Literatura académica sobre el tema "Curvature bounds"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Curvature bounds".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Curvature bounds"
Bessa, Gregório P., Luquésio P. Jorge, Barnabé P. Lima y José F. Montenegro. "Fundamental tone estimates for elliptic operators in divergence form and geometric applications". Anais da Academia Brasileira de Ciências 78, n.º 3 (septiembre de 2006): 391–404. http://dx.doi.org/10.1590/s0001-37652006000300001.
Texto completoPeters, Jörg y Georg Umlauf. "Computing curvature bounds for bounded curvature subdivision". Computer Aided Geometric Design 18, n.º 5 (junio de 2001): 455–61. http://dx.doi.org/10.1016/s0167-8396(01)00041-3.
Texto completoSabatini, Luca. "Estimates of the Laplacian Spectrum and Bounds of Topological Invariants for Riemannian Manifolds with Boundary II". Analele Universitatii "Ovidius" Constanta - Seria Matematica 28, n.º 1 (1 de marzo de 2020): 165–79. http://dx.doi.org/10.2478/auom-2020-0012.
Texto completoFrenck, Georg y Jan-Bernhard Kordaß. "Spaces of positive intermediate curvature metrics". Geometriae Dedicata 214, n.º 1 (23 de junio de 2021): 767–800. http://dx.doi.org/10.1007/s10711-021-00635-w.
Texto completoErbar, Matthias y Martin Huesmann. "Curvature bounds for configuration spaces". Calculus of Variations and Partial Differential Equations 54, n.º 1 (19 de noviembre de 2014): 397–430. http://dx.doi.org/10.1007/s00526-014-0790-1.
Texto completoLytchak, Alexander y Stephan Stadler. "Improvements of upper curvature bounds". Transactions of the American Mathematical Society 373, n.º 10 (5 de agosto de 2020): 7153–66. http://dx.doi.org/10.1090/tran/8123.
Texto completoKapovitch, Vitali. "Curvature bounds via Ricci smoothing". Illinois Journal of Mathematics 49, n.º 1 (enero de 2005): 259–63. http://dx.doi.org/10.1215/ijm/1258138317.
Texto completoHu, Zisheng y Senlin Xu. "Bounds on the fundamental groups with integral curvature bound". Geometriae Dedicata 134, n.º 1 (19 de abril de 2008): 1–16. http://dx.doi.org/10.1007/s10711-008-9235-3.
Texto completoLott, John. "On scalar curvature lower bounds and scalar curvature measure". Advances in Mathematics 408 (octubre de 2022): 108612. http://dx.doi.org/10.1016/j.aim.2022.108612.
Texto completoWang, Xu-Jia, John Urbas y Weimin Sheng. "Interior curvature bounds for a class of curvature equations". Duke Mathematical Journal 123, n.º 2 (junio de 2004): 235–64. http://dx.doi.org/10.1215/s0012-7094-04-12321-8.
Texto completoTesis sobre el tema "Curvature bounds"
Rose, Christian. "Heat kernel estimates based on Ricci curvature integral bounds". Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-228681.
Texto completoJede Riemannsche Mannigfaltigkeit besitzt eine minimale Lösung für die Wärmeleitungsgleichung des zur Mannigfaltigkeit gehörigen Dirichlet-Laplaceoperators, den Wärmeleitungskern. Während der letzten Jahrzehnte fanden viele Autoren geometrische Eigenschaften der Mannigfaltigkeiten unter welchen der Wärmeleitungskern eine sogenannte Gaußsche obere Abschätzung besitzt. Insbesondere bestizen sowohl kompakte als auch nichtkompakte Mannigfaltigkeiten mit nach unten beschränkter Ricci-Krümmung solche Gaußschen Abschätzungen. Im kompakten Fall reichten bisher sogar Integralbedingungen an die Ricci-Krümmung aus. Die wichtigen Techniken, um Gaußsche Abschätzungen zu erhalten, sind die Symmetrisierung für kompakte Mannigfaltigkeiten und relative Faber-Krahn- und Gradientenabschätzungen für die Wärmeleitungsgleichung, wobei die ersten beiden auf isoperimetrischen Eigenschaften gewisser Mengen beruhen. In dieser Arbeit verallgemeinern wir die bestehenden Resultate im folgenden Sinne. Lokal gleichmäßig beschränkte Integralschranken an den Negativteil der Ricci-Krümmung ergeben Gaußsche obere Abschätzungen sowohl im kompakten als auch nichtkompakten Fall. Dafür zeigen wir lokale isoperimetrische Ungleichungen unter dieser Voraussetzung und nutzen die relativen Faber-Krahn-Abschätzungen für eine explizite Gaußsche Schranke. Für kompakte Mannigfaltigkeiten können wir sogar die Integralschranken an den Negativteil der Ricci-Krümmung durch die sogenannte Kato-Bedingung ersetzen. In diesem Fall erhalten wir gleichmäßige Gaußsche Abschätzungen mit einer Gradientenabschätzung. Neben den geometrischen Verallgemeinerungen für Gaußsche Schranken nutzen wir unsere Ergebnisse, um Bochners Theorem zu verallgemeinern. Wärmeleitungskernabschätzungen ergeben ultrakontraktive Schranken für die Wärmeleitungshalbgruppe und die Halbgruppe, die durch den Hodge-Operator erzeugt wird. Damit können wir Starrheitseigenschaften für die erste Kohomologiegruppe zeigen, wenn der Teil der Ricci-Krümmung, welcher unter einem positiven Level liegt, in einem bestimmten Sinne klein genug ist. Wenn der Negativteil der Ricci-Krümmung nicht zu groß ist, können wir die erste Betti-Zahl noch immer explizit uniform abschätzen
Gursky, Matthew J. "Compactness of Conformal Metrics with Integral Bounds on Curvature". Diss., Pasadena, Calif. : California Institute of Technology, 1991. http://resolver.caltech.edu/CaltechETD:etd-06192007-145905.
Texto completoZergänge, Norman [Verfasser]. "Convergence of Riemannian manifolds with critical curvature bounds / Norman Zergänge". Magdeburg : Universitätsbibliothek, 2017. http://d-nb.info/1141230488/34.
Texto completoRenesse, Max-K. von. "Comparison properties of diffusion semigroups on spaces with lower curvature bounds". Bonn : Mathematisches Institut der Universität Bonn, 2003. http://catalog.hathitrust.org/api/volumes/oclc/52348149.html.
Texto completoMroz, Kamil. "Bounds on eigenfunctions and spectral functions on manifolds of negative curvature". Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/15038.
Texto completoKetterer, Christian Eugen Michael [Verfasser]. "Ricci curvature bounds for warped products and cones / Christian Eugen Michael Ketterer". Bonn : Universitäts- und Landesbibliothek Bonn, 2014. http://d-nb.info/1238687571/34.
Texto completoRichardson, James. "Inradius bounds for stable, minimal surfaces in 3-manifolds with positive scalar curvature". Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/42368.
Texto completoCOLOMBO, GIULIO. "GLOBAL GRADIENT BOUNDS FOR SOLUTIONS OF PRESCRIBED MEAN CURVATURE EQUATIONS ON RIEMANNIAN MANIFOLDS". Doctoral thesis, Università degli Studi di Milano, 2021. http://hdl.handle.net/2434/813095.
Texto completoSchlichting, Arthur [Verfasser] y Miles [Akademischer Betreuer] Simon. "Smoothing singularities of Riemannian metrics while preserving lower curvature bounds / Arthur Schlichting. Betreuer: Miles Simon". Magdeburg : Universitätsbibliothek, 2014. http://d-nb.info/1054638039/34.
Texto completoRose, Christian [Verfasser], Peter [Akademischer Betreuer] Stollmann, Peter [Gutachter] Stollmann, Alexander [Gutachter] Grigor’yan y Gilles [Gutachter] Carron. "Heat kernel estimates based on Ricci curvature integral bounds / Christian Rose ; Gutachter: Peter Stollmann, Alexander Grigor’yan, Gilles Carron ; Betreuer: Peter Stollmann". Chemnitz : Universitätsbibliothek Chemnitz, 2017. http://d-nb.info/1214306705/34.
Texto completoLibros sobre el tema "Curvature bounds"
Degeneration of Riemannian Metrics under Ricci Curvature Bounds. Scuola Normale Superiore, 2001.
Buscar texto completoSogge, Christopher D. The sharp Weyl formula. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691160757.003.0003.
Texto completoGigli, Nicola. Nonsmooth Differential Geometry-An Approach Tailored for Spaces with Ricci Curvature Bounded from Below. American Mathematical Society, 2018.
Buscar texto completoLimebeer, D. J. N. y Matteo Massaro. Dynamics and Optimal Control of Road Vehicles. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198825715.001.0001.
Texto completoCapítulos de libros sobre el tema "Curvature bounds"
Utcke, Sven. "Error-Bounds on Curvature Estimation". En Scale Space Methods in Computer Vision, 657–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44935-3_46.
Texto completoKeller, Matthias. "Geometric and Spectral Consequences of Curvature Bounds on Tessellations". En Modern Approaches to Discrete Curvature, 175–209. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58002-9_6.
Texto completoLeBrun, Claude. "Four-Manifolds, Curvature Bounds, and Convex Geometry". En Riemannian Topology and Geometric Structures on Manifolds, 119–52. Boston, MA: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4743-8_6.
Texto completoVillani, Cédric. "Weak Ricci curvature bounds I: Definition and Stability". En Grundlehren der mathematischen Wissenschaften, 795–846. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-71050-9_29.
Texto completoVillani, Cédric. "Weak Ricci curvature bounds II: Geometric and analytic properties". En Grundlehren der mathematischen Wissenschaften, 847–901. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-71050-9_30.
Texto completoAnderson, Michael T. "Einstein Metrics and Metrics with Bounds on Ricci Curvature". En Proceedings of the International Congress of Mathematicians, 443–52. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9078-6_37.
Texto completoGraf, Melanie y Christina Sormani. "Lorentzian Area and Volume Estimates for Integral Mean Curvature Bounds". En Developments in Lorentzian Geometry, 105–28. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05379-5_7.
Texto completoMeeks, William y Joaquín Pérez. "Limits of embedded minimal surfaces without local area or curvature bounds". En A Survey on Classical Minimal Surface Theory, 53–72. Providence, Rhode Island: American Mathematical Society, 2012. http://dx.doi.org/10.1090/ulect/060/04.
Texto completoSolís-Daun, Julio. "Convexity + curvature: Tools for the global stabilization of nonlinear systems with control inputs subject to magnitude and rate bounds". En 2015 Proceedings of the Conference on Control and its Applications, 131–38. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2015. http://dx.doi.org/10.1137/1.9781611974072.19.
Texto completoBallmann, Werner, Mikhael Gromov y Viktor Schroeder. "Manifolds of bounded negative curvature". En Manifolds of Nonpositive Curvature, 110–19. Boston, MA: Birkhäuser Boston, 1985. http://dx.doi.org/10.1007/978-1-4684-9159-3_10.
Texto completoActas de conferencias sobre el tema "Curvature bounds"
LUCKHAUS, STEPHAN. "UNIFORM RECTIFIABILITY FROM MEAN CURVATURE BOUNDS". En Proceedings of the International Conference. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702050_0014.
Texto completoELIZALDE, E. y A. C. TORT. "ENTROPY BOUNDS FOR A MASSIVE SCALAR FIELD IN POSITIVE CURVATURE SPACE". En Proceedings of the MG10 Meeting held at Brazilian Center for Research in Physics (CBPF). World Scientific Publishing Company, 2006. http://dx.doi.org/10.1142/9789812704030_0303.
Texto completoAMBROSIO, LUIGI. "CALCULUS, HEAT FLOW AND CURVATURE-DIMENSION BOUNDS IN METRIC MEASURE SPACES". En International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0015.
Texto completoLiu, Yajing, Edwin K. P. Chong, Ali Pezeshki y Bill Moran. "Bounds for approximate dynamic programming based on string optimization and curvature". En 2014 IEEE 53rd Annual Conference on Decision and Control (CDC). IEEE, 2014. http://dx.doi.org/10.1109/cdc.2014.7040433.
Texto completoLiu, Yajing, Zhenliang Zhang, Edwin K. P. Chong y Ali Pezeshki. "Performance bounds for the k-batch greedy strategy in optimization problems with curvature". En 2016 American Control Conference (ACC). IEEE, 2016. http://dx.doi.org/10.1109/acc.2016.7526805.
Texto completoSgorbissa, A. y R. Zaccaria. "3D path following with no bounds on the path curvature through surface intersection". En 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010). IEEE, 2010. http://dx.doi.org/10.1109/iros.2010.5653235.
Texto completoRossetter, Eric J. y J. Christian Gerdes. "Safety Guarantees for Lanekeeping Assistance Systems With Time-Varying Disturbances: A Lyapunov Approach". En ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41851.
Texto completoCiavarella, M. y J. R. Barber. "Elastic Contact Stiffness and Contact Resistance for Fractal Profiles". En ASME/STLE 2004 International Joint Tribology Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/trib2004-64357.
Texto completoWidmann, James M. y Sheri D. Sheppard. "Intrinsic Geometry for Shape Optimal Design With Analysis Model Compatibility". En ASME 1994 Design Technical Conferences collocated with the ASME 1994 International Computers in Engineering Conference and Exhibition and the ASME 1994 8th Annual Database Symposium. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/detc1994-0137.
Texto completoZhang, Dongdong, Pinghai Yang y Xiaoping Qian. "Adaptive NC Path Generation From Massive Point Data With Bounded Error". En ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49626.
Texto completo