Literatura académica sobre el tema "Cycle de carbone"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Cycle de carbone".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Cycle de carbone"
Bailly, Sean. "Un cycle en pur carbone". Pour la Science N° 504 - octobre, n.º 10 (10 de enero de 2019): 9b. http://dx.doi.org/10.3917/pls.504.0009b.
Texto completoFriedlingstein, Pierre, Laurent BOPP y Patricia CADULE. "Changement climatique et cycle du carbone". La Météorologie 8, n.º 58 (2007): 21. http://dx.doi.org/10.4267/2042/18204.
Texto completoBard, Édouard y Richard Sempéré. "Le cycle du carbone dans l’océan". La lettre du Collège de France, n.º 40 (2 de septiembre de 2015): 38–39. http://dx.doi.org/10.4000/lettre-cdf.2102.
Texto completoSchlamadinger, Bernhard, Lorenza Canella, Gregg Marland y Josef Spitzer. "Bioenergy strategies and the global carbon cycle. / Stratégies bioénergétiques et cycle global du carbone". Sciences Géologiques. Bulletin 50, n.º 1 (1997): 157–82. http://dx.doi.org/10.3406/sgeol.1997.1951.
Texto completoJonas, KOALA, KAGAMBEGA O. Raymond y SANOU Lassina. "Distribution des stocks de carbone du sol et de la biomasse racinaire dans un parc agroforestier à Prosopis africana (Guill., et Rich.) Taub au Burkina Faso, Afrique de l’Ouest". Journal of Applied Biosciences 160 (30 de abril de 2021): 16482–94. http://dx.doi.org/10.35759/jabs.160.5.
Texto completoViovy, Nicolas y Nathalie de Noblet. "Coupling water and carbon cycle in the biosphere. / Couplage du cycle de l'eau et du carbone dans la biosphère". Sciences Géologiques. Bulletin 50, n.º 1 (1997): 109–21. http://dx.doi.org/10.3406/sgeol.1997.1948.
Texto completoMavouroulou Quentin, Moundounga, Ngomanda Alfred y Lepengue Nicaise Alexis. "Etat des Lieux des Incertitudes Liées à l’Estimation de la Biomasse des Arbres (Revue Bibliographique)". European Scientific Journal, ESJ 19, n.º 6 (28 de febrero de 2023): 60. http://dx.doi.org/10.19044/esj.2023.v19n6p60.
Texto completoSéférian, Roland, Matthias Rocher, Nicolas Metzl y Philippe Ciais. "Évolution récente du cycle du carbone planétaire : facteurs humains et naturels". La Météorologie 8, n.º 93 (2016): 3. http://dx.doi.org/10.4267/2042/59931.
Texto completoDOLLÉ, J. B., J. AGABRIEL, J. L. PEYRAUD, P. FAVERDIN, V. MANNEVILLE, C. RAISON, A. GAC y A. LE GALL. "Les gaz à effet de serre en élevage bovin : évaluation et leviers d'action". INRAE Productions Animales 24, n.º 5 (8 de diciembre de 2011): 415–32. http://dx.doi.org/10.20870/productions-animales.2011.24.5.3275.
Texto completoVincent, Julia, Béatrice Colin, Isabelle Lanneluc, Philippe Refait, René Sabot, Marc Jeannin y Sophie Sablé. "La biocalcification bactérienne en milieu marin et ses applications". Matériaux & Techniques 110, n.º 6 (2022): 606. http://dx.doi.org/10.1051/mattech/2023004.
Texto completoTesis sobre el tema "Cycle de carbone"
Cachier-Rivault, Hélène. "Approche isotopique du cycle atmospherique du carbone particulaire". Paris 7, 1987. http://www.theses.fr/1987PA077061.
Texto completoBarral, Cuesta Abel. "The carbon isotope composition of the fossil conifer Frenelopsis as a proxy for reconstructing Cretaceous atmospheric CO2". Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1148.
Texto completoThe Cretaceous was a period characterized by strongly marked climate change and major carbon cycle instability. Atmospheric CO2 has repeatedly been pointed out as a major agent involved in these changing conditions during the period. However, long-term trends in CO2 described for the Cretaceous are not consistent with those of temperature and the large disturbance events of the carbon cycle described for the period. This raises a double question of whether descriptions of the long-term evolution of atmospheric CO2 made so far are accurate or, if so, atmospheric CO2 was actually a major driver of carbon cycle and climate dynamics as usually stated. In this thesis the close relationship between the carbon isotope composition of plants and atmospheric CO2 is used to address this question. Based on its ecological significance, distribution, morphological features and its excellent preservation, the fossil conifer genus Frenelopsis is proposed as a new plant proxy for climate reconstructions during the Cretaceous. The capacity of carbon isotope compositions of Frenelopsis leaves (d13Cleaf) to reconstruct past atmospheric CO2, with regards to both carbon isotope composition (d13CCO2) and concentration (pCO2), is tested based on materials coming from twelve Cretaceous episodes. To provide a framework to test the capacity of d13Cleaf to reconstruct d13CCO2 and allowing for climate estimates from carbon isotope discrimination by plants (?13Cleaf), a new d13CCO2 curve for the Cretaceous based on carbon isotope compositions of marine carbonates has been constructed. Comparison with d13Cleaf-based d13CCO2 estimates reveals that although d13CCO2 and d13Cleaf values follow consistent trends, models developed so far to estimate d13CCO2 from d13Cleaf tend to exaggerate d13CCO2 trends because of assuming a linear relationship between both values. However, given the hyperbolic relationship between ?13Cleaf and pCO2, by considering an independently-estimated correction factor for pCO2 for a given episode, d13Cleaf values may be a valuable proxy for d13CCO2 reconstructions. ?13Cleaf estimates obtained from d13CCO2 and d13Cleaf values were used to reconstruct the long-term evolution of pCO2. The magnitude of estimated pCO2 values is in accordance with that of the most recent and relevant model- and proxy-based pCO2 reconstructions. However, these new results evidence long-term drawdowns of pCO2 for Cretaceous time intervals in which temperature maxima have been described
Piccoli, Francesca. "High-pressure carbonation : a petrological and geochemical study of carbonated metasomatic rocks from Alpine Corsica". Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066448/document.
Texto completoThe balance between the carbon input in subduction zone, mainly by carbonate mineral-bearing rock subduction, and the output of CO2 to the atmosphere by volcanic and metamorphic degassing is critical to the carbon cycle. At fore arc-subarc conditions (75-100 km), carbon is thought to be released from the subducting rocks by devolatilization reactions and by fluid-induced dissolution of carbonate minerals. All together, devolatilization, dissolution, coupled with other processes like decarbonation melting and diapirism, are thought to be responsible for the complete transfer of the subducted carbon into the crust and lithospheric mantle during subduction metamorphism. Carbon-bearing fluids will form after devolatilization and dissolution reactions. The percolation of these fluids through the slab- and mantle-forming rocks is not only critical to carbon cycling, but also for non-volatile element mass transfer, slab and mantle RedOx conditions, as well as slab- and mantle-rock rheology. The evolution of such fluids through interactions with rocks at high-pressure conditions is, however, poorly constrained. This study focuses on the petrological, geochemical and isotopic characteristic of carbonated-metasomatic rocks from the lawsonite-eclogite unit in Alpine Corsica (France). The study rocks are found along major, inherited lithospheric lithological boundaries of the subducted oceanic-to-transitional plate and can inform on the evolution of carbon-bearing high-pressure fluids during subduction. In this work, it will be demonstrated that the interaction of carbon-bearing fluids with slab lithologies can lead to high-pressure carbonation (modeled conditions: 2 to 2.3 GPa and 490-530°C), characterized by silicate dissolution and Ca-carbonate mineral precipitation. A detailed petrological and geochemical characterization of selected samples, coupled with oxygen, carbon and strontium, neodymium isotopic systematic will be used to infer composition and multi-source origin of the fluids involved. Geochemical fluid-rock interactions will be quantified by mass balance and time-integrated fluid fluxes estimations. This study highlights the importance of carbonate-bearing fluids decompressing along down-T paths, such as along slab-parallel lithological boundaries, for the sequestration of carbon in subduction zones. Moreover, rock-carbonation by fluid-rock interactions may have an important impact on the residence time of carbon and oxygen in subduction zones and lithospheric mantle reservoirs as well as carbonate isotopic signatures in subduction zones. Lastly, carbonation may modulate the emission of CO2 at volcanic arcs over geological time scales
Tounsi, Khoudhir. "Le cycle du carbone dans l'Océan atlantique tropical". Toulouse 3, 1990. http://www.theses.fr/1990TOU30233.
Texto completoLabbe, Espéret Christiane. "Modélisation et conceptualisation : l'exemple du cycle du carbone". La Réunion, 2002. http://elgebar.univ-reunion.fr/login?url=http://thesesenligne.univ.run/02_07_Labbe_Esp.pdf.
Texto completoCachier-Rivault, Hélène. "Approche isotopique du cycle atmosphérique du carbone particulaire". Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb376035474.
Texto completoMaffre, Pierre. "Interactions entre tectonique, érosion, altération des roches silicatées et climat à l'échelle des temps géologiques : rôle des chaînes de montagnes". Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30287.
Texto completoThis thesis explores how orogenies may affect the Earth climate through the quantification of the interactions between climate dynamics, continental erosion, silicate rock weathering rate and geological carbon cycle. The first chapter describes the mechanisms linking the continental topography and its impacts on the atmospheric and oceanic circulations, with emphasis on the thermohaline circulation. The second chapter compares the effects on continental weatherability of climate dynamics and erosional changes related to the presence of mountains. The third chapter describes a dynamic model of regolith designed for global scale simulations, and describes its transient behavior, as well as its response to a CO2 degassing. Finally, the last chapter presents a numerical model of the continental isotopic cycle of lithium, so that its reliability as a proxy of the past weathering can be tested. The model explores the case study of the Amazon lithium cycle
Mariotti, Véronique. "Le cycle du carbone en climat glaciaire : état moyen et variabilité". Versailles-St Quentin en Yvelines, 2013. http://www.theses.fr/2013VERS0071.
Texto completoAtmospheric CO2 variations, of around 100 ppm, between glacial and interglacial climates, and 14C variations, are not well understood. This is also the case for the 20 ppm variations of CO2 associated to abrupts events at glacial times. Combining both models and data, I have shown (1) that the sinking of brines mechanism - pockets of salt rejected by sea-ice formation - around Antarctica, likely able to explain glacial-interglacial CO2 variations according to previous studies, could also explain the 14C, (2) that an oscillation of this mechanism could also induce the 20 ppm variations of CO2, during abrupt events, (3) that marine productivity was correctly simulated on the glacial-interglacial time scale and during abrupts events and (4) that for both kinds of variations, it had a limited role on CO2
Leloup, Gaëlle. "Le climat du prochain million d'années : quels scénarios pour le futur ?" Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASJ001.
Texto completoWhile many studies focus on the impacts of anthropogenic greenhouse gas on climate on the timescale of the next century, very few have investigated the impacts on a longer timescale, from tens of millennia to a million years. However, due to the long lifetime of CO2 in Earth's surface reservoirs, current anthropogenic emissions are expected to impact the climate on a much longer timescale than the coming century.The objective of this thesis is to broaden the scope of existing studies on the climate of the next million years, by revisiting some of their classical hypotheses. Existing studies rarely consider a partial or total melt of the Antarctic ice sheet, and assume that atmospheric CO2 concentrations come back to pre-industrial levels after hundreds of thousands years, due to silicate weathering.In this study, we explore potential evolutions of the Antarctic ice sheet.More precisely, I have investigated the long term equilibrium of the Antarctic ice sheet under different CO2 levels, using the Earth System model of intermediate complexity iLOVECLIM, coupled to the GRISLI Antarctic ice sheet model, by first applying increasing CO2 levels until the Antarctic ice sheet retreats entirely, and then applying decreasing CO2 levels until the ice sheet regrows. Our results show that the ice sheet exhibits a strong hysteresis behavior. Due to the inclusion of the albedo-melt feedback in our setup, the transition between a glaciated Antarctic ice sheet and an ice-free Antarctic and conversely is more brutal than in previous studies not including this feedback. The CO2 threshold for both Antarctic glaciation and deglaciation varies with the orbital configuration.Additionally, I have developed a conceptual model for the geological carbon cycle that includes multiple equilibria in order to reproduce multi million year cycles in the d13C that are coherent with the data. These potential multiple equilibria in the carbon cycle could lead to a widely different atmospheric CO2 concentration evolution on long timescales, compared to existing studies.Finally, we discuss the implications of our results on a potential end of the Quaternary in the future, with a disappearance of Northern Hemisphere glaciations, but also a disappearance of the Antarctic ice sheet
Bouttes, Nathaëlle. "L’évolution du cycle du carbone au cours du Quaternaire". Paris 6, 2010. http://www.theses.fr/2010PA066376.
Texto completoLibros sobre el tema "Cycle de carbone"
R, Trabalka John, Reichle David E y Oak Ridge National Laboratory Life Sciences Symposium (6th : 1983 : Knoxville, Tenn.), eds. The Changing carbon cycle: A global analysis. New York: Springer-Verlag, 1986.
Buscar texto completo1958-, Kurz Werner Alexander, Canada-British Columbia Partnership Agreement on Forest Resource Development: FRDA II., Canadian Forest Service y British Columbia. Ministry of Forests., eds. The carbon budget of British Columbia's forests, 1920-1989: Preliminary analysis and recommendations for refinements. Victoria, B.C: Canadian Forest Service, 1996.
Buscar texto completoJ, Baines Shelagh y Worden Richard H, eds. Geological storage of carbon dioxide. London: Geological Society, 2004.
Buscar texto completoSmil, Vaclav. Carbon nitrogen sulfur: Human interference in grand biospheric cycles. New York: Plenum Press, 1985.
Buscar texto completoInternational Boreal Forest Research Association. Conference. The role of boreal forests and forestry in the global carbon budget: Proceedings. Editado por Shaw Cindy 1956-, Apps Michael J y Northern Forestry Centre (Canada). Edmonton: Canadian Forest Service, Northern Forestry Centre, 2002.
Buscar texto completoSmyth, C. E. Decreasing uncertainty in CBM-CFS3 estimates of forest soil carbon sources and sinks through use of long-term data from the Canadian Intersite Decomposition Experiment. Victoria, B.C: Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 2010.
Buscar texto completoInstitute, World Resources, ed. Minding the carbon store: Weighing U.S. forestry strategies to slow global warming. Washington, D.C: World Resources Institute, 1991.
Buscar texto completoL, Gholz Henry, Linder Sune y McMurtrie R. E, eds. Environmental constraints on the structure and productivity of pine forest ecosystems: A comparative analysis. Copenhagen, Denmark: Munksgaard International, 1994.
Buscar texto completo1965-, McPherson Brian J. y Sundquist E. T, eds. Carbon sequestration and its role in the global carbon cycle. Washington, DC: American Geophysical Union, 2009.
Buscar texto completo1965-, McPherson Brian J. y Sundquist E. T, eds. Carbon sequestration and its role in the global carbon cycle. Washington, DC: American Geophysical Union, 2009.
Buscar texto completoCapítulos de libros sobre el tema "Cycle de carbone"
Canuel, Elizabeth A. y Amber K. Hardison. "Carbon Cycle". En Encyclopedia of Earth Sciences Series, 1–4. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39193-9_175-1.
Texto completoCanuel, Elizabeth A. y Amber K. Hardison. "Carbon Cycle". En Encyclopedia of Earth Sciences Series, 191–94. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_175.
Texto completoGooch, Jan W. "Carbon Cycle". En Encyclopedic Dictionary of Polymers, 880. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_13315.
Texto completoReitner, Joachim y Volker Thiel. "Carbon Cycle". En Encyclopedia of Geobiology, 238. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-1-4020-9212-1_47.
Texto completoReineke, Walter y Michael Schlömann. "Carbon Cycle". En Environmental Microbiology, 71–126. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-66547-3_4.
Texto completoSpellman, Frank R. "Carbon Cycle". En The Science of Carbon Sequestration and Capture, 38–53. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003432838-3.
Texto completoBush, Martin J. "The Carbon Cycle". En Climate Change and Renewable Energy, 109–41. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15424-0_3.
Texto completoGoudriaan, J. "Global Carbon Cycle". En Climate Change and Rice, 207–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-85193-3_20.
Texto completoEllis-Evans, J. Cynan. "Carbon Cycle, Biological". En Encyclopedia of Astrobiology, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_82-3.
Texto completoEllis-Evans, J. Cynan. "Carbon Cycle, Biological". En Encyclopedia of Astrobiology, 364–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_82.
Texto completoActas de conferencias sobre el tema "Cycle de carbone"
Laakso, Thomas A. y Daniel P. Schrag. "METHANOTROPHY, AUTHIGENIC CARBONATE, AND THE NEOPROTEROZOIC CARBON CYCLE". En GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-307472.
Texto completoWilson, Siobhan, Maria L. Arizaleta, Bree Morgan, Chad A. Burton, Nina Zeyen, Maija J. Raudsepp, Ian M. Power y Timothy Williams. "SMECTITE–CARBONATE–MICROBE INTERACTIONS IN THE CARBON CYCLE". En GSA Connects 2022 meeting in Denver, Colorado. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022am-383974.
Texto completoZietlow, Douglas. "Synthetic Coal Cycle Technology™ : A Novel Carbon Utilization Technology". En Carbon Management Technology Conference. Carbon Management Technology Conference, 2015. http://dx.doi.org/10.7122/440179-ms.
Texto completoSanchez-Valle, Carmen, Xenia Ritter y Malcolm Massuyeau. "Mobility of carbonate-rich melts within the deep carbon cycle". En Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.12086.
Texto completoRobson, Wishart, Terry Killian y Robert Siveter. "Life-Cycle Greenhouse Gas Emissions of Transportation Fuels: Issues and Implications for Unconventional Fuel Sources". En Carbon Management Technology Conference. Carbon Management Technology Conference, 2012. http://dx.doi.org/10.7122/151326-ms.
Texto completoChacartegui, R., D. Sa´nchez, F. Jime´nez-Espadafor, A. Mun˜oz y T. Sa´nchez. "Analysis of Intermediate Temperature Combined Cycles With a Carbon Dioxide Topping Cycle". En ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-51053.
Texto completoReitberger, Roland, Farzan Banihashemi y Werner Lang. "Sensitivity and Uncertainty Analysis of Combined Building Energy Simulation and Life Cycle Assessment, Implications for the Early Urban Design Process". En CAADRIA 2022: Post-Carbon. CAADRIA, 2022. http://dx.doi.org/10.52842/conf.caadria.2022.2.629.
Texto completoVesely, Ladislav y Vaclav Dostal. "Effect of Multicomponent Mixtures on Cycles With Supercritical Carbon Dioxide". En ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-64044.
Texto completoGkountas, Apostolos A., Anastassios M. Stamatelos y Anestis I. Kalfas. "Thermodynamic Modeling and Comparative Analysis of Supercritical Carbon Dioxide Brayton Cycle". En ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-63990.
Texto completoMcClung, Aaron, Klaus Brun y Jacob Delimont. "Comparison of Supercritical Carbon Dioxide Cycles for Oxy-Combustion". En ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42523.
Texto completoInformes sobre el tema "Cycle de carbone"
Schwinger, Jörg. Report on modifications of ocean carbon cycle feedbacks under ocean alkalinization. OceanNETs, junio de 2022. http://dx.doi.org/10.3289/oceannets_d4.2.
Texto completoDiane Wickland. Carbon Cycle Interagency Working Group. Office of Scientific and Technical Information (OSTI), julio de 2003. http://dx.doi.org/10.2172/909700.
Texto completoTrabalka, J. Atmospheric carbon dioxide and the global carbon cycle. Office of Scientific and Technical Information (OSTI), diciembre de 1985. http://dx.doi.org/10.2172/6048470.
Texto completoCooper, J. F., N. Cherepy, R. Upadhye, A. Pasternak y M. Steinberg. Direct Carbon Conversion: Review of Production and Electrochemical Conversion of Reactive Carbons, Economics and Potential Impact on the Carbon Cycle. Office of Scientific and Technical Information (OSTI), diciembre de 2000. http://dx.doi.org/10.2172/15007473.
Texto completoBruhwiler, L., A. M. Michalak, R. Birdsey, D. N. Huntzinger, J. B. Fisher y J. Miller. Chapter 1: Overview of the Global Carbon Cycle. Second State of the Carbon Cycle Report. Editado por R. A. Houghton, N. Cavallaro, G. Shrestha, R. Birdsey, M. A. Mayes, R. Najjar, S. Reed, P. Romero-Lankao y Z. Zhu. U.S. Global Change Research Program, 2018. http://dx.doi.org/10.7930/soccr2.2018.ch1.
Texto completoDouglas, Thomas A., Christopher A. Hiemstra, Miriam C. Jones y Jeffrey R. Arnold. Sources and Sinks of Carbon in Boreal Ecosystems of Interior Alaska : A Review. U.S. Army Engineer Research and Development Center, julio de 2021. http://dx.doi.org/10.21079/11681/41163.
Texto completoBorenstein, Severin. Markets for Anthropogenic Carbon Within the Larger Carbon Cycle. Cambridge, MA: National Bureau of Economic Research, junio de 2010. http://dx.doi.org/10.3386/w16104.
Texto completoMoisseytsev, A. y J. J. Sienicki. Supercritical carbon dioxide cycle control analysis. Office of Scientific and Technical Information (OSTI), abril de 2011. http://dx.doi.org/10.2172/1011299.
Texto completoHuntzinger, D. N., A. Chatterjee, D. Moore, S. Ohrel, T. O. West, B. Poulter, A. Walker et al. Chapter 19: Future of the North American Carbon Cycle. Second State of the Carbon Cycle Report. Editado por R. Birdsey, M. A. Mayes, R. Najjar, S. Reed, P. Romero-Lankao y Z. Zhu. U.S. Global Change Research Program, 2018. http://dx.doi.org/10.7930/soccr2.2018.ch19.
Texto completoWest, T. O., N. Gurwick, M. E. Brown, R. Duren, S. Mooney, K. Paustian, E. McGlynn et al. Chapter 18: Carbon Cycle Science in Support of Decision Making. Second State of the Carbon Cycle Report. Editado por N. Cavallaro, G. Shrestha, R. Birdsey, M. A. Mayes, R. Najjar, S. Reed, P. Romero-Lankao y Z. Zhu. U.S. Global Change Research Program, 2018. http://dx.doi.org/10.7930/soccr2.2018.ch18.
Texto completo