Artículos de revistas sobre el tema "CuGaS2"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: CuGaS2.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "CuGaS2".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Son, Namgyu, Jun Heo, Young-Sang Youn, Youngsoo Kim, Jeong Do y Misook Kang. "Enhancement of Hydrogen Productions by Accelerating Electron-Transfers of Sulfur Defects in the CuS@CuGaS2 Heterojunction Photocatalysts". Catalysts 9, n.º 1 (4 de enero de 2019): 41. http://dx.doi.org/10.3390/catal9010041.

Texto completo
Resumen
CuS and CuGaS2 heterojunction catalysts were used to improve hydrogen production performance by photo splitting of methanol aqueous solution in the visible region in this study. CuGaS2, which is a chalcogenide structure, can form structural defects to promote separation of electrons and holes and improve visible light absorbing ability. The optimum catalytic activity of CuGaS2 was investigated by varying the heterojunction ratio of CuGaS2 with CuS. Physicochemical properties of CuS, CuGaS2 and CuS@CuGaS2 nanoparticles were confirmed by X-ray diffraction, ultraviolet visible spectroscopy, high-resolution transmission electron microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. Compared with pure CuS, the hydrogen production performance of CuGaS2 doped with Ga dopant was improved by methanol photolysis, and the photoactivity of the heterogeneous CuS@CuGaS2 catalyst was increased remarkably. Moreover, the 0.5CuS@1.5CuGaS2 catalyst produced 3250 μmol of hydrogen through photolysis of aqueous methanol solution under 10 h UV light irradiation. According to the intensity modulated photovoltage spectroscopy (IMVS) results, the high photoactivity of the CuS@CuGaS2 catalyst is attributed to the inhibition of recombination between electron-hole pairs, accelerating electron-transfer by acting as a trap site at the interface between CuGaS2 structural defects and the heterojunction.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Miyake, Hideto, Moriki Hata y Koichi Sugiyama. "Solution growth of CuGaS2 and CuGaSe2 using CuI solvent". Journal of Crystal Growth 130, n.º 3-4 (junio de 1993): 383–88. http://dx.doi.org/10.1016/0022-0248(93)90523-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Ullah, Shafi, Miguel Mollar y Bernabé Marí. "Electrodeposition of CuGaSe2 and CuGaS2 thin films for photovoltaic applications". Journal of Solid State Electrochemistry 20, n.º 8 (14 de mayo de 2016): 2251–57. http://dx.doi.org/10.1007/s10008-016-3237-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Qin, Ming Sheng, Fu Qiang Huang y Ping Chen. "Wide Spectrum Absorption of CuGaS2 with Intermediate Bands". Applied Mechanics and Materials 148-149 (diciembre de 2011): 1558–61. http://dx.doi.org/10.4028/www.scientific.net/amm.148-149.1558.

Texto completo
Resumen
The intermediate bands materials CuGa1-xQxS2 (Q = Ge, Sn) were investigated, and the narrow half-filled intermediate bands were successfully introduced into the chalcopyrite CuGaS2 when Ga3+ ion were partially replaced by Ge4+(Sn4+) impurities. The absorption edge of CuGa1-xQxS2 red shifts greatly with the increasing in the doping content due to the form of Ge-4s (Sn-5s) and S-3p hybridization orbits intermediate band, even small Q-doping content(2mol %), considerable red shifts are still achieved. CuGa1-xQxS2 (Q = Ge, Sn) with IBs extend the range of solar spectrum and could be the excellent candidates for the theoretical predictions of enhanced solar cell efficiency.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Massé, George. "Luminescence of CuGaS2". Journal of Applied Physics 58, n.º 2 (15 de julio de 1985): 930–35. http://dx.doi.org/10.1063/1.336168.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Berestok, Taisiia, Pablo Guardia, Sònia Estradé, Jordi Llorca, Francesca Peiró, Andreu Cabot y Stephanie Brock. "CuGaS2 and CuGaS2–ZnS Porous Layers from Solution-Processed Nanocrystals". Nanomaterials 8, n.º 4 (5 de abril de 2018): 220. http://dx.doi.org/10.3390/nano8040220.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Jahangirova, S. K., Sh H. Mammadov, G. R. Gurbanov y O. M. Aliyev. "INTERACTION IN THE SYSTEM CuGaS2–PbGa2S4". Azerbaijan Chemical Journal, n.º 1 (19 de marzo de 2019): 46–49. http://dx.doi.org/10.32737/0005-2531-2019-1-46-49.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Grechenkov, Jurij, Aleksejs Gopejenko, Dmitry Bocharov, Inta Isakoviča, Anatoli I. Popov, Mikhail G. Brik y Sergei Piskunov. "Ab Initio Modeling of CuGa1−xInxS2, CuGaS2(1−x)Se2x and Ag1−xCuxGaS2 Chalcopyrite Solid Solutions for Photovoltaic Applications". Energies 16, n.º 12 (20 de junio de 2023): 4823. http://dx.doi.org/10.3390/en16124823.

Texto completo
Resumen
Chalcopyrites are ternary semiconductor compounds with successful applications in photovoltaics. Certain chalcopyrites are well researched, yet others remain understudied despite showing promise. In this study, we use ab initio methods to study CuGaS2, AgGaS2, and CuGaSe2 chalcopyrites with a focus on their less studied solid solutions. We use density functional theory (DFT) to study the effects that atomic configurations have on the properties of a solid solution and we calculate the optical absorption spectra using a many-body perturbation theory. Our theoretical simulations predict that excess of In and Se in the solid solutions leads to narrowing of the band gap and to the broadening of the absorption spectra. Obtained results show promise for possible photovoltaic applications, as well as developed methodology can be used for further study of other promising chalcopyritic compounds.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Syrbu, N. N., L. L. Nemerenco, V. N. Bejan y V. E. Tezlevan. "Bound exciton in CuGaS2". Optics Communications 280, n.º 2 (diciembre de 2007): 387–92. http://dx.doi.org/10.1016/j.optcom.2007.08.028.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Shirakata, Sho, Kazuo Murakami y Shigehiro Isomura. "Electroreflectance Studies in CuGaS2". Japanese Journal of Applied Physics 28, Part 1, No. 9 (20 de septiembre de 1989): 1728–29. http://dx.doi.org/10.1143/jjap.28.1728.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Bodnar, I. V., G. F. Smirnova, A. G. Karoza y A. P. Chernyakova. "Vibrational Spectra of CuGaS2 and CuGaSe2 Compounds and CuGaS2xSe2(1−x) Solid Solutions2)". physica status solidi (b) 158, n.º 2 (1 de abril de 1990): 469–74. http://dx.doi.org/10.1002/pssb.2221580207.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Hase, Shunnosuke, Yoshiki Iso y Tetsuhiko Isobe. "Bandgap-tuned fluorescent CuGaS2/ZnS core/shell quantum dots for photovoltaic applications". Journal of Materials Chemistry C 10, n.º 9 (2022): 3523–30. http://dx.doi.org/10.1039/d1tc05358b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Massé, G. "Time resolved spectra in CuGaS2". physica status solidi (a) 87, n.º 2 (16 de febrero de 1985): K171—K173. http://dx.doi.org/10.1002/pssa.2210870254.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Kobayashi, Satoshi, Futao Kaneko, Takeo Maruyama, Nozomu Tsuboi y Hitoshi Tamura. "ZnyCd1-yS-CuGaS2 heterojunction diode". Electronics and Communications in Japan (Part II: Electronics) 74, n.º 10 (1991): 73–81. http://dx.doi.org/10.1002/ecjb.4420741008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Keating, Logan y Moonsub Shim. "Mechanism of morphology variations in colloidal CuGaS2 nanorods". Nanoscale Advances 3, n.º 18 (2021): 5322–31. http://dx.doi.org/10.1039/d1na00434d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Elalfy, Loay, Denis Music y Ming Hu. "First Principles Investigation of Anomalous Pressure-Dependent Thermal Conductivity of Chalcopyrites". Materials 12, n.º 21 (25 de octubre de 2019): 3491. http://dx.doi.org/10.3390/ma12213491.

Texto completo
Resumen
The effect of compression on the thermal conductivity of CuGaS2, CuInS2, CuInTe2, and AgInTe2 chalcopyrites (space group I-42d) was studied at 300 K using phonon Boltzmann transport equation (BTE) calculations. The thermal conductivity was evaluated by solving the BTE with harmonic and third-order interatomic force constants. The thermal conductivity of CuGaS2 increases with pressure, which is a common behavior. Striking differences occur for the other three compounds. CuInTe2 and AgInTe2 exhibit a drop in the thermal conductivity upon increasing pressure, which is anomalous. AgInTe2 reaches a very low thermal conductivity of 0.2 W·m−1·K−1 at 2.6 GPa, being beneficial for many energy devices, such as thermoelectrics. CuInS2 is an intermediate case. Based on the phonon dispersion data, the phonon frequencies of the acoustic modes for CuInTe2 and AgInTe2 decrease with increasing pressure, thereby driving the anomaly, while there is no significant pressure effect for CuGaS2. This leads to the negative Grüneisen parameter for CuInTe2 and AgInTe2, a decreased phonon relaxation time, and a decreased thermal conductivity. This softening of the acoustic modes upon compression is suggested to be due to a rotational motion of the chalcopyrite building blocks rather than a compressive oscillation. The negative Grüneisen parameters and the anomalous phonon behavior yield a negative thermal expansion coefficient at lower temperatures, based on the Grüneisen vibrational theory.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Nuriyev, Mubariz. "Electron Diffraction Study of CuGaS2 Film". Physical Science International Journal 5, n.º 3 (10 de enero de 2015): 165–71. http://dx.doi.org/10.9734/psij/2015/12881.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Botha, J. R., M. S. Branch, A. W. R. Leitch y J. Weber. "Radiative defects in CuGaS2 thin films". Physica B: Condensed Matter 340-342 (diciembre de 2003): 923–27. http://dx.doi.org/10.1016/j.physb.2003.09.203.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Syrbu, N. N., L. L. Nemerenco y V. E. Tezlevan. "Resonance impurity radiation in CuGaS2 crystals". Optical Materials 30, n.º 3 (noviembre de 2007): 451–56. http://dx.doi.org/10.1016/j.optmat.2006.12.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

MARUSHKO, L. P., Y. E. ROMANYUK, L. V. PISKACH PISKACH, O. V. PARASYUK, I. D. OLEKSEYUK, S. V. VOLKOV y V. I. PEKHNYO. "The reciprocal system CuGaS2+CuInSe2DCuGaSe2+CuInS2". Chemistry of Metals and Alloys 3, n.º 1/2 (2010): 18–23. http://dx.doi.org/10.30970/cma3.0112.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Marushko, L. P., L. V. Piskach, Y. E. Romanyuk, O. V. Parasyuk, I. D. Olekseyuk, S. V. Volkov y V. I. Pekhnyo. "Quasi-ternary system CuGaS2–CuInS2–2CdS". Journal of Alloys and Compounds 492, n.º 1-2 (marzo de 2010): 184–89. http://dx.doi.org/10.1016/j.jallcom.2009.11.171.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Kim, Myeongok, Nazmul Ahsan, Zacharie Jehl, Yudania Sánchez y Yoshitaka Okada. "Properties of sputter-grown CuGaS2 absorber and CuGaS2/Cd1-xZnxS buffer heterointerface for solar cell application". Thin Solid Films 743 (febrero de 2022): 139063. http://dx.doi.org/10.1016/j.tsf.2021.139063.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Han, M. M., X. L. Zhang y Z. Zeng. "Sn doping induced intermediate band in CuGaS2". RSC Advances 6, n.º 112 (2016): 110511–16. http://dx.doi.org/10.1039/c6ra16855h.

Texto completo
Resumen
As an intermediate band material, the dynamical and phase stability and optoelectronic properties of Sn doped CuGaS2 are systematically investigated, and suggest that CuGaS2 that is moderately doped with Sn can be a potential candidate for photovoltaic applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Shirakata, Sho y Shigehiro Isomura. "Yb-Related Photoluminescence in CuGaS2, AgGaSe2and AgGaS2". Japanese Journal of Applied Physics 37, Part 1, No. 3A (15 de marzo de 1998): 776–80. http://dx.doi.org/10.1143/jjap.37.776.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Metzner, H., Th Hahn, J. Cieslak, U. Grossner, U. Reislöhner, W. Witthuhn, R. Goldhahn, J. Eberhardt, G. Gobsch y J. Kräußlich. "Epitaxial growth of CuGaS2 on Si(111)". Applied Physics Letters 81, n.º 1 (julio de 2002): 156–58. http://dx.doi.org/10.1063/1.1492003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Abdullaev, N. A., Kh V. Aliguliyeva, L. N. Aliyeva, I. Qasimoglu y T. G. Kerimova. "Low-temperature conductivity in CuGaS2 single crystals". Semiconductors 49, n.º 4 (abril de 2015): 428–31. http://dx.doi.org/10.1134/s1063782615040028.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Choi, In-Hwan, Sung-Hwan Eom y Peter Y. Yu. "Dispersion of birefringence in AgGaS2 and CuGaS2". Journal of Applied Physics 82, n.º 6 (15 de septiembre de 1997): 3100–3104. http://dx.doi.org/10.1063/1.366150.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Botha, J. R., M. S. Branch, A. G. Chowles, A. W. R. Leitch y J. Weber. "Photoluminescence of vacuum-deposited CuGaS2 thin films". Physica B: Condensed Matter 308-310 (diciembre de 2001): 1065–68. http://dx.doi.org/10.1016/s0921-4526(01)00848-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Cieslak, J., H. Metzner, Th Hahn, U. Reislöhner, U. Kaiser, J. Kräußlich y W. Witthuhn. "Microstructure of epitaxial CuGaS2 on Si(111)". Journal of Physics and Chemistry of Solids 64, n.º 9-10 (septiembre de 2003): 1777–80. http://dx.doi.org/10.1016/s0022-3697(03)00197-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Branch, M. S., P. R. Berndt, J. R. Botha, A. W. R. Leitch y J. Weber. "Structure and morphology of CuGaS2 thin films". Thin Solid Films 431-432 (mayo de 2003): 94–98. http://dx.doi.org/10.1016/s0040-6090(03)00208-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Julien, C. y S. Barnier. "Properties of several varieties of CuGaS2 microcrystals". Materials Science and Engineering: B 86, n.º 2 (septiembre de 2001): 152–56. http://dx.doi.org/10.1016/s0921-5107(01)00678-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Tanaka, K., H. Uchiki, S. Iida, T. Terasako y S. Shirakata. "Biexciton luminescence from CuGaS2 bulk single crystals". Solid State Communications 114, n.º 4 (marzo de 2000): 197–201. http://dx.doi.org/10.1016/s0038-1098(00)00035-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Sainctavit, Ph, J. Petiau, A. M. Flank, J. Ringeissen y S. Lewonczuk. "XANES in chalcopyrites semiconductors: CuFeS2, CuGaS2, CuInSe2". Physica B: Condensed Matter 158, n.º 1-3 (junio de 1989): 623–24. http://dx.doi.org/10.1016/0921-4526(89)90413-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Sudarsan, V. y S. K. Kulshreshtha. "Low temperature synthesis of the semiconductor CuGaS2". Materials Chemistry and Physics 49, n.º 2 (junio de 1997): 146–49. http://dx.doi.org/10.1016/s0254-0584(97)01875-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Castellanos Águila, J. E., P. Palacios, J. C. Conesa, J. Arriaga y P. Wahnón. "Electronic band alignment at CuGaS2 chalcopyrite interfaces". Computational Materials Science 121 (agosto de 2016): 79–85. http://dx.doi.org/10.1016/j.commatsci.2016.04.032.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Tinoco, T., J. P. Itié, A. Polian, A. San Miguel, E. Moya, P. Grima, J. Gonzalez y F. Gonzalez. "Combined x-ray absorption and x-ray diffraction studies of CuGaS2, CuGaSe2, CuFeS2 and CuFeSe2 under high pressure". Le Journal de Physique IV 04, n.º C9 (noviembre de 1994): C9–151—C9–154. http://dx.doi.org/10.1051/jp4:1994923.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Susaki, Masami, Kazuki Wakita y Nobuyuki Yamamoto. "Luminescence of Mixed-Mode Exciton-Polariton in CuGaS2". Japanese Journal of Applied Physics 38, Part 1, No. 5A (15 de mayo de 1999): 2787–91. http://dx.doi.org/10.1143/jjap.38.2787.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Miyake, Hideto y Koichi Sugiyama. "Phase Diagram of the CuGaS2-In Pseudobinary System". Japanese Journal of Applied Physics 29, Part 2, No. 6 (20 de junio de 1990): L998—L1000. http://dx.doi.org/10.1143/jjap.29.l998.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Syrbu, N. N., M. Blazhe, I. M. Tiginyanu y V. E. Tezlevan. "Resonance Raman scattering by excitonic polaritons in CuGaS2". Optics and Spectroscopy 92, n.º 3 (marzo de 2002): 395–401. http://dx.doi.org/10.1134/1.1465466.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Syrbu, N. N., M. Blaje, V. E. Tezlevan y V. V. Ursaki. "Spatial dispersion in polariton spectra of CuGaS2 crystals". Optics and Spectroscopy 92, n.º 3 (marzo de 2002): 402–8. http://dx.doi.org/10.1134/1.1465467.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Liu, Zhongping, Qiaoyan Hao, Rui Tang, Linlin Wang y Kaibin Tang. "Facile one-pot synthesis of polytypic CuGaS2 nanoplates". Nanoscale Research Letters 8, n.º 1 (2013): 524. http://dx.doi.org/10.1186/1556-276x-8-524.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Hu, J. Q., B. Deng, C. R. Wang, K. B. Tang y Y. T. Qian. "Hydrothermal preparation of CuGaS2 crystallites with different morphologies". Solid State Communications 121, n.º 9-10 (marzo de 2002): 493–96. http://dx.doi.org/10.1016/s0038-1098(01)00516-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Oh, Nuri, Logan P. Keating, Gryphon A. Drake y Moonsub Shim. "CuGaS2–CuInE2 (E = S, Se) Colloidal Nanorod Heterostructures". Chemistry of Materials 31, n.º 6 (27 de febrero de 2019): 1973–80. http://dx.doi.org/10.1021/acs.chemmater.8b04769.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Susaki, Masami, Hiromichi Horinaka y Nobuyuki Yamamoto. "Photoconductivity Decay Characteristics of Undoped p-Type CuGaS2". Japanese Journal of Applied Physics 31, Part 1, No. 2A (15 de febrero de 1992): 301–4. http://dx.doi.org/10.1143/jjap.31.301.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Otoma, Hiromi, Tohru Honda, Kazuhiko Hara, Junji Yoshino y Hiroshi Kukimoto. "Growth of CuGaS2 by alternating-source-feeding MOVPE". Journal of Crystal Growth 115, n.º 1-4 (diciembre de 1991): 807–10. http://dx.doi.org/10.1016/0022-0248(91)90850-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Caudillo-Flores, Uriel, Anna Kubacka, Taisiia Berestok, Ting Zhang, Jordi Llorca, Jordi Arbiol, Andreu Cabot y Marcos Fernández-García. "Hydrogen photogeneration using ternary CuGaS2-TiO2-Pt nanocomposites". International Journal of Hydrogen Energy 45, n.º 3 (enero de 2020): 1510–20. http://dx.doi.org/10.1016/j.ijhydene.2019.11.019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Zalewski, W., R. Bacewicz, J. Antonowicz, S. Schorr, C. Streeck y B. Korzun. "Local structure of Mn dopants in CuAlS2and CuGaS2". physica status solidi (a) 205, n.º 10 (octubre de 2008): 2428–36. http://dx.doi.org/10.1002/pssa.200723587.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Han, Miaomiao, Xiaoli Zhang y Z. Zeng. "The investigation of transition metal doped CuGaS2 for promising intermediate band materials". RSC Adv. 4, n.º 107 (2014): 62380–86. http://dx.doi.org/10.1039/c4ra10007g.

Texto completo
Resumen
Metal (Fe, Co and Ni) doped CuGaS2 systems are systematically investigated by using a screened-exchange hybrid density functional theory, which shows that Fe and Ni doped CuGaS2 systems are potential candidates for the photovoltaic area.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Wei, Yaowei, Daming Zhuang, Ming Zhao, Ning Zhang, Xinping Yu, Xinchen Li, Xunyan Lyu, Chen Wang y Lan Hu. "Fabrication of in-situ Ti-doped CuGaS2 thin films for intermediate band solar cell applications by sputtering with CuGaS2:Ti targets". Vacuum 169 (noviembre de 2019): 108921. http://dx.doi.org/10.1016/j.vacuum.2019.108921.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Zheng, Wen-Chen, Hui-Ning Dong, Sheng Tang y Jian Zi. "Zero-field Splitting and Local Lattice Distortions for Fe3+ Ions in Some Ib-IIIb-VI2 Semiconductors". Zeitschrift für Naturforschung A 59, n.º 1-2 (1 de febrero de 2004): 100–102. http://dx.doi.org/10.1515/zna-2004-1-215.

Texto completo
Resumen
The EPR zero-field splitting D for Fe3+ ions in some Ib-IIIb-VI2 semiconductors is calculated with the superposition model. The calculated D values, when using the local rotation angles τ (Fe3+) for Fe3+ in CuGaS2 and AgGaS2 crystals, are consistent with the observed values, whereas for Fe3+ in CuAlS2 crystal they are not. The calculated results are discussed. The local lattice distortions except the local rotation angles τ for Fe3+ in CuAlS2 are suggested.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía