolysis and methylation –gas chromatography – mass spectrometry (THM-GC-MS), this thesis aims to provide a better understanding of their solubilization and transfer mechanisms at the scale of an agricultural headwater catchment. This work was conducted on the experimental headwater catchment of Kervidy-Naizin (France, Environmental Research Observatory AgrHys) in order to determine the processes implied at two temporal scales. At the scale of a rain event, this work has clarified the impact of hydrological conditions on the DOM dynamics. At annual scale, the use of carbon isotope signature (δ13C) and DOM molecular composition allowed to clarify the DOM transfer mechanisms at the slope scale. The use of THM-GC-MS appears to be a suitable tool for the study of DOM dynamics. The results thus obtained allowed to highlight the role of hydrological conditions and in particular the water-table level in the solubilization and transfer of DOM
Riano, Sanchez Jaime Andres. "Evolution of the global productivity of terrestrial ecosystems under constraint linked to nitrogen availability : analysis over the recent historical period and future projections". Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASJ012.
Texto completoTerrestrial ecosystems currently absorb more than a quarter of CO₂ emissions of anthropogenic origin, thanks to the fertilization effect associated with the increase in atmospheric CO₂. Most of the terrestrial system models used in recent IPCC work estimate that terrestrial ecosystems will continue to behave like a carbon sink of greater or lesser magnitude in the 21st century, depending on the future trajectories of atmospheric CO₂ and climate. Whatever the evolution of atmospheric CO₂ concentration, it remains critical to determining whether enough nutrients (particularly nitrogen) will be available to fully support the increase in primary production resulting from the fertilization effect of elevated CO₂. Most global models of terrestrial ecosystems do not account for the nitrogen cycle and the interactions between the nitrogen and carbon cycles. The latest version of the ORCHIDEE model developed in France incorporates these new features.Using this model, the objective of the thesis will be to analyze the evolution of terrestrial productivity over the recent historical period and to quantify the future development of the productivity of terrestrial ecosystems under the combined effect of these global changes: climate, CO₂ concentration, and reactive nitrogen production evolution, according to different socio-economic scenarios. Including the coupled nitrogen and carbon cycle in ORCHIDEE also requires a better approximation to one key Nitrogen input resulting from Biological Nitrogen Fixation that is currently determined by evapotranspiration. This has been recently invalidated by a meta analysis study. The second objective of this thesis consists then of implementing a process-based dynamic model for reproducing BNF in ORCHIDEE to improve the estimation of the carbon fluxes
Lemaitre, Nolwenn. "Approche multi-proxy (Thorium-234, Baryum en excès) des flux d'export et de reminéralisation du carbone et des éléments nutritifs associés à la pompe biologique océanique". Thesis, Brest, 2017. http://www.theses.fr/2017BRES0009/document.
Texto completoThe main objective of this thesis is to improve our understanding of the different controls that affect the oceanic biological carbon pump. Particulate export and remineralization fluxes were investigated using the thorium-234 (234Th) and biogenic barium (Baxs) proxies.In the North Atlantic, the highest particulate organic carbon (POC) export fluxes were associated to biogenic (biogenic silica or calcium carbonate) and lithogenic minerals, ballasting the particles.Export efficiency was generally low (< 10%) and inversely related to primary production, highlighting a phase lag between production and export. The highest transfer efficiencies, i.e. the fraction of POC that reached 400m, were driven by sinking particles ballasted by calcite or lithogenic minerals.The regional variation of mesopelagic remineralization was attributed to changes in bloom intensity, phytoplankton cell size, community structure and physical forcing (downwelling). Carbon remineralization balanced, or even exceeded, POC export, highlighting the impact of mesopelagic remineralization on the biological pump with a near-zero, deep carbon sequestration for spring 2014.Export of trace metals appeared strongly influenced by lithogenic material advected from the margins. However, at open ocean stations not influenced by lithogenic matter, trace metal export rather depended on phytoplankton activity and biomass.A last part of this work focused on export of biogenic silica, particulate nitrogen and iron near the Kerguelen Island. This area is characterized by a natural iron-fertilization that increases export fluxes. Inside the fertilized area, flux variability is related to phytoplankton community composition
Truong, Van Vinh. "Carbon stocks and fluxes in tropical mangrove (Southern Vietnam)". Thesis, Nouvelle Calédonie, 2018. http://www.theses.fr/2018NCAL0002.
Texto completoMangrove forests significantly contribute to energy flow, nutrient and carbon cycling in the coastal ocean, being a sink for atmospheric CO2. Mangroves forests are highly productive and store high amount of carbon both in their soils and in their biomass. During leaf litter decomposition, nutrients and carbon can be recycled or exported to adjacent ecosystems by the tidal action. Can Gio mangrove, degraded by the spraying of defoliants during the Vietnam War, successfully recovered through replantation and natural regeneration after 40 years. To date, the Can Gio mangrove forest is the largest contiguous mangrove forest in Vietnam, and became the first Mangrove Biosphere Reserve in this country. The main objective of this PhD thesis was to characterize carbon cycling within the Can Gio mangrove forest, which is a tropical one.The results of this PhD thesis allowed to: - Develop allometric equations and to estimate the aboveground biomass of Rhizophora apiculata Blume planted mangroves forest in Southern Vietnam; - Calculate the total carbon stocks in different mangrove stands developing under the tropical climate of Southern Vietnam; - Characterize the leaf litter decomposition rates, and assess nutrients and trace metals dynamics during litter decay processes, as well as the evolution of δ13C during decay; - Determine the seasonal variability CO2 fluxes at different interfaces: soil-air, water-air and trunk-air, and to characterize CO2 concentrations profiles in the canopy
Rasera, Maria de Fatima Fernandes Lamy. "O papel das emissões de CO2 para a atmosfera, em rios da bacia do Ji-Paraná(RO), no ciclo regional do carbono". Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/64/64135/tde-31072006-083532/.
Texto completoThe major biogeochemical role of river systems in the global carbon cycle is considered to be the fluvial export of total organic carbon (TOC) and dissolved inorganic carbon (DIC) to the ocean. However, recent studies have shown the importance of CO2 outgassing from rivers of the Amazon, suggesting that a significant part of the carbon fixed by forests returns to the atmosphere through this pathway. Gas exchange between the atmosphere and river waters supersaturated in CO2 is a function of gaseous gradients across the air-water interface. Water pCO2 is strongly influenced by concentrations of dissolved inorganic carbon (DIC) and pH, which are, in turn, a function of physical, chemical and biological processes. This study focus on the importance of CO2 outgassing in the carbon cycle of drainage basins, assuming that river systems are significant sources of atmospheric C in tropical environments, and also on the influence of DIC concentrations and the pH on CO2 evasion. The study area was the Ji-Paraná river basin, Rondônia. Several rivers of the basin were sampled between May/99 and May/03. Temperature, pH and DIC concentrations were used do calculate pCO2, based on thermodynamic equilibrium equations. A theoretical diffusive flux model was used to estimate CO2 evasion. The results show that rivers draining areas with more fertile soils present larger concentrations of DIC and of potential CO2 evasion. In spite of the pCO2 seasonality, the concentrations of dissolved CO2 suggest that this CO2 exchange with the atmosphere is unilateral (evasion to the atmosphere) throughtout the year. During high waters, even with lower DIC concentrations, decreases in pH are of a magnitude enough to promote higher potential evasions; in this period evasion is around four times higher than in the falling water. Based on a diffusion model, CO2 evasion to the atmosphere from rivers of Ji-Paraná basin was estimated to be from 128 to 318 Gg C yr-1. Since the annual export in fluvial discharge is 370 Gg C yr-1, this means that evasion is on the same order of magnitude, demonstrating the importance of this pathway in the carbon cycle of riverine systems in the Amazon.
Lutfalla, Suzanne. "Persistance à long terme des matières organiques dans les sols : caractérisation chimique et contrôle minéralogique". Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLA008/document.
Texto completoSoils store three times more carbon than the atmosphere, under the form of a complex mixture of molecules called soil organic matter (SOM). Some of these molecules have been standing in the soil for hundreds to thousands of years. Three main mechanisms are invoked to explain this long term carbon persistence in soils, (i) chemical recalcitrance, (ii) physical protection in aggregates and (iii) protection by adsorption on mineral surfaces. One of the major challenges in SOM science is to better understand the relative importance of each mechanism, that is the aim of this PhD project. Here, we use samples from by long term bare fallows (5 sites across Europe). These experimental plots have been kept free of vegetation by manual or chemical weeding for several decades and have been regularly sampled and stored. As the duration of the bare fallow increases, biodegradation occurs and samples get enriched in persistent carbon.First experiments consisted in testing the efficiency of chemical oxidations (two reagent were tested, sodium hypochlorite –NaOCl- and hydrogen peroxide –H2O2) on the longest bare fallow. We concluded that oxidation methods were not able to efficiently isolate a pool of persistent carbon at the centennial timescale. In terms of mechanisms of persistence, the obtained results show that chemical recalcitrance does not seem to be the major mechanism. Indeed, over the duration of the bare fallow, the chemical composition of SOM, as seen by synchrotron based NEXAFS spectroscopy, shows little changes. There is a consistent increase in carboxylics for all sites (12% increase on average) though it is significant for 2 out of the 4 selected sites. We also studied the particular persistence of soil pyrogenic carbon, which is thought to be at least five times more persistent than bulk SOM. Results show that pyrogenic carbon lacks long term persistence. Indeed the BPCA-estimated mean residence time of pyrogenic carbon (116 years) is on average 1.6 times longer than MRT for bulk SOM (73 years). Finally, the study of mineralogical control of the persistence of SOC showed that clay minerals containing potassium (illite) seemed to protect less carbon. As seen by NEXAFS-STXM, more mineral surfaces with very little SOM appear with the duration of bare fallow. C:N ratio decreased in all clay fractions, suggesting a preferential persistence of N-rich compounds. Presence of microaggregates in the coarser clay fraction led to the coexistence of two protection mechanisms: adsorption and physical protection
Piccoli, Francesca. "High-pressure carbonation : a petrological and geochemical study of carbonated metasomatic rocks from Alpine Corsica". Electronic Thesis or Diss., Paris 6, 2017. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2017PA066448.pdf.
Texto completoThe balance between the carbon input in subduction zone, mainly by carbonate mineral-bearing rock subduction, and the output of CO2 to the atmosphere by volcanic and metamorphic degassing is critical to the carbon cycle. At fore arc-subarc conditions (75-100 km), carbon is thought to be released from the subducting rocks by devolatilization reactions and by fluid-induced dissolution of carbonate minerals. All together, devolatilization, dissolution, coupled with other processes like decarbonation melting and diapirism, are thought to be responsible for the complete transfer of the subducted carbon into the crust and lithospheric mantle during subduction metamorphism. Carbon-bearing fluids will form after devolatilization and dissolution reactions. The percolation of these fluids through the slab- and mantle-forming rocks is not only critical to carbon cycling, but also for non-volatile element mass transfer, slab and mantle RedOx conditions, as well as slab- and mantle-rock rheology. The evolution of such fluids through interactions with rocks at high-pressure conditions is, however, poorly constrained. This study focuses on the petrological, geochemical and isotopic characteristic of carbonated-metasomatic rocks from the lawsonite-eclogite unit in Alpine Corsica (France). The study rocks are found along major, inherited lithospheric lithological boundaries of the subducted oceanic-to-transitional plate and can inform on the evolution of carbon-bearing high-pressure fluids during subduction. In this work, it will be demonstrated that the interaction of carbon-bearing fluids with slab lithologies can lead to high-pressure carbonation (modeled conditions: 2 to 2.3 GPa and 490-530°C), characterized by silicate dissolution and Ca-carbonate mineral precipitation. A detailed petrological and geochemical characterization of selected samples, coupled with oxygen, carbon and strontium, neodymium isotopic systematic will be used to infer composition and multi-source origin of the fluids involved. Geochemical fluid-rock interactions will be quantified by mass balance and time-integrated fluid fluxes estimations. This study highlights the importance of carbonate-bearing fluids decompressing along down-T paths, such as along slab-parallel lithological boundaries, for the sequestration of carbon in subduction zones. Moreover, rock-carbonation by fluid-rock interactions may have an important impact on the residence time of carbon and oxygen in subduction zones and lithospheric mantle reservoirs as well as carbonate isotopic signatures in subduction zones. Lastly, carbonation may modulate the emission of CO2 at volcanic arcs over geological time scales
Plazzotta, Maxime. "Impacts de la gestion du rayonnement solaire sur le système Terre et rôle des boucles de rétroaction liées au cycle du carbone". Phd thesis, Toulouse, INPT, 2018. http://oatao.univ-toulouse.fr/24034/1/Plazzotta_1.pdf.
Texto completoMariotti, Véronique. "Le cycle du carbone en climat glaciaire : état moyen et variabilité". Versailles-St Quentin en Yvelines, 2013. http://www.theses.fr/2013VERS0071.
Texto completoAtmospheric CO2 variations, of around 100 ppm, between glacial and interglacial climates, and 14C variations, are not well understood. This is also the case for the 20 ppm variations of CO2 associated to abrupts events at glacial times. Combining both models and data, I have shown (1) that the sinking of brines mechanism - pockets of salt rejected by sea-ice formation - around Antarctica, likely able to explain glacial-interglacial CO2 variations according to previous studies, could also explain the 14C, (2) that an oscillation of this mechanism could also induce the 20 ppm variations of CO2, during abrupt events, (3) that marine productivity was correctly simulated on the glacial-interglacial time scale and during abrupts events and (4) that for both kinds of variations, it had a limited role on CO2
Hervé, Pauline. "Fonctionnement écologique des mares forestières temporaires naturelles et restaurées : Décomposition de la matière organique et relations interspécifiques". Thesis, Tours, 2018. http://www.theses.fr/2018TOUR1802/document.
Texto completoVernal pools are small freshwater wetlands, subject to strong degradations. The functioning of natural and restored vernal pools was studied, based on organic matter (OM) decomposition rates and the facilitation effect of a vascular plant (Molinia caerulea, purple-moor grass) on Sphagnum growth (Sphagnum palustre). The rates of OM decomposition in water were not different between natural and restored pools, but they were influenced by soil organic carbon content, tree canopy openness and Sphagnum cover. In the soil of the pool-forest transition zone, these rates were reduced by water logging and by a Molinia-Sphagnum cover. The presence of Molinia decreased Sphagnum growth, suggesting a competition relationship. The results of this study contribute to the restoration ecology of vernal pools and raise the question of their fate in the climate change context
Ibrahim, Hatem. "Modélisation des cycles C et N dans les systèmes sols-céréales-légumineuses". Thesis, Montpellier, SupAgro, 2013. http://www.theses.fr/2013NSAM0022/document.
Texto completoAt the interface of soil-plant-atmosphere exchanges, the top layer of soil contains the largest part of organic carbon (Corg) and nitrogen (N) potentially available for plant growth; this soil layer plays a fundamental role in nutrition and equilibrium of earth.In Tunisians soils, a first quantification of N, following that of Corg, has allowed us to highlight the fragility of the reserves, and the need of conservation managements of lands and improvement of agricultural practices.Many studies of literature data try to model the changes of Corg and N stocks due to land use changes. However, most of the published references concern overall trends at medium or longer term (several years to several decades) and lack of precision in mechanistic prediction of daily transfers between plants, soil compartments and the atmosphere. Conjointly with other authors we think that the published studies do not take sufficient account of the crucial role of microorganisms in the exchange modelling. This directed us to the MOMOS model centered on the functional ecology of microbial biomass (MB), with parameters for growth, mortality and respiration of MB, closely related to climate, soil conditions and the quality of organic inputs.Our objective was to study the Corg and N cycles during a cropping season in complex cereal-legume systems for intensification by symbiotic N fixation in the Mediterranean environment. It included two challenges: (i) to couple the equations of decomposition with a model of soil water and modules of quantitative and qualitative vegetal production toward a new tool for agro-ecology and the global change (ii) to run this tool in Mediterranean calcareous conditions, with equations proposed and validated in tropical acid areas.The agronomic experiment included an intercropping of durum wheat and faba bean compared with pure cropping both managed in organic farming without any fertilizer addition during the last thirteen years. The model predicted ecophysiological parameters in accordance with published references and simulated accurately the measured data. Plant growth and the microbial functioning appear linked to the same climate equations and co-limited by temperature in winter and availability of water in summer. In these unfertile plots, the largest part of Corg photo-synthesized was modelled as allocated to roots and lost for the aerial parts and grain yields. These losses were simulated mainly (i) to increase root respiration of cereal, probably as energy source for root growth in order to find nutrients, and (ii) to increase the mortality of legume roots as energy source for the growth of decomposers and perhaps the growth of symbiotes for fixation of atmospheric N. Overall, the intercropping system was modeled as a sink of over 4 Mg ha-1 of Corg during the growing season, but only in the compartment labile of microbial origin. This compartment was also simulated as the main reserve of N potentially available for living organisms, much higher than N stock of microorganisms, which is itself higher than N stored in the cereal and similar to N stored in the legume. The modeling of microbial exchange with inorganic N showed a net immobilization of N just compensated by the symbiotic fixation. It helped to better understand the flows of Corg and N between atmosphere, legume, microorganisms and cereal, and to propose solutions for improving agricultural cropping systems in combination or rotation
Hennequin, Salomé. "Étude des couplages entre l'évolution géologique des cycles biogéochimiques, du climat, et de la biodiversité océanique". Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30197.
Texto completoThe main objective of this thesis is to understand the co-evolution of biogeochemical cycles, climate and ocean biodiversity at the geological time scale through numerical modeling. Currently numerical models simulating the geological evolution of climate and long-term geochemical cycles simulate the oceanic primary bioproductivity, this component being either forced by the inversion of the delta(13)C signal measured on sedimentary carbonates, or modelled in a totally deterministic way by making it only dependent on the available nutrient fluxes. It therefore appears impossible to compare the geochemical evolution of the atmosphere and oceans (e.g. CO2, delta(13)C) with the evolution of its biodiversity (fossil record). In order to contribute to the filling of this gap between paleontological data and numerical biogeochemical-climate models, an ecological module is introduced in the GEOCLIM model. It allows the calculation of productivity and individual biomass for a prescribed number of primary producers, primary and secondary consumers and predators. The random selection of some of the parameters used in this calculation allows the creation of a unique assembly of groups for each simulation. The simulations were carried out in a dynamic way across the Permian-Trias boundary, with the massive degassing of CO2 linked to the onset of the Siberian large igneous province. The temperature sensitivity of the different assemblages of primary producers leads to a variety of responses to the perturbation, in the intensity of the extinction rates, of the excursion in delta(13)C and of the variation in primary bioproductivity. Among the full set of simulations, primary bioproductivity can either increase or decrease in response to global warming, despite a significant loss of biodiversity for all simulations. The response of primary producer groups amplifies or reduces the magnitude of global warming. The biomass of the groups in the upper trophic levels evolves according to the biomass of the primary producers at the base of the trophic chain. Despite limited comparisons with geological data, the ecological module coupled with GEOCLIM has made possible the investigation of the feedbacks between the evolution of biodiversity and the evolution of the carbon cycle and climate over geological time scales
Huff, Timothy A. "Fluid inclusion evidence for metamorphic fluid evolution in the Black Hills, South Dakota /". free to MU campus, to others for purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p1421144.
Texto completoTounsi, Khoudhir. "Le cycle du carbone dans l'Océan atlantique tropical". Toulouse 3, 1990. http://www.theses.fr/1990TOU30233.
Texto completoLabbe, Espéret Christiane. "Modélisation et conceptualisation : l'exemple du cycle du carbone". La Réunion, 2002. http://elgebar.univ-reunion.fr/login?url=http://thesesenligne.univ.run/02_07_Labbe_Esp.pdf.
Texto completoCachier-Rivault, Hélène. "Approche isotopique du cycle atmosphérique du carbone particulaire". Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb376035474.
Texto completoTerrats, Louis. "Le flux de carbone particulaire et le lien avec la communauté phytoplanctonique : une approche par flotteurs-profileurs biogéochimiques". Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS550.pdf.
Texto completoThe ocean plays a key role in the climate by exchanging large quantities of carbon with the atmosphere. Atmospheric carbon is fixed at the ocean surface by phytoplankton that transforms it into biogenic carbon, part of which is transported to the deep ocean by physical and biological mechanisms; this is the Biological Carbon Pump (BCP). A tiny fraction of this biogenic carbon reaches sufficient depths to be sequestered for several centuries before it returns to the atmosphere, thus regulating concentrations of atmospheric CO2. Today, we know enough about the BCP to recognize its importance in climate, but our knowledge of its functioning is limited due to insufficient sampling of biogenic carbon fluxes. Here, we used BioGeoChimical-Argo floats, observational platforms designed to solve the undersampling problem, to explore a major mechanism of the BCP called the gravitational pump. The gravitational pump is the transport of biogenic carbon in the form of organic particles (POC) that sink from the surface into the deep ocean. Our study of the gravitational pump is divided into three axes. The first axis consisted of developing a method to detect blooms of coccolithophores, a major phytoplankton group that potentially has an important control on the transport of POC at depth. The second axis focused on the seasonal and regional variability of POC fluxes in the Southern Ocean, an undersampled area in which several floats have been deployed with an optical sediment trap (OST). Only ten floats were equipped with an OST, which is low compared to the whole BGC-Argo fleet (i.e. several hundred floats). Therefore, in the third axis, we developed a method to estimate the POC flux with the standard sensors of BGC-Argo floats. This method was then applied to hundreds of floats to describe the seasonal variability of the POC flux in many regions. In this study, we also highlighted the link between the POC flux and the nature of surface particles. For example, we calculated relationships between phytoplankton community composition and POC flux at 1000m. Using these relationships, we then used satellite observations to extrapolate POC flux to large spatial scales, such as the entire Southern Ocean and the global ocean
Coulis, Mathieu. "Effets des changements climatiques sur l’activité des organismes du sol et la décomposition des litières en milieu méditerranéen". Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20252.
Texto completoWater availability is a major limiting factor for the functioning of Mediterranean ecosystems. More pronounced drought could severely impact soil fauna activity and diversity that could in turn affect litter decomposition and nutrient cycling. In my PhD thesis I investigated experimentally the interactions between changing water availability and detritivorous macrofauna on decomposition and associated processes in a “garrigue”, a typical Mediterranean woody shrub dominated ecosystem.In the first part of my thesis, I studied the impact of Ommatoiulus sabulosus, an abundant diplopod species in garrigue ecosystems, on shrub litter decomposition. During a one month experiment, I studied the direct (litter consumption) and indirect (microbial activity in feces) effects of this detritivore on litter mass loss and microbial communities under two contrasted moisture levels. In a different experiment, I placed litterbags filled with litter or feces in the field at the soil surface or at 5cm soil depth during one year in order to study the long term impact of Ommatoiulus on decomposition. A key result was that detritivores maintain litter consumption in dry conditions when microbial driven decomposition drastically dropped. However, this detritivore effect do not lead to an overall increased organic matter mineralization irrespective of moisture conditions, at least in the short term. In contrast, under field conditions and over a longer time period, Ommatoiulus increases decomposition of certain species such as Quercus coccifera, since feces from this species decomposes faster than un-ingested litter after one year at the soil surface. This stimulation is likely due to a higher leaching of soluble compound in feces. Moreover, in depth feces decomposition increases relative to that of intact leaf litter, possibly indicating that more favorable soil humidity is more favorable to decomposition. Collectively, my results suggest that detritivores can strongly increase decomposition by transforming leaf litter into feces of different organic matter quality, and by facilitating the transfer of organic matter into the soil.In the second part, I evaluated the importance of functional dissimilarity of leaf litter and detritivores on decomposition processes. Using a trait based approach, species assemblages were constructed in order to obtain a gradient of functional dissimilarity of both, leaf litter and detritivore communities, while keeping species numbers constant. The different communities were kept under controlled conditions at the European Ecotron in Montpellier to study the effect of changing functional dissimilarity on process rates at two different moisture conditions. I found that detritivore and litter functional dissimilarity explain up to 20 % of the observed variation for several key soil processes including litter mass loss and the leaching of dissolved organic carbon and nitrogen from top soil. However, effects of species identity at both trophic levels have a larger impact on process rates than functional dissimilarity. In general, drought strongly affects soil processes but does not alter the diversity-function relationship. Species assemblages resulting in highest process rates at favorable moisture level are also the most negatively affected by drought, suggesting a tradeoff between the efficiency of soil organisms and their ability to resist perturbation
Gasser, Thomas. "Attribution régionalisée des causes anthropiques du changement climatique". Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066543/document.
Texto completoThis PhD thesis deals with the Brazilian Proposal, that is the assessment of national contributions to anthropogenic climate change. To answer the Proposal, we have developed a compact Earth system model, named OSCAR v2.1. The carbon cycle (CO2, CH4), the atmospheric chemistry of greenhouse gases (CH4, N2O, O3, halogenated compounds), as well as aerosols and climate dynamics are included in this model. It is driven by anthropogenic emissions of active compounds, and by land-use changes. After acknowledging the ability of the model to reproduce past observations of the main climatic variables, and after exposing the fundamental principles of attribution exercises, we attribute climate change to its anthropogenic causes. We find that the climate feedback -- over both the carbon cycle and the atmospheric chemistry -- has a prominent effect that exacerbates the relative importance of each anthropogenic forcing. In decreasing order, emissions of fossil carbon dioxide, of sulfur dioxide, of methane, and land-use changes, are found to be the most important contributors to climate change in 2008. Through these forcings, the so-called developing countries are now contributing more to climate change than the so-called developed countries. It is however still the contrary on a per capita basis; but we show that such an accounting approach makes it impossible to reach equity within a less-than-two-degree warming trajectory
Casas, Ruiz Joan Pere. "Controls on the dynamics of riverine dissolved organic matter: insights from a Mediterranean river network". Doctoral thesis, Universitat de Girona, 2017. http://hdl.handle.net/10803/404280.
Texto completoLa matèria orgànica dissolta (DOM) constitueix la major reserva de carboni orgànic en els sistemes fluvials, on també hi juga un paper clau com a font d'energia i modulador de la disponibilitat de substàncies tòxiques. En aquesta tesi, Joan P. Cases-Ruiz i col•laboradors pretenen identificar els controls de processament DOM, i entendre com la combinació de reaccions in situ i canvis en les fonts de DOM modulen les dinàmiques de la DOM fluvial. Per tal d'assolir-ho, es van evaluar la quantitat i composició de la DOM en una xarxa fluvial al llarg d'un any hidrològic complet. Els resultats recopilats en aquesta tesi assenyalen el temps de residència de l'aigua com el principal regulador de processament de la DOM, mentre que les propietats intrínsiques de la DOM, així com la disponibilitat de nutrients determinen el balanç net de degradació i producció de la DOM. Una anàlisi a escala de xarxa fluvial identifica un patró de concentració i diversitat química de la DOM amb màxims en els rius de mida mitjana. En base a aquests resultats, aquesta tesi proposa un marc conceptual per comprendre i predir les dinàmiques espacials i temporals de la DOM fluvial
Zhang, Yuan. "Impacts of anthropogenic aerosols on the terrestrial carbon cycle". Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS123.pdf.
Texto completoAnthropogenic atmospheric aerosols have been recognized to have significantly affected the climate system through their interactions with radiation and cloud during the last decades. Besides these well-known butpoorly-understood physical processes in the atmosphere, recent studies reported strong influences of aerosols on the carbon cycle, especially its terrestrial component. The changes in carbon cycle will further alter the climate through the climate-carbon feedback. It remains uncertain how much anthropogenic aerosols perturb the land carbon cycle. This thesis aims to quantify and attribute the impacts of anthropogenic aerosols on the terrestrial cycle using a modeling approach. In Chapter 2, a set of offline simulations using the ORCHIDEE land surface model driven by climate fields from different CMIP5 generation climate models were performed to investigate the impacts of anthropogenic aerosols on the land C cycle through their impacts on climate. The results indicate an increased cumulative land C sink of 11.6-41.8 PgC during 1850-2005 due to anthropogenic aerosols. The increase in net biome production (NBP) is mainly found in the tropics and northern mid latitudes. Aerosol-induced cooling is the main factor driving this NBP changes. At high latitudes, aerosol-induced cooling caused a stronger decrease in gross primary production (GPP) than in total ecosystem respiration (TER), leading to lower NBP. At mid latitudes, cooling‐induced decrease in TER is stronger than for GPP, resulting in a net NBP increase. At low latitudes, NBP was also enhanced due to the cooling‐induced GPP increase, but regional precipitation decline in response to anthropogenic aerosol emissions may negate the effect of temperature. As climate models currently disagree on how aerosol emissions affect tropical precipitation, the precipitation change in response to aerosols becomes the main source of uncertainty in aerosol-caused C flux changes. The results suggest that better understanding and simulation of how anthropogenic aerosols affect precipitation in climate models is required for a more accurate attribution of aerosol effects on the terrestrial carbon cycle
Alasamaq, Suzanne. "Carbon cycle : capture and activation of carbon dioxide using hydrotalcites". Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3867/.
Texto completoZhu, Dan. "Modeling terrestrial carbon cycle during the Last Glacial Maximum". Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLV077.
Texto completoDuring the repeated glacialinterglacialtransitions, there has been aconsistent and partly abrupt increase of nearly 100 ppm in atmospheric CO2, indicating majorredistributions among the carbon reservoirs of land, ocean and atmosphere. A comprehensive explanation of the carbon fluxes associated with the transitions is still missing, requiring a better understanding of the potential carbon stock in terrestrial biosphere during the glacial period. In this thesis, I aimed to improve the understanding of terrestrial carbon stocks andcarbon cycle during the Last Glacial Maximum (LGM, about 21,000 years ago), through a series of model developments to improve there presentation of vegetation dynamics, permafrost soil carbon dynamics, and interactions between large herbivores andvegetation in the ORCHIDEE-MICT land surface model. For the first part, I improved the parameterization of vegetation dynamics in ORCHIDEE-MICT for the northern mid- to high-latitude regions, which was evaluated against present-day observation-based datasets of land cover, gross primary production, and forest biomass. Significant improvements were shown for the new model version in the distribution of plant functional types (PFTs),including a more realistic simulation of the northern tree limit and of the distribution of evergreen and deciduous conifers in the borealzone. The revised model was then applied t osimulate vegetation distribution during the LGM, showing a general agreement with the point-scale reconstructions based on pollen and plant macrofossil data. Among permafrost (perennially frozen) soils, the thick, ice-rich and organic-rich silty sediments called yedoma deposits hold large quantities of organic carbon, which are remnants of late-Pleistocene carbon accumulated under glacial climates. In order to simulate the buildup of the thick frozen carbonin yedoma deposits, I implemented a sedimentation parameterization in the soilcarbon module of ORCHIDEE-MICT. The inclusion of sedimentation allowed the model to reproduce the vertical distribution of carbon observed at the yedoma sites, leading to several-fold increase in total carbon. Simulated permafrost soil carbon stock during the LGMwas ~1550 PgC, among which 390~446 PgC within today’s known yedoma region (1.3million km2). This result was still an underestimation since the potentially larger area of yedoma during the LGM than today was not yet taken into account. For the third part, in light of the growing evidence on the ecological impacts of large animals, and the potential role of mega herbivores as a driving force that maintained the steppe ecosystems during the glacial periods, I incorporated a dynamic grazing model in ORCHIDEE-MICT, based on physiological equations for energy intake and expenditure, reproduction rate, and mortality rate for wild large grazers. The model showed reasonable results of today’s grazer biomass compared to empirical data in protected areas,and was able to produce an extensive biome with a dominant vegetation of grass and a substantial distribution of large grazers duringthe LGM. The effects of large grazers on vegetation and carbon cycle were discussed, including reducing tree cover, enhancing grassland productivity, and increasing the turnover rate of vegetation living biomass. Lastly, I presented a preliminary estimation ofpotential LGM permafrost carbon stock, after accounting for the effects of large grazers, as well as extrapolations for the spatial extent of yedoma-like thick sediments based on climaticand topographic features that are similar to the known yedoma region. Since these results were derived under LGM climate and constant sedimentation rate, a more realistic simulation would need to consider transient climate during the last glacial period and sedimentation rate variations in the next step
Fôch-Gatrell, Siân. "Nanophytoplankton physiology and the carbon cycle". Thesis, University of East Anglia, 2015. https://ueaeprints.uea.ac.uk/59615/.
Texto completoPeluci, Marina Conte. "Dinâmica do carbono e nitrogênio ao longo de uma sequência cronológica de florestas secundárias na bacia do rio Corumbataí". Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/64/64135/tde-18052018-101901/.
Texto completoChanges in soil use, such as the removal of forest areas for the implantation of agriculture and livestock, promote changes in soil organic matter content. Due to this imbalance between the inputs and outputs of plant material in the system the MOS dynamics will be changed, affecting the ecosystem as a whole. On the other hand, natural regeneration appears as a possibility for the partial reestablishment of important ecological functions, with emphasis on the role of secondary forests in the reduction of the flow of atmospheric gases, the influence of water quality and quantity, and sequestration of carbon from the atmosphere and storage in the soil. The objective of this work was to evaluate the behavior of carbon and nitrogen in the soil along the chronological sequence of secondary forests, comparing them with old growth forest and pastures in Rio Claro (SP). Fifteen plots with 900 m2 each were selected using aerial images (from 1978, 1995, 2000 and 2008), which consisted of a temporal sequence of regenerated secondary forests under pasture (8 to 16 years old (FS12) 21 to 38 years old (FS30) and 38 to 54 years old (FS46)), as well as an old growth forest (seasonal semideciduous forest) with more than 55 years (FF) and pasture in use for more than 50 years (PA50). The soil of the study area is classified as Argissolo. with medium texture. The concentrations and stocks of carbon (C) and nitrogen (N) and the isotopic values of C (?13C) were analyzed in the litter and in the layers of 0-10, 10-20 and 20-30 cm of the soil. The analysis of ?13C indicated the presence of the isotopic signal from C3 vegetation already in the first 12 years of regeneration, representing 60% of the C present in the soil (coming from FF and FS12). In the pasture area, the remaining carbon of the native forest (C3) was observed, corresponding to 30% of the total carbon. The principal components analysis defined the groupings according to the study areas, in addition to negatively correlating the carbon and nitrogen stocks and the sand contents. Secondary forests presented carbon and nitrogen stocks in the litter approximate to the old growth forest (1,8 Mg C ha-1 and 0,10 Mg N ha-1). C and N stocks in the soil (0-30 cm) were higher in the old growth forest (74,1 Mg C ha-1 and 7,6 Mg N ha-1), with an abrupt reduction (40%) in conversion to pasture (41,4 Mg C ha-1 and 4,7 Mg N ha-1). In addition, the regeneration areas did not differ from the pasture area for carbon and nitrogen stocks in the soil
Launois, Thomas. "Modélisation de la composition isotopique des cernes d'arbres (13C et 18O) et des transferts de COS entre l'atmosphère et la biosphère continentale pour quantifier les flux bruts de carbone". Thesis, Versailles-St Quentin en Yvelines, 2014. http://www.theses.fr/2014VERS0039/document.
Texto completoIn the context of global climate change, the behavior of the terrestrial biosphere can be durably affected by the increased frequency and intensity of extreme climatic events, which can decrease the photosynthetic assimilation of carbon and/or increase the respiration rate of the ecosystems. Therefore, quantifying the carbon storage capacity of the ecosystems and predicting their sensitivity to climate changes strongly rely on our capacity to separately estimate the photosynthesis and respiration rates at different scales. The gross primary productivity (GPP) is however not directly measurable. Indirect approaches have been proposed to estimate the biospheric gross fluxes (GPP and respiration), combining for instance stable isotopologues of CO2 (13C and 18O), and, more recently, the measure of carbonyl sulfide (COS) concentrations in the atmosphere. In this context, my PhD work followed two complementary approaches. In the first approach, isotopic measurements and tree-ring widths were used, because both of them are linked to the photosynthetic activity. The inter-annual variations of the photosynthetic fluxes simulated with the ORCHIDEE continental biosphere model were evaluated and compared with in situ measurements. The second approach consisted in using atmospheric measurements of OCS concentrations and in exploring their potential to constrain the current estimates of the GPP in dynamic global vegetation models (DGVM), by (1) establishing a new global budget of sources and sinks of this gas, (2) optimizing the source and sink terms of this cycle and (3) estimating the potential of this new tracer to validate/invalidate the simulated GPP when using current DGVMs
Meilland, Julie. "Rôle des foraminifères planctoniques dans le cycle du carbone marin des hautes latitudes (Océan Indien Austral)". Thesis, Angers, 2015. http://www.theses.fr/2015ANGE0059/document.
Texto completoPlanktonic foraminifera contribute to the marine biological carbon pump by generating organic (cytoplasm) and inorganic (shell) carbon fluxes. In this study, we characterized LPF total abundances, assemblages and test morphometry (minimum diameter) along 19 stations sampled by stratified plankton net (Multinet), during three consecutive austral summers (2012-2014) in the Southern Indian Ocean (30°S-60°S, 50°E-80°E). By demonstrating the efficiency of CPR for LPF sampling, we analysed population dynamic between 19 multinet sampling stations, showing the effect of frontal position on LPF production. To better constrain the impact of those organisms in the biological carbon pump at high latitudes, we have quantified the individual protein-biomass and test calcite mass of more than 2000 LPF. Differences in size-normalized protein-biomass and in size-normalized weight between years, species, and water bodies suggest that environmental parameters affect the production of planktonic foraminifera organic and inorganic carbon to varying degrees. Consequently, planktonic foraminifera are assumed to affect the biological carbon pump, depending on ecological conditions and biological prerequisites. The applicability of planktonic foraminifera tests as proxy of the past biological carbon pump in high latitudes would hence critically depend on the effect exerted by changing in ecological conditions, and the presence of different species. This study proposes a first estimation of planktonic foraminifera Corg and Cinorg standing stock and fluxes in the Southern Indian Ocean
Qiu, Chunjing. "Modélisation de la dynamique du carbone et des surfaces dans les tourbières du nord". Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLV022.
Texto completoNorthern peatlands play an important role in the global carbon (C) cycle as a long-term CO2 sink and the one of the largest natural methane (CH4) sources. Meanwhile, these substantial carbon stores will be exposed in the future to large warming and wetter conditions that characterize climate change in the high latitudes and, because of the large amount of C stored in northern peatlands, their fate is of concern. In this thesis, I integrated a representation of peatlands water and carbon cycling into the ORCHIDEE-MICT land surface model (LSM), with the aim to improve the understanding of peatland C and area dynamics since the Holocene, to explore effects of projected climate change to northern peatlands, and to quantify the role of northern peatlands in the global C cycle.Firstly (Chapter 2), I implemented peatland as an independent sub-grid hydrological soil unit (HSU) which receives runoff from surrounding non-peatland HSUs in each grid cell and has no bottom drainage, following the concept of Largeron et al. (2018). To model vertical water fluxes of peatland and non-peatland soils, I represented peat-specific hydrological parameters for the peatland HSU while in other HSUs the hydrological parameters are determined by the dominant soil texture of the grid cell. I chose a diplotelmic model to simulate peat C decomposition and accumulation. This two-layered model includes an upper layer (acrotelm) that is variably inundated and a lower layer (catotelm) that is permanently inundated. This model showed good performance in simulating peatland hydrology, C and energy fluxes at 30 northern peatland sites on daily to annual time scales. But the over simplification of the C dynamics may limit its capacity to predict northern peatland response to future climate change.Secondly (Chapter 3), I replaced the diplotelmic peat carbon model with a multi-layered model to account for vertical heterogeneities in temperature and moisture along the peat profile. I then adapted the cost-efficient version of TOPMODEL and peatland establishment criteria from Stocker et al. (2014) to simulate the dynamics of peatland area within a grid cell. Here the flooded area given by TOPMODEL is crossed with suitable peat growing conditions to set the area that is occupied by a peat HSU. This model was tested across a range of northern peatland sites and for gridded simulations over the Northern Hemisphere (>30 °N). Simulated total northern peatlands area and C stock by 2010 is 3.9 million km2 and 463 PgC, fall well within observation-based reported range of northern peatlands area (3.4 – 4.0 million km2) and C stock (270 – 540 PgC).Lastly (Chapter 4), with the multi-layered model, I conducted factorial simulations using representative concentration pathway (RCP)-driven bias-corrected past and future climate data from two general circulation models (GCMs) to explore responses of northern peatlands to climate change. The impacts of peatlands on future C balance of the Northern Hemisphere were discussed, including the direct response of the C balance of the (simulated) extant peatland area, and indirect effects of peatlands on the terrestrial C balance when peatlands area change in the future.Future work will focus on including influences of land use change and fires on peatland into the model, given that substantial losses of C could occur due to these disturbances. To have a complete picture of peatland C balance, CH4 and dissolved organic C (DOC) losses must be considered
Bouttes, Nathaëlle. "L’évolution du cycle du carbone au cours du Quaternaire". Paris 6, 2010. http://www.theses.fr/2010PA066376.
Texto completoZhu, Dan. "Modeling terrestrial carbon cycle during the Last Glacial Maximum". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLV077.
Texto completoDuring the repeated glacialinterglacialtransitions, there has been aconsistent and partly abrupt increase of nearly100 ppm in atmospheric CO2, indicating majorredistributions among the carbon reservoirs ofland, ocean and atmosphere. A comprehensiveexplanation of the carbon fluxes associatedwith the transitions is still missing, requiring abetter understanding of the potential carbonstock in terrestrial biosphere during the glacialperiod. In this thesis, I aimed to improve theunderstanding of terrestrial carbon stocks andcarbon cycle during the Last Glacial Maximum(LGM, about 21,000 years ago), through aseries of model developments to improve therepresentation of vegetation dynamics,permafrost soil carbon dynamics, andinteractions between large herbivores andvegetation in the ORCHIDEE-MICT landsurface model.For the first part, I improved theparameterization of vegetation dynamics inORCHIDEE-MICT for the northern mid- tohigh-latitude regions, which was evaluatedagainst present-day observation-based datasetsof land cover, gross primary production, andforest biomass. Significant improvements wereshown for the new model version in thedistribution of plant functional types (PFTs),including a more realistic simulation of thenorthern tree limit and of the distribution ofevergreen and deciduous conifers in the borealzone. The revised model was then applied tosimulate vegetation distribution during theLGM, showing a general agreement with thepoint-scale reconstructions based on pollen andplant macrofossil data.Among permafrost (perennially frozen) soils,the thick, ice-rich and organic-rich siltysediments called yedoma deposits hold largequantities of organic carbon, which areremnants of late-Pleistocene carbonaccumulated under glacial climates. In order tosimulate the buildup of the thick frozen carbonin yedoma deposits, I implemented asedimentation parameterization in the soilcarbon module of ORCHIDEE-MICT. Theinclusion of sedimentation allowed the modelto reproduce the vertical distribution of carbonobserved at the yedoma sites, leading toseveral-fold increase in total carbon. Simulatedpermafrost soil carbon stock during the LGMwas ~1550 PgC, among which 390~446 PgCwithin today’s known yedoma region (1.3million km2). This result was still anunderestimation since the potentially largerarea of yedoma during the LGM than todaywas not yet taken into account.For the third part, in light of the growingevidence on the ecological impacts of largeanimals, and the potential role of megaherbivoresas a driving force that maintainedthe steppe ecosystems during the glacialperiods, I incorporated a dynamic grazingmodel in ORCHIDEE-MICT, based onphysiological equations for energy intake andexpenditure, reproduction rate, and mortalityrate for wild large grazers. The model showedreasonable results of today’s grazer biomasscompared to empirical data in protected areas,and was able to produce an extensive biomewith a dominant vegetation of grass and asubstantial distribution of large grazers duringthe LGM. The effects of large grazers onvegetation and carbon cycle were discussed,including reducing tree cover, enhancinggrassland productivity, and increasing theturnover rate of vegetation living biomass.Lastly, I presented a preliminary estimation ofpotential LGM permafrost carbon stock, afteraccounting for the effects of large grazers, aswell as extrapolations for the spatial extent ofyedoma-like thick sediments based on climaticand topographic features that are similar to theknown yedoma region. Since these results werederived under LGM climate and constantsedimentation rate, a more realistic simulationwould need to consider transient climate duringthe last glacial period and sedimentation ratevariations in the next step
Racapé, Virginie. "Étude de la distribution du δ13CDIC dans l’océan et évaluation de la composante anthropique du CO2". Paris 6, 2013. http://www.theses.fr/2013PA066791.
Texto completoThe isotopic composition of dissolved inorganic carbon (δ13CDIC) in the ocean is a useful semi-conservative tracer of the carbon cycle to study the anthropogenic CO2 component and paleo-circulation. The mean annual large scale distribution of this tracer is now relatively well documented in surface and at depth, but the temporal variability still needs to be completed. Based on new observations collected since the end of 90s until 2012, this study describes and interprets the seasonal, interannual to decadal variability of the δ13CDIC in three oceanic regions: the North-Atlantic subpolar gyre (NASPG), the gulf of Guinea and the Southwestern and Southern Indian Ocean. In the surface waters of these regions, the δ13CDIC seasonal amplitude varies from 0‰ to 1‰ and depends on the local balance between the biological activity and the ocean dynamics. Negligible in the short-term, the air-sea CO2 exchange includes a large anthropogenic contribution that changes the δ13CDIC in the long term, but could be masked (Indian ocean) or increased (NASPG) by the natural variability. For the global carbon budget, the decrease in δ13CDIC due to the anthropogenic carbon (Cant) uptake in the surface ocean, the so-called oceanic 13C Suess effect, provides additional information to better discriminate the natural variability from the anthropogenic signal. Based on the extended multi-linear regression (eMLR), the oceanic 13C Suess effect and the anthropogenic DIC changes have been estimated together in key regions for the Cant storage: the NASPG and the Southwestern Indian Ocean. These results revealed an anthropogenic change around -0. 013‰ (µmol kg-1)-1 in NASPG, which attests to the low renewal of the Labrador sea-water since the beginning of 90s. In the Indian Ocean, the anthropogenic carbon change, around -0. 021‰ (µmol kg-1)-1, highlights a steady residence time of surface waters. These results are compared to NEMO-PISCES model of IPSL. The δ13CDIC seasonal cycle is under-estimated 2 or 3 times by the model but the anthropogenic signal evaluation is comparable to the direct estimations obtained by this study
Lemmel, Florian. "Diversités taxonomique et fonctionnelle des communautés microbiennes en lien avec le cycle du carbone dans un gradient de sols multi-contaminés". Thesis, Université de Lorraine, 2019. http://www.theses.fr/2019LORR0004.
Texto completoThe iron and steel activities of the last century have left behind multi-contaminated brownfields. This multi-pollution must have led to an adaptation of microbial communities, potentially impacting their diversities and ultimately the soil functioning. In this context, the objectives of my PhD thesis were: i) to study the taxonomic diversity of microbial communities, but also their functional diversity in relation to the carbon cycle, ii) to identify the possible relationships between these two diversities and (iii) to understand the impact of soil characteristics and pollution on communities. In this way, a collection of ten multi-contaminated soils, with both polycyclic aromatic hydrocarbons (PAH) and metallic trace elements (MTE) gradients, was studied. The bacterial and fungal taxonomic diversities were obtained using Illumina MiSeq sequencing and the metabolic functional diversity was estimated through Biolog® and MicroResp™ assays. The degradation of two model carbon substrates, namely 13C-labeled phenanthrene (PHE) and 13C-labeled cellulose (CEL), was also analyzed using Stable Isotope Probing technique, which, by identifying the microorganisms involved in the substrate degradation, allows to link function with taxonomic diversity. Overall, by selecting microorganisms, the contamination level positively and negatively modulated the relative abundance of different bacterial and fungal taxa. Unlike PAH, MTE induced a decrease of metabolic functional diversity, but also a greater zinc tolerance. The functional potential of PAH degradation was positively correlated with the PAH concentration in soils, while the PHE and CEL degradation functions were present in all soils, irrespective of their contamination level. Degradation rates of these compounds were positively correlated with microbial abundance and richness, but not linked to soil pollution. In addition, the PHE degradation rate was explained by the relative abundances of the Massilia and Mycobacterium genera, identified among the active PHE-degrading bacteria. In conclusion, we observed a decrease in the degradation intensity of several carbon compounds, or even the total disappearance of various functions, suggesting a potential dysfunction of carbon cycle in some of the most polluted soils
Berthonneau, Clément. "Etude de la dégradation du cycle A de stéroïdes". Nantes, 2014. https://archive.bu.univ-nantes.fr/pollux/show/show?id=29099bb0-bb3d-4eb1-bdcf-254fc539d1c2.
Texto completoThis thesis presents a contribution to the development of a fast, efficient and scalable synthesis of steroids containing three carbon 13 atoms. Our strategy is based on two key-steps : ring A degradation of l,4-androstadien-3,17-dione or of 4-androsten-3,17-dione into a keto-aldehyde precursor, and then, ring A reconstruction from this latter intermediate with a three carbon 13 labeled Wittig reagent. Two original approaches were developed for the synthesis of the key keto-aldehyde intermediate, either by a one-pot multi-step process involving an ozonolysis reaction, or through a pallado- catalyzed decarbonylation. This methodology was successfully applied for the gram-scale synthesis of several steroids containing three carbon 13 atoms. As a general remark, this work provides an effective solution to this issue in relation to the existing syntheses found in scientific literature
Daza, Yolanda Andreina. "Closing a Synthetic Carbon Cycle: Carbon Dioxide Conversion to Carbon Monoxide for Liquid Fuels Synthesis". Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6079.
Texto completoHalloran, Paul R. "Rapid changes in the global carbon cycle". Thesis, University of Oxford, 2008. http://ora.ox.ac.uk/objects/uuid:cfb93401-3313-4948-a74b-e7e44a068f15.
Texto completoFollett, Christopher L. "Heterogeneous reservoirs in the marine carbon cycle". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/90666.
Texto completo122
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 149-158).
Understanding the fate of primary production in the ocean is a challenging task because once produced, organic material is oxidized over timescales which range from minutes, to millions of years. This timescale diversity is matched by an equal heterogeneity in both the local physical and chemical environment. In this thesis we explore the relationship between the distinct reservoirs of organic carbon in the ocean and their underlying complexity. First, we show how the heterogeneity of portions of the carbon cycle can be packaged in terms of age structured models and their accompanying age and rate distributions. We further relate the moments of the rate distributions to bulk reservoir properties like average age and flux. Explicit relationships are then derived for the specific case of a single turnover time and a lognormal distribution. We apply these ideas to the problem of dissolved organic carbon (DOC) cycling in the ocean. Current models of bulk concentration and isotope data suggest a microbially sourced DOC reservoir consisting of two components. A nearly homogeneous background component with a long turnover time (> 6000 years) is joined by a component of fast turnover time (~ 1 year) and equal concentration in the surface ocean. We confirm the presence of isotopically enriched, modern DOC co-cycling with an isotopically depleted older fraction in the upper ocean. However, our results show that up to 30% of the deep DOC reservoir is modern and supported by a 1 Pg per year carbon flux, ten times higher than inferred from bulk isotope measurements. Isotopically depleted material turns over at an apparent time scale of 30, 000 years, far slower than indicated by bulk isotope measurements. These results are consistent with global DOC measurements and explain both the fluctuations in deep DOC concentration and the anomalous radiocarbon values of DOC in the Southern Ocean. Finally, the thesis explores methods for determining the validity of diffusion limitation as the mechanism behind the power-law slowdown in organic remineralization in sediment. We find that diffusion limitation connects the decay behavior of organic material to the correlations found between mineral surface area and organic matter content in sediments.
by Christopher L. Follett.
Ph. D.
Bellerby, Richard Garth James. "Seawater pH and the oceanic carbon cycle". Thesis, University of Plymouth, 1994. http://hdl.handle.net/10026.1/2089.
Texto completoMurray-Tortarolo, Guillermo Nicolas. "Recent trends in the land carbon cycle". Thesis, University of Exeter, 2015. http://hdl.handle.net/10871/18661.
Texto completo