Siga este enlace para ver otros tipos de publicaciones sobre el tema: Crop yields South Australia Case studies.

Artículos de revistas sobre el tema "Crop yields South Australia Case studies"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 27 mejores artículos de revistas para su investigación sobre el tema "Crop yields South Australia Case studies".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Armstrong, E. L., D. P. Heenan, J. S. Pate y M. J. Unkovich. "Nitrogen benefits of lupins, field pea, and chickpea to wheat production in south-eastern Australia". Australian Journal of Agricultural Research 48, n.º 1 (1997): 39. http://dx.doi.org/10.1071/a96054.

Texto completo
Resumen
Nitrogen balances of narrow leaf lupin (Lupinus angustifolius L.), albus lupin (L. albus L.), field pea (Pisum sativum L.), chickpea (Cicer arietinum L.), and barley (Hordeum vulgare L.) sown over a range of dates were examined in 1992 in a rotation study at Wagga Wagga, NSW. Each N budget included assessment of dependence on fixed as opposed to soil N, peak aboveground biomass N, and N removed as grain or returned as unharvested aboveground crop residues. N balances of wheat sown across the plots in 1993 were assessed similarly in terms of biomass and grain yield. Yields, N2 fixation, and crop residue N balances of the legumes were markedly influenced by sowing time, and superior performance of lupins over other species was related to higher biomass production and proportional dependence on N2 fixation, together with a poorer harvest index. Residual N balances in aboveground biomass after harvest of the 1992 crops were significantly correlated with soil mineral N at 1993 sowing and with biomass and grain N yields of the resulting wheat crop. Best mean fixation and grain N yield came from albus lupin. Wheat grain N yields following the 2 lupins were some 20% greater than after fiield pea and chickpea and 3 times greater than after barley. Net soil N balance based solely on aboveground returns of N of legumes in 1992 through to harvest of wheat in 1993 was least for narrow leaf lupin-wheat ( –20 kg N/ha), followed by albus lupin-wheat ( –44), chickpea-wheat ( –74), and field pea-wheat ( –96). Corresponding combined grain N yields (legume+wheat) from the 4 rotations were 269, 361, 178, and 229 kg N/ha, respectively. The barley-wheat rotation yielded a similarly computed soil N deficit of 67 kg/ha. Data are discussed in relation to other studies on legume-based rotations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Robertson, M. J., R. C. Muchow, R. A. Donaldson, N. G. Inman-Bamber y A. W. Wood. "Estimating the risk associated with drying-off strategies for irrigated sugarcane before harvest". Australian Journal of Agricultural Research 50, n.º 1 (1999): 65. http://dx.doi.org/10.1071/a98051.

Texto completo
Resumen
The development of recommendations for drying-off management in sugarcane is difficult due to climatic variability and lack of knowledge of the sensitivity of changes in sucrose content and cane yield to severity of water deficit. Relative cane biomass targets were developed for drying-off irrigated sugarcane before harvest based on derived relationships between cane yield, cane dry weight, and sucrose concentration, using pooled data from previous field studies. These targets were then linked to a crop–soil model and long-term climate data to determine the economically optimum duration of drying-off, and its variability from season to season for 2 locations in Australia and one location in South Africa, for a range of harvest dates and soil types. The crop–soil model was validated on yields measured in 37 drying-off treatments conducted in South Africa and Australia. The simulation results show that the required drying-off duration can be highly variable, although the level of variability is not necessarily correlated with rainfall per se. There were interactions between soil type and harvest date, but not at every location. The systems approach outlined here can be useful in developing recommendations for drying-off where experience is limited, such as in expanding areas of sugar industries, for districts in which the practice of irrigation is increasing, or for harvest dates outside the current harvesting season.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Sadras, Victor O. "A quantitative top-down view of interactions between stresses: theory and analysis of nitrogen - water co-limitation in Mediterranean agro-ecosystems". Australian Journal of Agricultural Research 56, n.º 11 (2005): 1151. http://dx.doi.org/10.1071/ar05073.

Texto completo
Resumen
The multiple factors constraining the growth, reproduction, and survival of diverse organisms are often non-additive. Research of interacting factors generally involves conceptual models that are specific for target organism, type of stress, and process. As a complement to this reductionist, bottom-up view, in this review I discuss a quantitative top-down approach to interacting stresses based on co-limitation theory. Firstly, co-limitation theory is revised. Co-limitation is operationally identified when the output response of a biological system (e.g. plant or population growth) to two or more inputs is greater than its response to each factor in isolation. The hypothesis of Bloom, Chapin, and Mooney, that plant growth is maximised when it is equally limited by all resources, is reworded in terms of co-limitation and formulated in quantitative terms, i.e. for a given intensity of aggregate stress, plant growth is proportional to degree of resource co-limitation. Emphasis is placed on the problems associated with the quantification of co-limitation. It is proposed that seasonal indices of nitrogen and water stress calculated with crop simulation models can be integrated in indices accounting for the aggregated intensity of water and nitrogen stress (SWN), the degree of water and nitrogen co-limitation (CWN), and the integrated effect of stress and co-limitation (SCWN = CWN/SWN). The expectation is that plant growth and yield should be an inverse function of stress intensity and a direct function of co-limitation, thus proportional to SCWN. Secondly, the constraints imposed by water and nitrogen availability on yield and water use efficiency of wheat crops are highlighted in case studies of low-input farming systems of south-eastern Australia. Thirdly, the concept of co-limitation is applied to the analysis of (i) grain yield responses to water–nitrogen interactions, and (ii) trade-offs between nitrogen- and water-use efficiency. In agreement with theoretical expectations, measured grain yield is found to be proportional to modelled SCWN. Productivity gains associated with intensification of cropping practices are interpreted in terms of a trade-off, whereby water-use efficiency is improved at the expense of nitrogen-use efficiency, thus leading to a higher degree of resource co-limitation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Wu, P. S., H. Z. Du, X. L. Zhang, J. F. Luo y L. Fang. "Occurrence of Phoma macdonaldii, the Causal Agent of Sunflower Black Stem Disease, in Sunflower Fields in China". Plant Disease 96, n.º 11 (noviembre de 2012): 1696. http://dx.doi.org/10.1094/pdis-05-12-0485-pdn.

Texto completo
Resumen
Phoma macdonaldii Boerma is the pathogen of sunflower black stem disease, causing dark black, oval to long lesions on stems of sunflower plants. Infection during early growth stages can reduce yield by 10 to 30% (3). This fungal disease is distributed mainly in North and South America and Europe. In China, the first case was reported in Xinjiang in 2008 (1), and was believed to be introduced as a result of hybrid sunflower seeds being imported from abroad. The Chinese government included this fungus into its quarantine pests list in 2010 (2). Since China imports a great number of sunflower seeds to grow in its Northern provinces from epidemic areas such as the United States, Argentina, and France, monitoring the disease occurrence in planting areas became crucial. During 2010 and 2011 growing seasons, surveys were conducted in 37 commercial farms or individual households in 12 counties of five areas (Xinjiang, Inner Mongolia, Ningxia, Hebei, and Beijing). A total of 185 suspicious samples of sunflower black stem disease were collected and all were found from imported hybrid seed fields. The presence of P. macdonaldii was confirmed as following: 4 mm2 tissue pieces cut from lesion margins were disinfected with 1% NaOCl, plated on APDA (acid potato dextrose agar, 4.5 to 5.0 pH adjusted with lactic acid), and incubated at 25°C with 12L:12D photoperiod. After 3 days of incubation, colonies were opalescent or ivory in color, and fluffy or flocculent in appearance. After 4 to 6 days, a large number of spherical or oblate black-brown pycnidia were formed separately or in clusters with thin wall and papillate ostiole in diameter of 135 to 324 μm (average 178 μm). A light pink or opalescent gelatinous substance (pycnidiospores) exuded from the ostiole. Pycnidiospores were single celled, oval or kidney-shaped and hyaline both with and without oil balls, and 1.5 to 3.0 μm × 3.0 to 6.5 μm (average 2.0 × 4.7 μm). Sequences of ITS1-5.8S- ITS2 rDNA fragment of all isolates (GenBank Accession No. JQ979487, JQ979488) were identical and had 100% homology with P. macdonaldii isolates from Xinjiang (HM003206) and Australia (DQ351823, DQ351825) and 99% homology with isolates from the former Yugoslavia (DQ351821, DQ351822) in GenBank. Pathogenicity studies of the isolate were performed by injecting 10 × 106/ml spore suspension into the hypocotyl of four true leaves of sunflower seedlings with a syringe. Sterile water was injected as control. After being inoculated in a plastic bag in the shade at room temperature for 48 h, the plastic bag was removed and the seedlings were grown under natural light. Symptoms of black stem disease were observed in all P. macdonaldii inoculated seedlings and the fungus was reisolated from the lesions for confirmation. The current survey found that 105 of 185 suspicious samples were P. macdonaldii positive and were all from four counties in Xinjiang, suggesting that the disease has not spread to other areas since its introduction. The monitoring of sunflower black stem disease is continuing, as is the research for measuring P. macdonaldii adaptability in China and the development of rapid molecular detection technology. References: (1) W. M. Chen et al. J. Yunnan Agric. Univ. 23:609, 2008. (2) J. Luo et al. Australas. Plant Pathol. 40:504, 2011. (3) E. Miric et al. Aust. J. Agr. Res. 50:325, 1999.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Anderson, Randy L. "Increasing corn yield with no-till cropping systems: a case study in South Dakota". Renewable Agriculture and Food Systems 31, n.º 6 (25 de noviembre de 2015): 568–73. http://dx.doi.org/10.1017/s1742170515000435.

Texto completo
Resumen
AbstractNo-till practices have improved crop yields in the semiarid Great Plains. However, a recent assessment of research studies across the globe indicated that crop yields are often reduced by no-till. To understand this contrast, we examined corn yields across time in a no-till cropping system of one producer in central South Dakota to identify factors associated with increased yield. The producer started no-till in 1990; by 2013, corn yield increased 116%. In comparison, corn increased only 32% during this interval with a conventional, tillage-based system in a neighboring county. With no-till, corn yields increased in increments due to changes in management. For example, corn yield increased 52% when crop diversity in the rotation was expanded from 2 to 5 crops. A further 18% gain in yield occurred when dry pea was grown before corn in sequence. Nitrogen (N) requirement for corn is 25% lower in no-till compared with a tillage-based rotation. Furthermore, phosphorus (P) fertilizer input also has been reduced 30% after 20 yr of no-till, even with higher yields. Our case study shows that integrating no-till with crop diversity and soil microbial changes improves corn yield considerably. This integration also reduces need for inputs such as water, N and P.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Angus, J. F., R. R. Gault, M. B. Peoples, M. Stapper y A. F. van Herwaarden. "Soil water extraction by dryland crops, annual pastures, and lucerne in south-eastern Australia". Australian Journal of Agricultural Research 52, n.º 2 (2001): 183. http://dx.doi.org/10.1071/ar00103.

Texto completo
Resumen
The extraction of soil water by dryland crops and pastures in south-eastern Australia was examined in 3 studies. The first was a review of 13 published measurements of soil water-use under wheat at several locations in southern New South Wales. Of these, 8 showed significantly more water extracted by crops managed with increased nitrogen supply or growing after a break crop. The mean additional soil water extraction in response to break crops was 31 mm and to additional N was 11 mm. The second study used the SIMTAG model to simulate growth and water-use by wheat in relation to crop management at Wagga Wagga. The model was set up to simulate crops that produced either average district yields or the potential yields achievable with good management. When simulated over 50 years of weather data, the combined water loss as drainage and runoff was predicted to be 67 mm/year for poorly managed crops and 37 mm for well-managed crops. Water outflow was concentrated in 70% of years for the poorly managed crops and 56% for the well-managed crops. In those years the mean losses were estimated to be 95 mm and 66 mm, respectively. The third study reports soil water measured twice each year during a phased pasture–crop sequence over 6.5 years at Junee. Mean water content of the top 2.0 m of soil under a lucerne pasture averaged 211 mm less than under a subterranean clover-based annual pasture and 101 mm less than under well-managed crops. Collectively, these results suggest that lucerne pastures and improved crop management can result in greater use of rainfall than the previous farming systems based on annual pastures, fallows, and poorly managed crops. The tactical use of lucerne-based pastures in sequence with well-managed crops can help the dewatering of the soil andreduce or eliminate the risk of groundwater recharge.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Trouillas, F. P., F. Peduto, J. D. Lorber, M. R. Sosnowski, J. Grant, W. W. Coates, K. K. Anderson, J. Caprile y W. D. Gubler. "Calosphaeria Canker of Sweet Cherry Caused by Calosphaeria pulchella in California and South Australia". Plant Disease 96, n.º 5 (mayo de 2012): 648–58. http://dx.doi.org/10.1094/pdis-03-11-0237.

Texto completo
Resumen
California is the second largest sweet cherry producer in the United States with annual revenues up to $200 million. The South Australian cherry industry generates about 10% of Australia's overall production with approximately 1,500 metric tons of cherries produced yearly. In California, perennial canker diseases and subsequent branch dieback are responsible for extensive damage throughout sweet cherry orchards, reducing annual yields and tree longevity. Surveys of cherry orchards and isolation work were conducted in California to identify the main canker-causing agents. Calosphaeria pulchella was the main fungus isolated from cankers, followed by Eutypa lata and Leucostoma persoonii, respectively. Preliminary surveys in cherry orchards in South Australia documented C. pulchella and L. persoonii in cankers. The pathogenicity of C. pulchella in sweet cherry was confirmed following field inoculations of 2- to 3-year-old branches. C. pulchella was able to infect healthy wood and produce cankers with as much virulence as E. lata or L. persoonii. Spore trapping studies were conducted in two sweet cherry orchards in California to investigate the seasonal abundance of C. pulchella spores. Experiments showed that rain and sprinkler irrigation were important factors for aerial dissemination. Finally, this study illustrates the symptoms and signs of the new disease Calosphaeria canker.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Perera, Ruchika S., Brendan R. Cullen y Richard J. Eckard. "Changing patterns of pasture production in south-eastern Australia from 1960 to 2015". Crop and Pasture Science 71, n.º 1 (2020): 70. http://dx.doi.org/10.1071/cp19112.

Texto completo
Resumen
The seasonal pattern of pasture production and its variability from year to year are important for pasture-based livestock production systems in south-eastern Australia because they influence key strategic decisions such as stocking rate and timing of the reproductive cycle. In this study, the effects of observed climate variations over the period 1960–2015 on pasture growth patterns were investigated by using a biophysical modelling approach. Pasture growth rates were simulated using DairyMod biophysical software at five sites ranging from high-rainfall, cool temperate at Elliott in Tasmania to medium-rainfall, warm temperate at Wagga Wagga in southern New South Wales. Annual pasture yields showed a small increasing rate of 50 kg DM/ha.year at Elliott and 40 kg DM/ha.year at Ellinbank (P < 0.05), whereas other sites showed no significant trend over time. A cross-site analysis of seasonal average pasture growth rates predicted under four different discrete periods of 14 years each showed that winter growth has increased steadily through time (P = 0.001), and spring pasture growth rate has decreased (P < 0.001) in 2002–15 compared with the earlier periods. Year-to-year pasture yield variability (coefficient of variation) during autumn and spring seasons has also increased (P < 0.05) across sites in the period 2002–15 compared with 1998–2001. At each site, the number of spring days with water stress (growth limiting factor_water <0.7) was ~10 times greater than the number of days with temperature stress (growth limiting factor_temperature <0.7). There was an increase in the number of days with water stress at Wagga Wagga, and increased heat stress at Wagga Wagga and Hamilton (P < 0.05) in the most recent period. These results highlight the importance of incorporating more heat-tolerant and deep-rooting cultivars into pasture-based production system. Although previous studies of climate-change impact have predicted increasing winter growth rates and a contraction of the spring growing season in the future (2030), this study provides clear evidence that these changes are already occurring under the observed climate in south-eastern Australia.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Jacobs, J. L., J. Hill y T. Jenkin. "Effect of different grazing strategies on dry matter yields and nutritive characteristics of whole crop cereals". Animal Production Science 49, n.º 7 (2009): 608. http://dx.doi.org/10.1071/ea08245.

Texto completo
Resumen
Forage cereals offer the potential to increase the amount of forage grown and consumed on dairy farms in southern Australia. The effect of single or multiple grazing of winter cereal forages by lactating dairy cattle on dry matter (DM) yield and nutritive value at grazing and on subsequent silage production harvested at the soft-dough stage of growth was determined in three studies in south-western Victoria. In the first two studies, a range of forage cereals and an annual ryegrass were grazed either once (G1) during tillering (GS 21–29), followed by locking up for silage, grazed twice (G2) (GS 21–29 and GS 32–34), followed by locking up for silage, or not grazed (NG) and harvested for silage only. In the third study, two forage cereals were either ungrazed (NG) or grazed at either GS 21, GS 24, GS 30 or GS 32 and subsequently locked up and harvested for silage. All silage harvests occurred at GS 84 (soft dough). In all studies, grazing at early tillering resulted in DM yield of less than 1.4 t DM/ha, although crude protein (CP) (30–37% DM) and estimated metabolisable energy (ME) (12.2–14 MJ/kg DM) were high. Deferring grazing until the start of stem elongation resulted in higher DM yields (1.8–4.3 t DM/ha). Silage DM yields were higher (P < 0.05) for G1 and NG treatments than for G2 in all cases apart from McKellar wheat in study 1. At silage harvest, CP and estimated ME contents of cereals were lower than for annual ryegrass. In general, total DM yields across the growing season were higher for the G1 and NG treatments compared with forages that were grazed twice before silage harvest. Deferment of a single grazing from early tillering to stem elongation did not adversely affect total DM production. However, delaying grazing until stem elongation resulted in significant declines in CP concentration and estimated ME. These studies highlight the potential of cereal forages to contribute to DM production on dairy farms in southern Australia. They can provide additional flexibility into forage systems through the provision of forage for a single grazing in early winter and in the production of high DM yield silage harvests. Cereals grazed in early winter have a high estimated ME and CP content, whereas the nutritive characteristics when harvested for silage at soft dough are of only moderate feed value. Consideration is required as to how best to incorporate these into diets of lactating dairy cattle.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Hall, D. J. M., H. R. Jones, W. L. Crabtree y T. L. Daniels. "Claying and deep ripping can increase crop yields and profits on water repellent sands with marginal fertility in southern Western Australia". Soil Research 48, n.º 2 (2010): 178. http://dx.doi.org/10.1071/sr09078.

Texto completo
Resumen
Sandplain soils on the south coast of Western Australia have multiple limitations to crop production that include water repellence, low water and nutrient retention, subsoil acidity, and high soil strength. Crops on sandplain soils achieve, on average, almost 85% of their rainfall-limited yield potential; however, where there are multiple limitations the corresponding value is often <50% in any given year. Previous research has shown the value of applying clay-rich subsoil (‘claying’) to ameliorate water repellent soils and improve nutrient retention. Other studies have shown that deep ripping is effective in reducing compaction in sandplain soils. This paper quantifies the effects of 5 subsoil clay rates (0, 50, 100, 200, and 300 t/ha), with and without deep ripping to 0.5m, on soil properties, crop growth, and profitability in a replicated field experiment. Crop yields were increased by 0.3–0.6 t/ha as result of added clay. The clay content of the surface soil required to alleviate water repellence and achieve the highest yield increases was 3–6% in soils with ~1% organic carbon. Longer term effects of claying included increased soil organic carbon by 0.2%, pH by 0.6 units, potassium by 47 mg/kg, soil strength by 250 kPa, and cation exchange capacity by 1.3 cmolc/kg to a depth of 0.1 m. However, changes in plant-available water (mm/m) were inconsistent between the clay treatments. Deep ripping to 0.5 m increased crop yields by 0.1–0.5 t/ha. These crop yield responses were still evident 3 years after the ripping treatment had been applied. Soil strength measurements indicate that re-compaction of the ripped treatments had occurred to a depth of 0.2 m in the second year following ripping. Crop responses to claying and deep ripping were additive. Claying and deep ripping, while almost doubling yields, achieved only 50–70% of the rainfall-limited yield potential on these marginally fertile soils. The highest clay rates (>3–6%) had cumulative discounted cash returns $AU100–200/ha higher than the unclayed ‘control’ treatment and $300/ha higher than the lowest clay rates. For most of the clay treatments, deep ripping increased discounted returns between 2005 and 2007 by $80–120/ha.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Christy, Brendan, Garry O'Leary, Penny Riffkin, Tina Acuna, Trent Potter y Angela Clough. "Long-season canola (Brassica napus L.) cultivars offer potential to substantially increase grain yield production in south-eastern Australia compared with current spring cultivars". Crop and Pasture Science 64, n.º 9 (2013): 901. http://dx.doi.org/10.1071/cp13241.

Texto completo
Resumen
Average yield of canola in the high-rainfall zone (HRZ) of southern Australia are about half the predicted potential yield based on seasonal water supply. Current cultivars of canola that are available to growers were not bred specifically for the HRZ and tend to be short-season types aimed at escaping water stress during grain filling in the drier regions of the cropping belt. In the HRZ, these cultivars fail to utilise all available growing-season water due to early maturity. Field experimentation and crop simulation studies across the HRZ landscape of south-eastern Australia were used to determine the increased yield potential of longer-season canola cultivars compared with short-season cultivars. In this study the Catchment Analysis Tool spatial modelling framework was used to determine the expected canola yields of three cultivars across the entire HRZ of south-eastern Australia. Hyola50 (‘spring-short’) was used to represent the current recommended spring-type canola cultivar within the HRZ and was evaluated against an unreleased long-season spring-type cultivar CBI8802 (‘spring-long’) and a newly released winter-type cultivar Taurus (‘winter’). Spring-long outperformed spring-short across much of the study area. Yield advantages of winter over spring-short were mainly confined to the coastal fringe of Victoria and Tasmania and small pockets in New South Wales where at one location the average yield over 50 growing seasons exceeded spring-short by up to 60% or 1.4 t/ha. The superior performance of spring-long, (up to 17% or 0.9 t/ha at one location) was over a wider area than winter (26.4 compared with 8.8 million ha for winter) and although the magnitude of the yield increase over spring-short was not as great as winter at some locations, the overall result determined that spring-long had the greater production potential. The superior performance of spring-long beyond the HRZ challenges the trend of selecting earlier maturing cultivars by current breeders following the abnormal sequence of dry years in an attempt to minimise yield loss due to water stress during grain filling. This study has provided breeders, growers and advisors with information on where in the HRZ a longer-season canola cultivar can be grown to improve overall crop productivity. It has also provided evidence that new canola types may be required to maximise grain yields not only for the HRZ but potentially also in lower rainfall regions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Carberry, P. S., Z. Hochman, J. R. Hunt, N. P. Dalgliesh, R. L. McCown, J. P. M. Whish, M. J. Robertson, M. A. Foale, P. L. Poulton y H. van Rees. "Re-inventing model-based decision support with Australian dryland farmers. 3. Relevance of APSIM to commercial crops". Crop and Pasture Science 60, n.º 11 (2009): 1044. http://dx.doi.org/10.1071/cp09052.

Texto completo
Resumen
Crop simulation models relevant to real-world agriculture have been a rationale for model development over many years. However, as crop models are generally developed and tested against experimental data and with large systematic gaps often reported between experimental and farmer yields, the relevance of simulated yields to the commercial yields of field crops may be questioned. This is the third paper in a series which describes a substantial effort to deliver model-based decision support to Australian farmers. First, the performance of the cropping systems simulator, APSIM, in simulating commercial crop yields is reported across a range of field crops and agricultural regions. Second, how APSIM is used in gaining farmer credibility for their planning and decision making is described using actual case studies. Information was collated on APSIM performance in simulating the yields of over 700 commercial crops of barley, canola, chickpea, cotton, maize, mungbean, sorghum, sugarcane, and wheat monitored over the period 1992 to 2007 in all cropping regions of Australia. This evidence indicated that APSIM can predict the performance of commercial crops at a level close to that reported for its performance against experimental yields. Importantly, an essential requirement for simulating commercial yields across the Australian dryland cropping regions is to accurately describe the resources available to the crop being simulated, particularly soil water and nitrogen. Five case studies of using APSIM with farmers are described in order to demonstrate how model credibility was gained in the context of each circumstance. The proposed process for creating mutual understanding and credibility involved dealing with immediate questions of the involved farmers, contextualising the simulations to the specific situation in question, providing simulation outputs in an iterative process, and together reviewing the ensuing seasonal results against provided simulations. This paper is distinct from many other reports testing the performance and utility of cropping systems models. Here, the measured yields are from commercial crops not experimental plots and the described applications were from real-life situations identified by farmers. A key conclusion, from 17 years of effort, is the proven ability of APSIM to simulate yields from commercial crops provided soil properties are well characterised. Thus, the ambition of models being relevant to real-world agriculture is indeed attainable, at least in situations where biotic stresses are manageable.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Brock, Philippa M., Sally Muir, David F. Herridge y Aaron Simmons. "Cradle-to-farmgate greenhouse gas emissions for 2-year wheat monoculture and break crop–wheat sequences in south-eastern Australia". Crop and Pasture Science 67, n.º 8 (2016): 812. http://dx.doi.org/10.1071/cp15260.

Texto completo
Resumen
We used life cycle assessment methodology to determine the cradle-to-farmgate GHG emissions for rainfed wheat grown in monoculture or in sequence with the break crops canola (Brassica napus) and field peas (Pisum sativum), and for the break crops, in the south-eastern grains region of Australia. Total GHG emissions were 225 kg carbon dioxide equivalents (CO2-e)/t grain for a 3 t/ha wheat crop following wheat, compared with 199 and 172 kg CO2-e/t for wheat following canola and field peas, respectively. On an area basis, calculated emissions were 676, 677 and 586 kg CO2-e/ha for wheat following wheat, canola and field peas, respectively. Highest emissions were associated with the production and transport of fertilisers (23–28% of total GHG emissions) and their use in the field (16–23% of total GHG emissions). Production, transport and use of lime accounted for an additional 19–21% of total GHG emissions. The lower emissions for wheat after break crops were associated with higher yields, improved use of fertiliser nitrogen (N) and reduced fertiliser N inputs in the case of wheat after field peas. Emissions of GHG for the production and harvesting of canola were calculated at 841 kg CO2-e/ha, equivalent to 420 kg CO2-e/t grain. Those of field peas were 530 kg CO2-e/ha, equivalent to 294 kg CO2-e/t grain. When the gross margin returns for the crops were considered together with their GHG emissions, the field pea–wheat sequence had the highest value per unit emissions, at AU$787/t CO2-e, followed by wheat–wheat ($703/t CO2-e) and canola–wheat ($696/t CO2-e). Uncertainties associated with emissions factor values for fertiliser N, legume-fixed N and mineralised soil organic matter N are discussed, together with the potentially high C cost of legume N2 fixation and the impact of relatively small changes in soil C during grain cropping either to offset all or most pre- and on-farm GHG emissions or to add to them.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Miller, Z., F. Menalled, D. Ito, M. Moffet y M. Burrows. "Impacts of Crop Variety and Time of Inoculation on the Susceptibility and Tolerance of Winter Wheat to Wheat streak mosaic virus". Plant Disease 98, n.º 8 (agosto de 2014): 1060–65. http://dx.doi.org/10.1094/pdis-12-13-1210-re.

Texto completo
Resumen
Plant genotype, age, size, and environmental factors can modify susceptibility and tolerance to disease. Understanding the individual and combined impacts of these factors is needed to define improved disease management strategies. In the case of Wheat streak mosaic virus (WSMV) in winter wheat, yield losses and plant susceptibility have been found to be greatest when the crop is exposed to the virus in the fall in the central and southern Great Plains. However, the seasonal dynamics of disease risk may be different in the northern Great Plains, a region characterized by a relatively cooler fall conditions, because temperature is known to modify plant–virus interactions. In a 2-year field study conducted in south-central Montana, we compared the impact of fall and spring WSMV inoculations on the susceptibility, tolerance, yield, and grain quality of 10 winter wheat varieties. Contrary to previous studies, resistance and yields were lower in the spring than in the fall inoculation. In all, 5 to 7% of fall-inoculated wheat plants were infected with WSMV and yields were often similar to uninoculated controls. Spring inoculation resulted in 45 to 57% infection and yields that were 15 to 32% lower than controls. Although all varieties were similarly susceptible to WSMV, variations in tolerance (i.e., yield losses following exposure to the virus) were observed. These results support observations that disease risk and impacts differ across the Great Plains. Possible mechanisms include variation in climate and in the genetic composition of winter wheat and WSMV across the region.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Lisson, S. N. y N. J. Mendham. "Cultivar, sowing date and plant density studies of fibre hemp (Cannabis sativa L.) in Tasmania". Australian Journal of Experimental Agriculture 40, n.º 7 (2000): 975. http://dx.doi.org/10.1071/ea99130.

Texto completo
Resumen
This paper reports on a 3-year agronomic study into fibre hemp (Cannabis sativa L.) conducted in Tasmania, Australia. The performance of selected hemp cultivars, and the responses to sowing date and plant density were investigated as part of a broad feasibility study to assess the potential of fibre hemp and flax (Linum usitatissimum L.) as sources of fibre for the Australian newsprint industry. Trials were conducted at separate sites in north-west and south-east Tasmania. Nine cultivars from the Ukraine, Hungary and France were examined in 2 separate trials. The Hungarian cultivars, Kompolti and Unico B, and the French cultivar Futura 77 had the highest single plot dry stem yields (up to 1500 g/m 2 ) and bark proportions (up to 40%). All the cultivars flowered toward the end of January, suggesting that the growing season in Tasmania could accommodate much later flowering and potentially higher yielding genotypes. Levels of the psychoactive agent, delta-9-tetrahydrocannabinol were consistently below the legal maximum of 0.35% (dry weight basis). Three sowing date trials were conducted across 2 seasons incorporating dates between mid September and mid November and a single autumn planting at the end of May. Interactions with cultivar and planting density were also considered. Stem and bark yield declined with delays in sowing after early–mid October in response to a decline in calendar days and thermal time from sowing to flowering. The response was most pronounced in sowings of Kompolti, which flowered within a short period and differed more substantially in durations to flowering. Earlier sowings were limited by premature flowering in response to shorter daylengths and by poor drainage at one of the 2 trial sites. The success of early sowings in Tasmania would appear to depend on finding cultivars less sensitive tophotoperiod, and cultivation on well drained sites. A further trial was conducted to investigate the influence of plant density on hemp yields. Treatments included densities from 50 to 300 plants/m 2 . Plant density declined with crop growth across all treatments and was most pronounced for populations of 200 and 300 plants/m 2 . Final harvest stem yield responded in a parabolic manner to plant density, with maximum yields at about 110 plants/m 2 . Differences in the percentage of the long, high quality bark fibre at final harvest were generally small and not significant. However, regression analysis of the response of bark percentage suggested a linear decline with increasing initial density.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Brunton, David J., Peter Boutsalis, Gurjeet Gill y Christopher Preston. "Resistance to Multiple PRE Herbicides in a Field-evolved Rigid Ryegrass (Lolium rigidum) Population". Weed Science 66, n.º 5 (22 de junio de 2018): 581–85. http://dx.doi.org/10.1017/wsc.2018.31.

Texto completo
Resumen
AbstractA population of rigid ryegrass (Lolium rigidumGaudin) from a field on the Eyre Peninsula, South Australia, was suspected of resistance to thiocarbamate herbicides. Dose–response studies were conducted on this population (EP162) and two susceptible populations (SLR4 and VLR1). The resistant population exhibited cross-resistance to triallate, prosulfocarb, EPTC, and thiobencarb with higher LD50to triallate (14.9-fold), prosulfocarb (9.4-fold), EPTC (9.7-fold), and thiobencarb (13.6-fold) compared with the susceptible populations SLR4 and VLR1. The resistant population also displayed resistance to trifluralin, pyroxasulfone, and propyzamide. The LD50of the resistant population was higher for trifluralin (13.8-fold), pyroxasulfone (8.1-fold), and propyzamide (2.7-fold) compared with the susceptible populations. This study documents the first case of field-evolved resistance to thiocarbamate herbicides inL. rigidum.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Cornish, P. S. "Phosphorus management on extensive organic and low-input farms". Crop and Pasture Science 60, n.º 2 (2009): 105. http://dx.doi.org/10.1071/cp07134.

Texto completo
Resumen
A synthesis of the Australian literature reporting soil and plant phosphorus (P) status under organic methods of broadacre farming provides clear evidence that available soil P is lower in organic systems, although there have been no reports of farm P balances that might help to explain the lower P concentrations. There is also evidence, which is largely circumstantial, to suggest that P deficiency significantly reduces productivity of broadacre organic farms, but few experiments prove this conclusively because of other confounding factors. An overview of international literature suggests similar findings for mixed farms. Nine case studies further examined the constraints imposed by P on broadacre organic and low-input farms in Australia. Two farms on fertile soils had negative P balances but maintained productivity without fertilisers by ‘mining available’ P reserves. Five extensive organic farms on inherently less fertile soils had positive P balances because P fertiliser was used. Four of these farmers reported low productivity, which was supported by comparisons of wheat yields with estimated water-limited potential yields. Low productivity appeared to be related to P deficiency despite the use of allowable mineral fertilisers, mostly reactive phosphate rock (RPR), on these farms. The apparent ineffectiveness of RPR is most likely due to the modest rainfall at these farms (380–580 mm/year). The highest research priority is to develop effective, allowable fertilisers. Until this has been achieved, or ways of using less labile P have been developed, there is a case for derogation in the Certification Standards to allow the use of soluble forms of P fertiliser on soils with low soil solution P and high soil P-sorption. Two low-input farms practicing pasture-cropping had approximately balanced P budgets and from this perspective were the most sustainable of the farms studied.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Bao, Keyu, Rushikesh Padsala, Volker Coors, Daniela Thrän y Bastian Schröter. "A Method for Assessing Regional Bioenergy Potentials Based on GIS Data and a Dynamic Yield Simulation Model". Energies 13, n.º 24 (8 de diciembre de 2020): 6488. http://dx.doi.org/10.3390/en13246488.

Texto completo
Resumen
The assessment of regional bioenergy potentials from different types of natural land cover is an integral part of simulation tools that aim to assess local renewable energy systems. This work introduces a new workflow, which evaluates regional bioenergy potentials and its impact on water demand based on geographical information system (GIS)-based land use data, satellite maps on local crop types and soil types, and conversion factors from biomass to bioenergy. The actual annual biomass yield of crops is assessed through an automated process considering the factors of local climate, crop type, soil, and irrigation. The crop biomass yields are validated with historic statistical data, with deviation less than 7% in most cases. Additionally, the resulting bioenergy potentials yield between 10.7 and 12.0 GWh/ha compared with 13.3 GWh/ha from other studies. The potential contribution from bioenergy on the energy demand were investigated in the two case studies, representing the agricultural-dominant rural area in North Germany and suburban region in South Germany: Simulation of the future bioenergy potential for 2050 shows only smaller effects from climate change (less than 4%) and irrigation (below 3%), but the potential to cover up to 21% of the transport fuels demand in scenario supporting biodiesel and bioethanol for transportation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

SILVA, JOÃO VASCO y JOSHUA J. RAMISCH. "WHOSE GAP COUNTS? THE ROLE OF YIELD GAP ANALYSIS WITHIN A DEVELOPMENT-ORIENTED AGRONOMY". Experimental Agriculture 55, n.º 2 (5 de julio de 2018): 311–38. http://dx.doi.org/10.1017/s0014479718000236.

Texto completo
Resumen
SUMMARYYield gaps have become a useful tool for guiding development-related agronomy, especially in the global South. While critics have challenged some aspects of the yield gap methodology, and the relevance of food security advocacy based on yield gaps, very few studies question the actual relevance, application and scalability of yield gaps for smallholder farmers (and researchers) in the tropics. We assess these limitations using two contrasting case studies: maize-based farming systems in Western Kenya and rice-based farming systems in Central Luzon, the Philippines. From these two cases, we propose improvements in the use of yield gaps that would acknowledge both the riskiness of crop improvement options and the role that yield increases might play within local livelihoods. Participatory research conducted in Western Kenya calls into question the actual use and up-scaling of yield measurements from on-station agronomic trials to derive estimates of actual and water-limited yields in the region. Looking at maize yield gaps as cumulative probabilities demonstrates the challenges of assessing the real magnitude of yield gaps in farmers’ fields and of deciding whose yield gaps count for agricultural development in Kenya. In the case of rice-based farming systems, we use a historical dataset (1966–2012) to assess changes in rice yields, labour productivity, gross margin and rice self-sufficiency in Central Luzon, the Philippines. While large rice yield gaps persist here, there appear to be few incentives to close that gap once we consider the position of crop production within local livelihoods. In this context, economic returns to labour for farm work were marginal: labour productivity increased over time in both wet and dry seasons, but gross margins decreased in the wet season while no trend was observed for the dry season. Since most households were rice self-sufficient and further increases in crop production would offer minimal returns while relying increasingly on hired labour, we question who should close which yield gap. Our case studies show the importance of contextualising yield gaps within the broader livelihood context in which farmers operate. We propose that this should be done at farm and/or farming systems level while considering the risks associated with narrowing yield gaps and looking into multiple performance indicators.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Garnett, Trevor, Darren Plett, Sigrid Heuer y Mamoru Okamoto. "Genetic approaches to enhancing nitrogen-use efficiency (NUE) in cereals: challenges and future directions". Functional Plant Biology 42, n.º 10 (2015): 921. http://dx.doi.org/10.1071/fp15025.

Texto completo
Resumen
Over 100 million tonnes of nitrogen (N) fertiliser are applied globally each year to maintain high yields in agricultural crops. The rising price of N fertilisers has made them a major cost for farmers. Inefficient use of N fertiliser leads to substantial environmental problems through contamination of air and water resources and can be a significant economic cost. Consequently, there is considerable need to improve the way N fertiliser is used in farming systems. The efficiency with which crops use applied N fertiliser – the nitrogen-use efficiency (NUE) – is currently quite low for cereals. This is the case in both high yielding environments and lower yielding environments characteristic of cereal growing regions of Australia. Multiple studies have attempted to identify the genetic basis of NUE, but the utility of the results is limited because of the complex nature of the trait and the magnitude of genotype by environment interaction. Transgenic approaches have been applied to improve plant NUE but with limited success, due, in part, to a combination of the complexity of the trait but also due to lack of accurate phenotyping methods. This review documents these two approaches and suggests future directions in improving cereal NUE with a focus on the Australian cereal industry.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Little, Karen R., Michael T. Rose, William R. Jackson, Timothy R. Cavagnaro y Antonio F. Patti. "Do lignite-derived organic amendments improve early-stage pasture growth and key soil biological and physicochemical properties?" Crop and Pasture Science 65, n.º 9 (2014): 899. http://dx.doi.org/10.1071/cp13433.

Texto completo
Resumen
Commercial products derived from lignite (brown coal), sold mainly as humate preparations, are widely promoted as plant growth stimulants leading to higher crop yields. These products are also claimed to improve key indicators of soil health including soil pH and microbial biomass. In a glasshouse setting, we investigated the effect of six lignite-derived amendments applied at the manufacturer’s recommended rate on the early-stage growth of two pasture species, lucerne (Medicago sativa L.) and ryegrass (Lolium multiflorum Lam.). We used two soil types common to south-eastern Australia, and following an 8-week growing period, assessed soil pH, microbial biomass carbon and mycorrhizal colonisation as key indicators of soil health. We hypothesised that humic acid (HA) and macronutrients derived from the products would positively influence pasture growth and soil health indicators. Although significant growth effects were observed in response to some products, the effects were inconsistent across pasture and soil types. Treatment effects on tissue nutrient accumulation were rare, with the exception of increased potassium in ryegrass in one soil amended with raw brown coal, and decreased nitrogen in lucerne in the same soil amended with a granulated, slow-release humate product. Further, we found no consistent trends in mycorrhizal colonisation or microbial biomass carbon in response to individual treatments. Given the variable responses of the plant species and soil types to the amendments used here, we emphasise the need for further mechanistic studies to help understand how these amendments can be used to greatest effect.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Mwanamwenge, J., S. P. Loss, K. H. M. Siddique y P. S. Cocks. "Growth, seed yield and water use of faba bean (Vicia faba L.) in a short-season Mediterranean-type environment". Australian Journal of Experimental Agriculture 38, n.º 2 (1998): 171. http://dx.doi.org/10.1071/ea97098.

Texto completo
Resumen
Summary. A number of studies conducted in Western Australia have shown that faba bean has considerable potential as a pulse crop in the low to medium rainfall cropping regions (300–450 mm/year). However, its yield is variable and can be low in seasons when rainfall is less than average. Traits associated with the adaptation of 10 diverse faba bean genotypes to low rainfall, Mediterranean-type environments were evaluated at Merredin in south-western Australia over 2 contrasting seasons. Plant density was varied with seed size to ensure all genotypes achieved similar canopy development and dry matter production. Time to flowering appeared to be the most important trait influencing seed yield of faba bean in this environment. Seed yield was significantly correlated with time to 50% first flower in 1994 and 1995 (r2 = 0.61 and 0.82 respectively, P<0.01). In the dry 1994 season, rapid leaf area development in ACC286 allowed a greater absorption of photosynthetically active radiation resulting in more dry matter accumulation than other genotypes. ACC286 also had greater root length density at 20–30 cm depth compared with Icarus and the standard cultivar Fiord. There were no significant differences in total water use between the genotypes examined, although the pattern of water use varied markedly. The ratio of pre- to post-flowering water use was about 1:1 in the early flowering and high yielding ACC286 and 2.6 :1 for the late maturing, low yielding Icarus. Seed yield and harvest index were positively correlated with post-flowering water use (r2 = 0.75 and 0.71 respectively). Above-average rainfall in 1995 resulted in increased yield of all genotypes, particularly ACC286 which again produced the highest yields. Early flowering genotypes with rapid dry matter accumulation in the seedling stages (such as ACC286) could widen the adaptation of faba bean to low rainfall, Mediterranean-type environments and situations where sowing is delayed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Bell, M., N. Seymour, G. R. Stirling, A. M. Stirling, L. Van Zwieten, T. Vancov, G. Sutton y P. Moody. "Impacts of management on soil biota in Vertosols supporting the broadacre grains industry in northern Australia". Soil Research 44, n.º 4 (2006): 433. http://dx.doi.org/10.1071/sr05137.

Texto completo
Resumen
The grain-producing regions of northern New South Wales and southern and central Queensland are characterised by cropping systems that are strongly dependent on stored soil moisture rather than in-crop rainfall, and tillage systems that are increasingly reliant on zero or minimum tillage. Crops are grown relatively infrequently and crop rotations are dominated by winter and summer grains (wheat [Triticum aestivum L.] and sorghum [Sorghum bicolor L. Moench], respectively), with smaller areas of grain legumes and cotton (Gossypium hirsutum L.). The grey, black, and brown Vertosols represent the more productive soils in the region under rainfed cropping, and are the focus of work reported in this study. Soil samples were collected from surface soils (0–0.30 m) across the region, utilising sites of long term tillage and residue management studies, fertiliser trials, and commercial fields to enable an assessment of the impact of various management practices on soil biological properties. A number of biological and biochemical parameters were measured (microbial biomass C, total organic C and labile C fractions, total C and N, microbial activity using FDA, cellulase activity, free living nematodes, total DNA and fatty acid profiles), and the response of wheat, sorghum, and chickpea (Cicer arietinum L.) to steam pasteurisation was assessed in glasshouse bioassays. The objective was to obtain an indication of the biological status of grain-growing soils and assess the impact of biological constraints in soils from different regions and management systems. Results showed that biological activity in cropped soils was consistently low relative to other land uses in northern Australia, with management practices like stubble retention and adoption of zero tillage producing relatively small benefits. In the case of zero tillage, many of these benefits were confined to the top 0.05 m of the soil profile. Fallowing to recharge soil moisture reserves significantly reduced all soil biological parameters, while pasture leys produced consistent positive benefits. Breaking a long fallow with a short duration grain or brown manure crop significantly moderated the negative effects of a long bare fallow on soil biology. Use of inorganic N and P fertilisers produced minimal effects on soil biota, with the exception of one component of the free-living nematode community (the Dorylaimida). The glasshouse bioassays provided consistent evidence that soil biota were constraining growth of both grain crops (sorghum and wheat) but not the grain legume (chickpea). The biota associated with this constraint have not yet been identified, but effects were consistent across the region and were not associated with the presence of any known pathogen or correlated with any of the measured soil biological or biochemical properties. Further work to confirm the existence and significance of these constraints under field conditions is needed. None of the measured biological or biochemical parameters consistently changed in response to management practices, while conflicting conclusions could sometimes be drawn from different measurements on the same soil sample. This highlights the need for further work on diagnostic tools to quantify soil biological communities, and suggests there is no clear link between measured changes in soil biological communities and economically or ecologically important soil attributes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Sivapalan, Siva, Graeme Batten, Ashantha Goonetilleke y Serge Kokot. "Yield performance and adaptation of some Australian-grown rice varieties through multivariate analysis". Australian Journal of Agricultural Research 58, n.º 9 (2007): 874. http://dx.doi.org/10.1071/ar06357.

Texto completo
Resumen
Rice breeders are involved in developing new varieties for a diverse range of production environments to increase average yields. Interpretation of performance of several varieties evaluated in a broad range of environments is usually affected by variety × environment interactions. Application of multivariate analyses, especially multi-criteria decision making (MCDM) methods in variety × environment interaction studies can benefit interpretation of yield performance and adaptation of varieties in response to different environments. The case study discussed in this paper highlights the significant advantages of using MCDM methods to overcome constraints imposed by having to investigate a large number of variables inherent in such analysis. The grain yield of 13 rice varieties with varying characteristics, grown in 4 different regions in southern New South Wales (NSW), Australia, during the 2000–06 growing seasons was analysed using classification techniques and preference ranking organization method for enrichment evaluation (PROMETHEE) analysis. Significant variety × environment interaction was found to influence the yield performance of individual varieties across a range of environmental conditions. Classification of environments and geometrical analysis for interactive aid (GAIA) plot of PROMETHEE analysis identified the Murrumbidgee Irrigation Area (MIA) and Coleambally Irrigation Area (CIA) as higher yielding regions compared with the Eastern Murray Valley (EMV) and Western Murray Valley (WMV). Turbid water and cold weather conditions are suggested to explain the lower yield obtained in the WMV environment. In terms of varieties, Amaroo and Opus were identified as widely adaptable to most of the environments, while Jarrah was the least adaptable. Illabong can be considered as best adapted to the EMV or WMV regions, while Paragon and Reiziq can be regarded as best adapted to the MIA and CIA regions. Partial and complete ranking showed the interrelationships between the varieties for their yield performance and adaptation across all environments. Amaroo, Illabong, and Opus were ranked as the most preferred varieties, while Koshihikari, Kyeema, and Jarrah were ranked as the least preferred ones. Partial pre-order with 13 classes from PROMETHEE I analysis identified varieties with similar characteristics and aided the selection of suitable alternative varieties. The outcomes from the analyses reported here allow rice varieties or genotypes to be rated for yield stability for a specific or a range of different environments.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Keogh, Luke. "The First Four Wells: Unconventional Gas in Australia". M/C Journal 16, n.º 2 (8 de marzo de 2013). http://dx.doi.org/10.5204/mcj.617.

Texto completo
Resumen
Unconventional energy sources have become increasingly important to the global energy mix. These include coal seam gas, shale gas and shale oil. The unconventional gas industry was pioneered in the United States and embraced following the first oil shock in 1973 (Rogers). As has been the case with many global resources (Hiscock), many of the same companies that worked in the USA carried their experience in this industry to early Australian explorations. Recently the USA has secured significant energy security with the development of unconventional energy deposits such as the Marcellus shale gas and the Bakken shale oil (Dobb; McGraw). But this has not come without environmental impact, including contamination to underground water supply (Osborn, Vengosh, Warner, Jackson) and potential greenhouse gas contributions (Howarth, Santoro, Ingraffea; McKenna). The environmental impact of unconventional gas extraction has raised serious public concern about the introduction and growth of the industry in Australia. In coal rich Australia coal seam gas is currently the major source of unconventional gas. Large gas deposits have been found in prime agricultural land along eastern Australia, such as the Liverpool Plains in New South Wales and the Darling Downs in Queensland. Competing land-uses and a series of environmental incidents from the coal seam gas industry have warranted major protest from a coalition of environmentalists and farmers (Berry; McLeish). Conflict between energy companies wanting development and environmentalists warning precaution is an easy script to cast for frontline media coverage. But historical perspectives are often missing in these contemporary debates. While coal mining and natural gas have often received “boosting” historical coverage (Diamond; Wilkinson), and although historical themes of “development” and “rushes” remain predominant when observing the span of the industry (AGA; Blainey), the history of unconventional gas, particularly the history of its environmental impact, has been little studied. Few people are aware, for example, that the first shale gas exploratory well was completed in late 2010 in the Cooper Basin in Central Australia (Molan) and is considered as a “new” frontier in Australian unconventional gas. Moreover many people are unaware that the first coal seam gas wells were completed in 1976 in Queensland. The first four wells offer an important moment for reflection in light of the industry’s recent move into Central Australia. By locating and analysing the first four coal seam gas wells, this essay identifies the roots of the unconventional gas industry in Australia and explores the early environmental impact of these wells. By analysing exploration reports that have been placed online by the Queensland Department of Natural Resources and Mines through the lens of environmental history, the dominant developmental narrative of this industry can also be scrutinised. These narratives often place more significance on economic and national benefits while displacing the environmental and social impacts of the industry (Connor, Higginbotham, Freeman, Albrecht; Duus; McEachern; Trigger). This essay therefore seeks to bring an environmental insight into early unconventional gas mining in Australia. As the author, I am concerned that nearly four decades on and it seems that no one has heeded the warning gleaned from these early wells and early exploration reports, as gas exploration in Australia continues under little scrutiny. Arrival The first four unconventional gas wells in Australia appear at the beginning of the industry world-wide (Schraufnagel, McBane, and Kuuskraa; McClanahan). The wells were explored by Houston Oils and Minerals—a company that entered the Australian mining scene by sharing a mining prospect with International Australian Energy Company (Wiltshire). The International Australian Energy Company was owned by Black Giant Oil Company in the US, which in turn was owned by International Royalty and Oil Company also based in the US. The Texan oilman Robert Kanton held a sixteen percent share in the latter. Kanton had an idea that the Mimosa Syncline in the south-eastern Bowen Basin was a gas trap waiting to be exploited. To test the theory he needed capital. Kanton presented the idea to Houston Oil and Minerals which had the financial backing to take the risk. Shotover No. 1 was drilled by Houston Oil and Minerals thirty miles south-east of the coal mining town of Blackwater. By late August 1975 it was drilled to 2,717 metres, discovered to have little gas, spudded, and, after a spend of $610,000, abandoned. The data from the Shotover well showed that the porosity of the rocks in the area was not a trap, and the Mimosa Syncline was therefore downgraded as a possible hydrocarbon location. There was, however, a small amount of gas found in the coal seams (Benbow 16). The well had passed through the huge coal seams of both the Bowen and Surat basins—important basins for the future of both the coal and gas industries. Mining Concepts In 1975, while Houston Oil and Minerals was drilling the Shotover well, US Steel and the US Bureau of Mines used hydraulic fracture, a technique already used in the petroleum industry, to drill vertical surface wells to drain gas from a coal seam (Methane Drainage Taskforce 102). They were able to remove gas from the coal seam before it was mined and sold enough to make a profit. With the well data from the Shotover well in Australia compiled, Houston returned to the US to research the possibility of harvesting methane in Australia. As the company saw it, methane drainage was “a novel exploitation concept” and the methane in the Bowen Basin was an “enormous hydrocarbon resource” (Wiltshire 7). The Shotover well passed through a section of the German Creek Coal measures and this became their next target. In September 1976 the Shotover well was re-opened and plugged at 1499 meters to become Australia’s first exploratory unconventional gas well. By the end of the month the rig was released and gas production tested. At one point an employee on the drilling operation observed a gas flame “the size of a 44 gal drum” (HOMA, “Shotover # 1” 9). But apart from the brief show, no gas flowed. And yet, Houston Oil and Minerals was not deterred, as they had already taken out other leases for further prospecting (Wiltshire 4). Only a week after the Shotover well had failed, Houston moved the methane search south-east to an area five miles north of the Moura township. Houston Oil and Minerals had researched the coal exploration seismic surveys of the area that were conducted in 1969, 1972, and 1973 to choose the location. Over the next two months in late 1976, two new wells—Kinma No.1 and Carra No.1—were drilled within a mile from each other and completed as gas wells. Houston Oil and Minerals also purchased the old oil exploration well Moura No. 1 from the Queensland Government and completed it as a suspended gas well. The company must have mined the Department of Mines archive to find Moura No.1, as the previous exploration report from 1969 noted methane given off from the coal seams (Sell). By December 1976 Houston Oil and Minerals had three gas wells in the vicinity of each other and by early 1977 testing had occurred. The results were disappointing with minimal gas flow at Kinma and Carra, but Moura showed a little more promise. Here, the drillers were able to convert their Fairbanks-Morse engine driving the pump from an engine run on LPG to one run on methane produced from the well (Porter, “Moura # 1”). Drink This? Although there was not much gas to find in the test production phase, there was a lot of water. The exploration reports produced by the company are incomplete (indeed no report was available for the Shotover well), but the information available shows that a large amount of water was extracted before gas started to flow (Porter, “Carra # 1”; Porter, “Moura # 1”; Porter, “Kinma # 1”). As Porter’s reports outline, prior to gas flowing, the water produced at Carra, Kinma and Moura totalled 37,600 litres, 11,900 and 2,900 respectively. It should be noted that the method used to test the amount of water was not continuous and these amounts were not the full amount of water produced; also, upon gas coming to the surface some of the wells continued to produce water. In short, before any gas flowed at the first unconventional gas wells in Australia at least 50,000 litres of water were taken from underground. Results show that the water was not ready to drink (Mathers, “Moura # 1”; Mathers, “Appendix 1”; HOMA, “Miscellaneous Pages” 21-24). The water had total dissolved solids (minerals) well over the average set by the authorities (WHO; Apps Laboratories; NHMRC; QDAFF). The well at Kinma recorded the highest levels, almost two and a half times the unacceptable standard. On average the water from the Moura well was of reasonable standard, possibly because some water was extracted from the well when it was originally sunk in 1969; but the water from Kinma and Carra was very poor quality, not good enough for crops, stock or to be let run into creeks. The biggest issue was the sodium concentration; all wells had very high salt levels. Kinma and Carra were four and two times the maximum standard respectively. In short, there was a substantial amount of poor quality water produced from drilling and testing the three wells. Fracking Australia Hydraulic fracturing is an artificial process that can encourage more gas to flow to the surface (McGraw; Fischetti; Senate). Prior to the testing phase at the Moura field, well data was sent to the Chemical Research and Development Department at Halliburton in Oklahoma, to examine the ability to fracture the coal and shale in the Australian wells. Halliburton was the founding father of hydraulic fracture. In Oklahoma on 17 March 1949, operating under an exclusive license from Standard Oil, this company conducted the first ever hydraulic fracture of an oil well (Montgomery and Smith). To come up with a program of hydraulic fracturing for the Australian field, Halliburton went back to the laboratory. They bonded together small slabs of coal and shale similar to Australian samples, drilled one-inch holes into the sample, then pressurised the holes and completed a “hydro-frac” in miniature. “These samples were difficult to prepare,” they wrote in their report to Houston Oil and Minerals (HOMA, “Miscellaneous Pages” 10). Their program for fracturing was informed by a field of science that had been evolving since the first hydraulic fracture but had rapidly progressed since the first oil shock. Halliburton’s laboratory test had confirmed that the model of Perkins and Kern developed for widths of hydraulic fracture—in an article that defined the field—should also apply to Australian coals (Perkins and Kern). By late January 1977 Halliburton had issued Houston Oil and Minerals with a program of hydraulic fracture to use on the central Queensland wells. On the final page of their report they warned: “There are many unknowns in a vertical fracture design procedure” (HOMA, “Miscellaneous Pages” 17). In July 1977, Moura No. 1 became the first coal seam gas well hydraulically fractured in Australia. The exploration report states: “During July 1977 the well was killed with 1% KCL solution and the tubing and packer were pulled from the well … and pumping commenced” (Porter 2-3). The use of the word “kill” is interesting—potassium chloride (KCl) is the third and final drug administered in the lethal injection of humans on death row in the USA. Potassium chloride was used to minimise the effect on parts of the coal seam that were water-sensitive and was the recommended solution prior to adding other chemicals (Montgomery and Smith 28); but a word such as “kill” also implies that the well and the larger environment were alive before fracking commenced (Giblett; Trigger). Pumping recommenced after the fracturing fluid was unloaded. Initially gas supply was very good. It increased from an average estimate of 7,000 cubic feet per day to 30,000, but this only lasted two days before coal and sand started flowing back up to the surface. In effect, the cleats were propped open but the coal did not close and hold onto them which meant coal particles and sand flowed back up the pipe with diminishing amounts of gas (Walters 12). Although there were some interesting results, the program was considered a failure. In April 1978, Houston Oil and Minerals finally abandoned the methane concept. Following the failure, they reflected on the possibilities for a coal seam gas industry given the gas prices in Queensland: “Methane drainage wells appear to offer no economic potential” (Wooldridge 2). At the wells they let the tubing drop into the hole, put a fifteen foot cement plug at the top of the hole, covered it with a steel plate and by their own description restored the area to its “original state” (Wiltshire 8). Houston Oil and Minerals now turned to “conventional targets” which included coal exploration (Wiltshire 7). A Thousand Memories The first four wells show some of the critical environmental issues that were present from the outset of the industry in Australia. The process of hydraulic fracture was not just a failure, but conducted on a science that had never been tested in Australia, was ponderous at best, and by Halliburton’s own admission had “many unknowns”. There was also the role of large multinationals providing “experience” (Briody; Hiscock) and conducting these tests while having limited knowledge of the Australian landscape. Before any gas came to the surface, a large amount of water was produced that was loaded with a mixture of salt and other heavy minerals. The source of water for both the mud drilling of Carra and Kinma, as well as the hydraulic fracture job on Moura, was extracted from Kianga Creek three miles from the site (HOMA, “Carra # 1” 5; HOMA, “Kinma # 1” 5; Porter, “Moura # 1”). No location was listed for the disposal of the water from the wells, including the hydraulic fracture liquid. Considering the poor quality of water, if the water was disposed on site or let drain into a creek, this would have had significant environmental impact. Nobody has yet answered the question of where all this water went. The environmental issues of water extraction, saline water and hydraulic fracture were present at the first four wells. At the first four wells environmental concern was not a priority. The complexity of inter-company relations, as witnessed at the Shotover well, shows there was little time. The re-use of old wells, such as the Moura well, also shows that economic priorities were more important. Even if environmental information was considered important at the time, no one would have had access to it because, as handwritten notes on some of the reports show, many of the reports were “confidential” (Sell). Even though coal mines commenced filing Environmental Impact Statements in the early 1970s, there is no such documentation for gas exploration conducted by Houston Oil and Minerals. A lack of broader awareness for the surrounding environment, from floral and faunal health to the impact on habitat quality, can be gleaned when reading across all the exploration reports. Nearly four decades on and we now have thousands of wells throughout the world. Yet, the challenges of unconventional gas still persist. The implications of the environmental history of the first four wells in Australia for contemporary unconventional gas exploration and development in this country and beyond are significant. Many environmental issues were present from the beginning of the coal seam gas industry in Australia. Owning up to this history would place policy makers and regulators in a position to strengthen current regulation. The industry continues to face the same challenges today as it did at the start of development—including water extraction, hydraulic fracturing and problems associated with drilling through underground aquifers. Looking more broadly at the unconventional gas industry, shale gas has appeared as the next target for energy resources in Australia. Reflecting on the first exploratory shale gas wells drilled in Central Australia, the chief executive of the company responsible for the shale gas wells noted their deliberate decision to locate their activities in semi-desert country away from “an area of prime agricultural land” and conflict with environmentalists (quoted in Molan). Moreover, the journalist Paul Cleary recently complained about the coal seam gas industry polluting Australia’s food-bowl but concluded that the “next frontier” should be in “remote” Central Australia with shale gas (Cleary 195). It appears that preference is to move the industry to the arid centre of Australia, to the ecologically and culturally unique Lake Eyre Basin region (Robin and Smith). Claims to move the industry away from areas that might have close public scrutiny disregard many groups in the Lake Eyre Basin, such as Aboriginal rights to land, and appear similar to other industrial projects that disregard local inhabitants, such as mega-dams and nuclear testing (Nixon). References AGA (Australian Gas Association). “Coal Seam Methane in Australia: An Overview.” AGA Research Paper 2 (1996). Apps Laboratories. “What Do Your Water Test Results Mean?” Apps Laboratories 7 Sept. 2012. 1 May 2013 ‹http://appslabs.com.au/downloads.htm›. Benbow, Dennis B. “Shotover No. 1: Lithology Report for Houston Oil and Minerals Corporation.” November 1975. Queensland Digital Exploration Reports. Company Report 5457_2. Brisbane: Queensland Department of Resources and Mines 4 June 2012. 1 May 2013 ‹https://qdexguest.deedi.qld.gov.au/portal/site/qdex/search?REPORT_ID=5457&COLLECTION_ID=999›. Berry, Petrina. “Qld Minister Refuses to Drink CSG Water.” news.com.au, 22 Apr. 2013. 1 May 2013 ‹http://www.news.com.au/breaking-news/national/qld-minister-refuses-to-drink-csg-water/story-e6frfku9-1226626115742›. Blainey, Geofrey. The Rush That Never Ended: A History of Australian Mining. Carlton: Melbourne University Publishing, 2003. Briody, Dan. The Halliburton Agenda: The Politics of Oil and Money. Singapore: Wiley, 2004. Cleary, Paul. Mine-Field: The Dark Side of Australia’s Resource Rush. Collingwood: Black Inc., 2012. Connor, Linda, Nick Higginbotham, Sonia Freeman, and Glenn Albrecht. “Watercourses and Discourses: Coalmining in the Upper Hunter Valley, New South Wales.” Oceania 78.1 (2008): 76-90. Diamond, Marion. “Coal in Australian History.” Coal and the Commonwealth: The Greatness of an Australian Resource. Eds. Peter Knights and Michael Hood. St Lucia: University of Queensland, 2009. 23-45. 20 Apr. 2013 ‹http://www.peabodyenergy.com/mm/files/News/Publications/Special%20Reports/coal_and_commonwealth%5B1%5D.pdf›. Dobb, Edwin. “The New Oil Landscape.” National Geographic (Mar. 2013): 29-59. Duus, Sonia. “Coal Contestations: Learning from a Long, Broad View.” Rural Society Journal 22.2 (2013): 96-110. Fischetti, Mark. “The Drillers Are Coming.” Scientific American (July 2010): 82-85. Giblett, Rod. “Terrifying Prospects and Resources of Hope: Minescapes, Timescapes and the Aesthetics of the Future.” Continuum: Journal of Media and Cultural Studies 23.6 (2009): 781-789. Hiscock, Geoff. Earth Wars: The Battle for Global Resources. Singapore: Wiley, 2012. HOMA (Houston Oil and Minerals of Australia). “Carra # 1: Well Completion Report.” July 1977. Queensland Digital Exploration Reports. Company Report 6054_1. Brisbane: Queensland Department of Resources and Mines. 21 Feb. 2012 ‹https://qdexguest.deedi.qld.gov.au/portal/site/qdex/search?REPORT_ID=6054&COLLECTION_ID=999›. ———. “Kinma # 1: Well Completion Report.” August 1977. Queensland Digital Exploration Reports. Company Report 6190_2. Brisbane: Queensland Department of Resources and Mines. 21 Feb. 2012 ‹https://qdexguest.deedi.qld.gov.au/portal/site/qdex/search?REPORT_ID=6190&COLLECTION_ID=999›. ———. “Miscellaneous Pages. Including Hydro-Frac Report.” August 1977. Queensland Digital Exploration Reports. Company Report 6190_17. Brisbane: Queensland Department of Resources and Mines. 31 May 2012 ‹https://qdexguest.deedi.qld.gov.au/portal/site/qdex/search?REPORT_ID=6190&COLLECTION_ID=999›. ———. “Shotover # 1: Well Completion Report.” March 1977. Queensland Digital Exploration Reports. Company Report 5457_1. Brisbane: Queensland Department of Resources and Mines. 22 Feb. 2012 ‹https://qdexguest.deedi.qld.gov.au/portal/site/qdex/search?REPORT_ID=5457&COLLECTION_ID=999›. Howarth, Robert W., Renee Santoro, and Anthony Ingraffea. “Methane and the Greenhouse-Gas Footprint of Natural Gas from Shale Formations: A Letter.” Climatic Change 106.4 (2011): 679-690. Mathers, D. “Appendix 1: Water Analysis.” 1-2 August 1977. Brisbane: Government Chemical Laboratory. Queensland Digital Exploration Reports. Company Report 6054_4. Brisbane: Queensland Department of Resources and Mines. 21 Feb. 2012 ‹https://qdexguest.deedi.qld.gov.au/portal/site/qdex/search?REPORT_ID=6054&COLLECTION_ID=999›. ———. “Moura # 1: Testing Report Appendix D Fluid Analyses.” 2 Aug. 1977. Brisbane: Government Chemical Laboratory. Queensland Digital Exploration Reports. Company Report 5991_5. Brisbane: Queensland Department of Resources and Mines. 22 Feb. 2012 ‹https://qdexguest.deedi.qld.gov.au/portal/site/qdex/search?REPORT_ID=5991&COLLECTION_ID=999›. McClanahan, Elizabeth A. “Coalbed Methane: Myths, Facts, and Legends of Its History and the Legislative and Regulatory Climate into the 21st Century.” Oklahoma Law Review 48.3 (1995): 471-562. McEachern, Doug. “Mining Meaning from the Rhetoric of Nature—Australian Mining Companies and Their Attitudes to the Environment at Home and Abroad.” Policy Organisation and Society (1995): 48-69. McGraw, Seamus. The End of Country. New York: Random House, 2011. McKenna, Phil. “Uprising.” Matter 21 Feb. 2013. 1 Mar. 2013 ‹https://www.readmatter.com/a/uprising/›.McLeish, Kathy. “Farmers to March against Coal Seam Gas.” ABC News 27 Apr. 2012. 22 Apr. 2013 ‹http://www.abc.net.au/news/2012-04-27/farmers-to-march-against-coal-seam-gas/3977394›. Methane Drainage Taskforce. Coal Seam Methane. Sydney: N.S.W. Department of Mineral Resources and Office of Energy, 1992. Molan, Lauren. “A New Shift in the Global Energy Scene: Australian Shale.” Gas Today Online. 4 Nov. 2011. 3 May 2012 ‹http://gastoday.com.au/news/a_new_shift_in_the_global_energy_scene_australian_shale/064568/›. Montgomery, Carl T., and Michael B. Smith. “Hydraulic Fracturing: History of an Enduring Technology.” Journal of Petroleum Technology (2010): 26-32. 30 May 2012 ‹http://www.spe.org/jpt/print/archives/2010/12/10Hydraulic.pdf›. NHMRC (National Health and Medical Research Council). National Water Quality Management Strategy: Australian Drinking Water Guidelines 6. Canberra: Australian Government, 2004. 7 Sept. 2012 ‹http://www.nhmrc.gov.au/guidelines/publications/eh52›. Nixon, Rob. “Unimagined Communities: Developmental Refugees, Megadams and Monumental Modernity.” New Formations 69 (2010): 62-80. Osborn, Stephen G., Avner Vengosh, Nathaniel R. Warner, and Robert B. Jackson. “Methane Contamination of Drinking Water Accompanying Gas-Well Drilling and Hydraulic Fracturing.” Proceedings of the National Academy of Sciences 108.20 (2011): 8172-8176. Perkins, T.K., and L.R. Kern. “Widths of Hydraulic Fractures.” Journal of Petroleum Technology 13.9 (1961): 937-949. Porter, Seton M. “Carra # 1:Testing Report, Methane Drainage of the Baralaba Coal Measures, A.T.P. 226P, Central Queensland, Australia.” Oct. 1977. Queensland Digital Exploration Reports. Company Report 6054_7. Brisbane: Queensland Department of Resources and Mines. 21 Feb. 2012 ‹https://qdexguest.deedi.qld.gov.au/portal/site/qdex/search?REPORT_ID=6054&COLLECTION_ID=999›. ———. “Kinma # 1: Testing Report, Methane Drainage of the Baralaba Coal Measures, A.T.P. 226P, Central Queensland, Australia.” Oct. 1977. Queensland Digital Exploration Reports. Company Report 6190_16. Brisbane: Queensland Department of Resources and Mines. 21 Feb. 2012 ‹https://qdexguest.deedi.qld.gov.au/portal/site/qdex/search?REPORT_ID=6190&COLLECTION_ID=999›. ———. “Moura # 1: Testing Report: Methane Drainage of the Baralaba Coal Measures: A.T.P. 226P, Central Queensland, Australia.” Oct. 1977. Queensland Digital Exploration Reports. Company Report 6190_15. Brisbane: Queensland Department of Resources and Mines. 21 Feb. 2012 ‹https://qdexguest.deedi.qld.gov.au/portal/site/qdex/search?REPORT_ID=6190&COLLECTION_ID=999›. QDAFF (Queensland Department of Agriculture, Fisheries and Forestry). “Interpreting Water Analysis for Crop and Pasture.” 1 Aug. 2012. 1 May 2013 ‹http://www.daff.qld.gov.au/ 26_4347.htm›. Robin, Libby, and Mike Smith. “Prologue.” Desert Channels: The Impulse To Conserve. Eds. Libby Robin, Chris Dickman and Mandy Martin. Collingwood: CSIRO Publishing, 2010. XIII-XVII. Rogers, Rudy E. Coalbed Methane: Principles and Practice. Englewood Cliffs: Prentice Hill, 1994. Sell, B.H. “T.E.P.L. Moura No.1 Well Completion Report.” October 1969. Queensland Digital Exploration Reports. Company Report 2899_1. Brisbane: Queensland Department of Resources and Mines. 26 Feb. 2013 ‹https://qdexguest.deedi.qld.gov.au/portal/site/qdex/search?REPORT_ID=2899&COLLECTION_ID=999›. Senate. Management of the Murray Darling Basin: Interim Report: The Impact of Coal Seam Gas on the Management of the Murray Darling Basin. Canberra: Rural Affairs and Transport References Committee, 2011. Schraufnagel, Richard, Richard McBane, and Vello Kuuskraa. “Coalbed Methane Development Faces Technology Gaps.” Oil & Gas Journal 88.6 (1990): 48-54. Trigger, David. “Mining, Landscape and the Culture of Development Ideology in Australia.” Ecumene 4 (1997): 161-180. Walters, Ronald L. Letter to Dennis Benbow. 29 August 1977. In Seton M. Porter, “Moura # 1: Testing Report: Methane Drainage of the Baralaba Coal Measures: A.T.P. 226P, Central Queensland, Australia.” October 1977, 11-14. Queensland Digital Exploration Reports. Company Report 6190_15. Brisbane: Queensland Department of Resources and Mines. 21 Feb. 2012 ‹https://qdexguest.deedi.qld.gov.au/portal/site/qdex/search?REPORT_ID=6190&COLLECTION_ID=999›. WHO (World Health Organization). International Standards for Drinking-Water. 3rd Ed. Geneva, 1971. Wilkinson, Rick. A Thirst for Burning: The Story of Australia's Oil Industry. Sydney: David Ell Press, 1983. Wiltshire, M.J. “A Review to ATP 233P, 231P (210P) – Bowen/Surat Basins, Queensland for Houston Oil Minerals Australia, Inc.” 19 Jan. 1979. Queensland Digital Exploration Reports Database. Company Report 6816. Brisbane: Queensland Department of Resources and Mines. 21 Feb. 2012 ‹https://qdexguest.deedi.qld.gov.au/portal/site/qdex/search?REPORT_ID=6816&COLLECTION_ID=999›. Wooldridge, L.C.P. “Methane Drainage in the Bowen Basin – Queensland.” 25 Aug. 1978. Queensland Digital Exploration Reports Database. Company Report 6626_1. Brisbane: Queensland Department of Resources and Mines. 31 May 2012 ‹https://qdexguest.deedi.qld.gov.au/portal/site/qdex/search?REPORT_ID=6626&COLLECTION_ID=999›.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Turner, Bethaney. "Taste in the Anthropocene: The Emergence of “Thing-power” in Food Gardens". M/C Journal 17, n.º 1 (17 de marzo de 2014). http://dx.doi.org/10.5204/mcj.769.

Texto completo
Resumen
Taste and Lively Matter in the Anthropocene This paper is concerned with the role of taste in relation to food produced in backyard or community gardens. Taste, as outlined by Bourdieu, is constructed by many factors driven primarily by one’s economic position as well as certain cultural influences. Such arguments tend to work against a naïve reading of the “natural” attributes of food and the biological impulses and responses humans have to taste. Instead, within these frameworks, taste is positioned as a product of the machinations of human society. Along these lines, it is generally accepted that the economic and, consequently, the social shaping of tastes today have been significantly impacted on by the rise of international agribusiness throughout the twentieth century. These processes have greatly reduced the varieties of food commercially available due to an emphasis on economies of scale that require the production of food that can be grown in monocultures and which can withstand long transport times (Norberg-Hodge, Thrupp, Shiva). Of course, there are also other factors at play in relation to taste that give rise to distinction between classes. This includes the ways in which we perform our bodies and shape them in the face of our social and economic conditions. Many studies in this area focus on eating disorders and how control of food intake cannot be read simply as examples of disciplined or deviant bodies (Bordo, Probyn, Ferreday). Instead, the links between food and subjectivity are much more complex. However, despite the contradictions and nuance acknowledged in relation to understandings of food, it is primarily conceptualised as an economic and symbolic good that is controlled by humans and human informed processes. In line with the above observations, literature on food provisioning choices in the areas of food sociology and human geography tends to focus on efforts to understand food purchasing decisions and eating habits. There is a strong political-economic dimension to this research even when its cultural-symbolic value is acknowledged. This is highlighted by the work of Julie Guthman which, among other things, explores “the conversion of tastes into commodities (as well as the reverse)” (“Commodified” 296). Guthman’s analysis of alternative food networks, particularly the organic sector and farmers markets, has tended to reaffirm a Bourdieuan understanding of class and distinction whereby certain foods become appropriated by elites, driving up price and removing it from the reach of ordinary consumers (“Commodified”, “Fast Food”). There has also been, however, some recognition of the limits of such approaches and acknowledgement of the fragility and porous nature of boundaries in the food arena. For example, Jordan points out in her study of the heirloom tomato that, even when a food is appropriated by elites, thereby significantly increasing its cost, consumption of the food and its cultural-symbolic meaning can continue unchanged by those who have traditionally produced and consumed the food privately in their gardens. Guthman is quite right to highlight the presence of huge inequities in both mainstream and alternative food systems throughout the world. Food may, however, be able to disrupt the dominance of these economic and social representations through its very own agentic qualities. To explore this idea, this paper draws on the work of political theorist, Jane Bennett, and eco-feminist, Val Plumwood, and applies some of their key insights to data gathered through in-depth interviews with 20 community gardeners and 7 Canberra Show exhibitors carried out from 2009 to 2012. These interviews were approximately 1 to 2 hours long in duration and were carried out in, or following, an extensive tour of the gardens of the participants, during which tastings of the produce were regularly offered to the interviewers. Jane Bennett sets out to develop a theoretical approach which she names “thing-power materialism” which is grounded in the idea that objects, including food, have agency (354). Bennett conceptualises this idea through her notion of “lively matter” and the “thing power” of objects which she defines as “the curious ability of inanimate things to animate, to act, to produce effects dramatic and subtle” (“The force” 351, “Vibrant”). The basic idea here is that if we are willing to read agency into the nonhuman things around us, then we become forced to recognise that humans are simply one more element of a world of things which can act on, with or against others through various assemblages (Deleuze and Guatarri). These assemblages can be made, undone and rebuilt in multiple ways. The power of the elements to act within these may not be equal, but nor are they stable and static. For Bennett, this is not simply a return to previous materialist theories premised on naïve notions of object agency. It is, instead, a theory motivated by attempts to develop understandings and strategies that encourage engaged ecological living practices which seek to avoid ongoing human-inflicted environmental damage caused by the “master rationality” (Plumwood) that has fuelled the era of the anthropocene, the first geological era shaped by human action. Anthropocentric thinking and its assumptions of human superiority and separateness to other elements of our ecological mesh (Morton “Thinking”) has been identified as fuelling wasteful, exploitative, environmentally damaging practices. It acts as a key impediment to the embrace of attitudinal and behavioural changes that could promote more ecologically responsible and sustainable living practices. These ideas are particularly prominent in the fields of ecological humanities, ecological feminism and political theory (Bennett “The force”, “Vibrant”; Morton “Ecological”, “Thinking”, “Ecology”; Plumwood). To redress these issues and reduce further human-inflicted environmental damage, work in these spaces tends to highlight the importance of identifying the interconnections and mutual reliance between humans and nonhumans in order to sustain life. Thus, this work challenges the “master rationality” of the anthropocene by highlighting the agentic (Bennett “The force,” “Vibrant”) or actant (Latour) qualities of nonhumans. In this spirit, Plumwood writes that we need to develop “an environmental culture that values and fully acknowledges the nonhuman sphere and our dependency on it, and is able to make good decisions about how we live and impact on the nonhuman world” (3). Food, as a basic human need, and its very gustatory taste, is animated by nonhuman elements. The role of these nonhumans is particularly visible to those who engage in their own gardening practices. As such, the ways in which gardeners understand and speak of these processes may provide insights into how an environmental culture as envisaged by Plumwood could be supported, harnessed and shared. The brevity of this paper means only a quick skim of the murky ontological waters into which its wades can be provided. The overarching aim is to identify how the recent resurgence of cultural materiality can be linked to the ways in which everyday people conceptualise and articulate their food provisioning practices. In so doing, it demonstrates that gardeners can conceptualise their food, and the biological processes as well as the nonhuman labour which bring it to fruition, as having actant qualities. This is most overtly recognised through the gardeners’ discussions of how their daily habits and routines alter in response to the qualities and “needs” of their food producing gardens. The gardeners do not express this in a strict nature/culture binary. Instead, they indicate an awareness of the interconnectedness and mutual reliance of the human and nonhuman worlds. In this way, understandings of “taste,” as produced by human centred relations predicated on exchange of capital, are being rethought. This rethinking may offer ways of promoting a more sustainable engagement with ecological beliefs and behaviours which work against the very notion of human dominance that produced the era of the anthropocene. Local Food, Taste and Nonhuman Agency Recent years have seen an increase in the purchasing, sale and growing of local food. This has materialised in multiple forms from backyard, verge and community gardens to the significant growth of farmers markets. Such shifts are attributed to increasing resistance to the privileging of globalised and industrial-scale agri-business, practices which highlight the “master rationality” underpinning the anthropocene. This backlash has been linked to environmental motivations (Seyfang “Shopping,” “Ecological,” “Growing”); desires to support local economies (particularly the financial well-being of farmers) (Norberg-Hodge); and health concerns in relation to the use of chemicals in food production (Goodman and Goodman). Despite evidence that people grow or buy food based on gustatory taste, this has received less overt attention as a motivator for food provisioning practices in the literature (Hugner). Where it is examined, taste is generally seen as a social/cultural phenomenon shaped by the ideas related to the environmental, economic and health concerns mentioned above. However, when consumers discuss taste they also refer to notions of freshness, the varieties of food that are available, and nostalgia for the “way food used to be”. Taste in its gustatory sense and pleasure from food consumption is alluded to in all of the interviews carried out for this research. While the reasons for gardening are multiple and varied, there is a common desire to produce food that tastes better and, thus, induces greater pleasure than purchased food. As one backyard gardener and successful Royal Canberra Show exhibitor notes: “[e]verything that you put [grow] in the garden [has a] better taste than from the market or from the shop.” The extent of this difference was often a surprise for the gardeners: “I never knew a home grown potato could taste so different from a shop bought potato until I grew [my own] […] and I couldn’t believe the taste.” The gardeners in this research all agreed that the taste of commercially available fruit and vegetables was inferior to self-produced food. This was attributed to the multiple characteristics of industrialised food systems. Participants referred specifically to issues ranging from reduction in the varieties available to the chemical intensive practices designed to lead to high yields in short periods of time. The resulting poor taste of such foods was exemplified by comments such as shop bought tomatoes “don’t taste like tomatoes” and the belief that “[p]otatoes and strawberries from the shop taste the same as each other”. Even when gardeners raised health concerns about mainstream food, emphasising their delight in growing their own because they “knew what had gone into their food” (Turner, “Embodied”), the issue of taste continued to play an important role in influencing their gardening practices. One gardener stated: “I prefer more [food that] is tasty than one that is healthy for me”. The tastiest food for her came from her own community garden plot and this motivated her to travel across town most days to tend the garden. While tasty food was often seen as being more nutritious, this was not the key driver in food production. The superior taste of the fruit and vegetables grown by these gardeners in Canberra calls their bodies and minds into action to avoid poor tasting food. This desire for tasty food was viewed as common to the general population but was strongly identified as only being accessible to people who grow their own. A backyard gardener, speaking of the residents of an aged care facility where he volunteers observes: “[w]hen you…meet these people they've lost that ability to do any gardening and they really express it. They miss the taste, the flavours.” Another backyard gardener and Show exhibitor recounted a story from two years prior when he and his wife invited guests for a New Year’s Day lunch. While eating their meal, a guest asked “did you grow these carrots?” When he confirmed that he had, she declared: “I can taste it.” Others noted that many young people don’t know what they are missing out on because they have never tasted home-grown produce. Through the sense of taste, the tomatoes, potatoes and carrots and myriad of other foodstuffs grown at homes or in community gardens actively encourage resistance to, or questioning of, the industrial agricultural system and its outputs. The gardeners link poor tasting food to a loss of human responsiveness to plants resulting from the spatial characteristics of industrial agriculture. Modern agribusiness requires large-scale, global production and streamlined agricultural processes that aim to limit the need for producers to respond to unique climatic and soil conditions (through genetically modification technology, see Turner, “Reflections”) and removes the need, and capacity, for individual care of plants. This has led to heavy reliance on agricultural chemicals. The gardeners tend to link high-level usage of pesticides and herbicides with poor taste. One highly successful Show exhibitor, states that in his food, “There’s better taste …because they haven’t got the chemicals in them, not much spray, not much fertiliser, for that is better”. However, when chemical use is limited or removed, the gardeners acknowledge that food plants require more intensive and responsive human care. This involves almost daily inspection of individual plants to pick off and squash (or feed to chickens and birds) the harmful bugs. The gardeners need to be vigilant and capable of developing innovative techniques to ensure the survival of their plants and the production of tasty food. They are, of course, not always successful. One organic community gardener lamented the rising populations of slaters and earwigs which could decimate whole beds of newly sprouted seedlings overnight. This was a common issue and, in response, the gardeners research and trial new methods of control (including encouraging the introduction of “good” bugs into the ecosystem through particular plantings). Ultimately, however, the gardeners were resigned to “learn[ing] to live with them [the ‘bad’ bugs]” while exerting regular bodily and mental efforts to reduce their populations and maximise their own food production. The lack of ultimate control over their growing patch, and the food it could produce, was acknowledged by the gardeners. There was an awareness and understanding of the role nonhuman elements play in food production, ranging from weather conditions to soil microbes to bugs. The gardeners talk of how their care-giving is responsive to these elements. As one community gardener asserts: “…we prefer to … garden in a way that naturally strengthens the plant immune system.” This involves regular attention to soil microbes and the practice of what was referred to as “homeopathic” gardening. Through a responsive approach to the “needs” of plants, the soil, and other nonhuman elements, the plants then delivered “vitamins and minerals” to the gardeners, packaged in tasty food. The tastiest foods ensured their survival through seed-saving practices: “[i]f something tastes good, we’ll save the seed from it”. In this way, the plant’s taste encourages gardeners to invest their human labour to secure its future. The production of tasty food was understood to be reliant on collaborative, iterative and ongoing efforts between human and nonhuman elements. While gardening has often been represented as an attempt to bend nature to the will of humans (Power), the gardeners in this study spoke about working with nature in their quest to produce good tasting food. This was particularly evident in the interviews with gardeners who exhibit produce in the Canberra Show (see NMA for further details). However, despite the fact that taste is the key motivator for growing their own food, it is not a factor in Show judging. Instead, fruit and vegetable entries (those not turned into value added goods such as jams or relishes) are judged on appearance. While this focus on appearance tends to perpetuate the myth that the fruits and vegetables we consume should conform to an ideal type that are blemish free and uniform in size (just as is prized in industrialised agriculture), the act of gardening for the Show and the process of selecting produce to enter, contradicted this assumption. Instead, entering the Show seemed to reinforce awareness of the limits of human control over nature and emphasise the very agency of nonhuman elements. This is highlighted by one exhibitor and community gardener who states: I suppose you grow vegetables for the enjoyment of eating them, but there’s also that side of getting enough and perfecting the vegetables and getting… sometimes it’s all down to the day of whether you’ve got three of something, if it’s the right size and colour and so I’ll enter it [in the Show] on the day instead of putting an entry form in before …you just don’t know what you’re going to have, the bugs decide to eat this or the mice get it or something. There’s always something. In this way, where “there’s always something” waiting to disrupt a gardener’s best laid plans, the exhibitors involved in this project seem to be acutely aware of the agency of nonhumans. In these interviews there is evidence that nonhuman elements act on the gardeners, forcing them to alter their behaviours and engage with plants to meet both of their needs. While perfect specimens can sometimes be grown for the Show, the gardeners acknowledge that this can only be done with an element of luck and careful cultivation of the partnership between human and nonhuman elements in the garden. And, even then, you never know what might happen. This lack of ultimate control is part of the challenge and, thus, the appeal, of competing in the Show. Conclusion The era of the anthropocene demonstrates the consequences of human blindness to ecological matters. Myths of human supremacy and a failure to respect nonhuman elements have fuelled a destructive and wasteful mentality that is having serious consequences for our environment. This has prompted efforts to identify new environmental cultures to promote the adoption of more sustainable lifestyles. The resurgence of cultural materialism and the agentic capacity of objects is one key way in which this is being explored as a means of promoting new ethical approaches to how humans live their lives enmeshed with nonhumans. Food, as a basic necessity, provides a key way in which the interconnected relationships between humans and nonhumans can be brought to the fore. Taste, as a biological response and organic attribute of foodstuffs, can induce humans to act. It can cause us to alter our daily habits, behaviours and beliefs. Perhaps a more attentive approach to food, its taste and how it is produced could provide a framework for rethinking human/nature relations by emphasising the very limits of human control. References Bordo, Susan. Unbearable Weight: Feminism, Western Culture and the Body. Berkeley, CA: U of California P, 1993. Bourdieu, Pierre. Distinction: A Social Critique of the Judgement of Taste. Trans. R. Nice. Cambridge: Harvard UP, 1984. Bennett, Jane. “The Force of Things: Steps Toward an Ecology of Matter.” Political Theory 32.3 (2004): 347–372. ---. Vibrant Matter: A Political Ecology Of Things. Durham, NC: Duke UP, 2010. Deleuze, Gilles, and Felix Guattari. A Thousand Plateaus: Capitalism and Schizophrenia. Minneapolis: U of Minnesota P, 1993. Ferreday, Donna. “Unspeakable Bodies: Erasure, Embodiment and the Pro-Ana Community.” International Journal of Cultural Studies 6 (2003): 277–295. Goodman, David, and Michael Goodman. “Alternative Food networks.” International Encyclopedia of Human Geography. Ed. R. Kitchin and N. Thrift. Oxford: Elsevier, 2008. Guthman, Julie. “Commodified Meanings, Meaningful Commodities: Re–thinking Production–Consumption Links through the Organic System of Provision.” Sociologia Ruralis 42.4 (2002): 295–311. ---. “Fast Food/Organic Food: Reflexive Tastes and the Making of ‘Yuppie Chow’.” Social and Cultural Geography 4.1 (2003): 45–58. Hugner, Renee. S., Pierre McDonagh, Andrea Prothero, Clifford J. Scultz, and Julie Stanton. “Who Are Organic Food Consumers?: A Compilation And Review Of Why People Purchase Organic Food.” Journal of Consumer Behaviour 6.2–3 (2007): 94–110. Jordan, Jennifer A. “The Heirloom Tomato as Cultural Object: Investigating Taste and Space.” Sociologia Ruralis 47.1 (2007): 20–41. Latour, Bruno. Science in Action: How to Follow Scientists and Engineers Through Society. Milton Keynes: Open UP, 1987. Morton, Timothy. The Ecological Thought. Cambridge, MA: Harvard University Press, 2010. ---. “Thinking Ecology, the Mesh, the Strange Stranger and the Beautiful Soul.” Collapse VI (2010): 265–293. ---. Ecology without Nature. Cambridge, MA: Harvard UP, 2007. National Museum of Australia Urban Farming and the Agricultural Show. 12 Mar. 2014. ‹http://www.nma.gov.au/online_features/urban_farming_agricultural_show/home›. Norberg-Hodge, Helena. “Beyond the Monoculture: Strengthening Local Culture, Economy and Knowledge.” The Journal of Sustainability Education. 19 Mar. 2012. 13 Mar. 2014 ‹http://www.jsedimensions.org/wordpress/content/beyond-the-monoculture-strengthening-local-culture-economy-and-knowledge_2012_03›. Plumwood, Val. Environmental Culture: The Ecological Crisis of Reason. London and New York: Routledge, 2002. Power, Emma. “Human-Nature Relations in Suburban Gardens.” Australian Geographer 36.1 (2005): 39–53. Probyn, Elspeth. Carnal Appetites: Foodsexidentites. London: Routledge, 2000. Seyfang, Gil. “Shopping for Sustainability: Can Sustainable Consumption Promote Ecological Citizenship?”. Environmental Politics 14.2 (2005): 290–306. -----. “Ecological Citizenship and Sustainable Consumption: Examining Local Organic Food Networks.” Journal of Rural Studies 22 (2006): 383–395. -----. “Growing Sustainable Consumption Communities: The Case Of Local Organic Food Networks.” International Journal of Sociology and Social Policy 27.3/4 (2007): 120–134. Shiva, Vandana. Stolen Harvest: The Hijacking of the Global Food Supply. Cambridge, MA: South End P, 2000. Thrupp, Lori Ann. “Linking Agricultural Biodiversity and Food Security.” International Affairs 76.2 (2000): 265–282. Turner, Bethaney. “Embodied Connections: Sustainability, Food Systems And Community Gardens.” Local Environment: The International Journal of Justice and Sustainability 16.6 (2011): 509-522. ---. “Reflections On a New Technology”. National Museum of Australia 2012. 12 Mar. 2014. ‹http://www.nma.gov.au/history/pate/objects/collection_reflections/genetically_modified_food_and_farming›. Acknowledgements Thank you to the gardeners who volunteered to be part of this study. The interviews related to the Royal Canberra Show were carried out as part of a collaborative project between the Faculty of Arts and Design at the University of Canberra (Joanna Henryks and Bethaney Turner) and the People and the Environment team (George Main and Kirsten Wehner) at the National Museum of Australia.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Chavdarov, Anatoliy V. "Special Issue No. – 10, June, 2020 Journal > Special Issue > Special Issue No. – 10, June, 2020 > Page 5 “Quantative Methods in Modern Science” organized by Academic Paper Ltd, Russia MORPHOLOGICAL AND ANATOMICAL FEATURES OF THE GENUS GAGEA SALISB., GROWING IN THE EAST KAZAKHSTAN REGION Authors: Zhamal T. Igissinova,Almash A. Kitapbayeva,Anargul S. Sharipkhanova,Alexander L. Vorobyev,Svetlana F. Kolosova,Zhanat K. Idrisheva, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00041 Abstract: Due to ecological preferences among species of the genus GageaSalisb, many plants are qualified as rare and/or endangered. Therefore, the problem of rational use of natural resources, in particular protection of early spring plant species is very important. However, literary sources analysis only reveals data on the biology of species of this genus. The present research,conducted in the spring of 2017-2019, focuses on anatomical and morphological features of two Altai species: Gagealutea and Gagea minima; these features were studied, clarified and confirmed by drawings and photographs. The anatomical structure of the stem and leaf blade was studied in detail. The obtained research results will prove useful for studies of medicinal raw materials and honey plants. The aforementioned species are similar in morphological features, yet G. minima issmaller in size, and its shoots appear earlier than those of other species Keywords: Flora,gageas,Altai species,vegetative organs., Refference: I. Atlas of areas and resources of medicinal plants of Kazakhstan.Almaty, 2008. II. Baitenov M.S. Flora of Kazakhstan.Almaty: Ġylym, 2001. III. DanilevichV. G. ThegenusGageaSalisb. of WesternTienShan. PhD Thesis, St. Petersburg,1996. IV. EgeubaevaR.A., GemedzhievaN.G. The current state of stocks of medicinal plants in some mountain ecosystems of Kazakhstan.Proceedings of the international scientific conference ‘”Results and prospects for the development of botanical science in Kazakhstan’, 2002. V. Kotukhov Yu.A. New species of the genus Gagea (Liliaceae) from Southern Altai. Bot. Journal.1989;74(11). VI. KotukhovYu.A. ListofvascularplantsofKazakhstanAltai. Botan. Researches ofSiberiaandKazakhstan.2005;11. VII. KotukhovYu. The current state of populations of rare and endangered plants in Eastern Kazakhstan. Almaty: AST, 2009. VIII. Kotukhov Yu.A., DanilovaA.N., AnufrievaO.A. Synopsisoftheonions (AlliumL.) oftheKazakhstanAltai, Sauro-ManrakandtheZaisandepression. BotanicalstudiesofSiberiaandKazakhstan. 2011;17: 3-33. IX. Kotukhov, Yu.A., Baytulin, I.O. Rareandendangered, endemicandrelictelementsofthefloraofKazakhstanAltai. MaterialsoftheIntern. scientific-practical. conf. ‘Sustainablemanagementofprotectedareas’.Almaty: Ridder, 2010. X. Krasnoborov I.M. et al. The determinant of plants of the Republic of Altai. Novosibirsk: SB RAS, 2012. XI. Levichev I.G. On the species status of Gagea Rubicunda. Botanical Journal.1997;6:71-76. XII. Levichev I.G. A new species of the genus Gagea (Liliaceae). Botanical Journal. 2000;7: 186-189. XIII. Levichev I.G., Jangb Chang-gee, Seung Hwan Ohc, Lazkovd G.A.A new species of genus GageaSalisb.(Liliaceae) from Kyrgyz Republic (Western Tian Shan, Chatkal Range, Sary-Chelek Nature Reserve). Journal of Asia-Pacific Biodiversity.2019; 12: 341-343. XIV. Peterson A., Levichev I.G., Peterson J. Systematics of Gagea and Lloydia (Liliaceae) and infrageneric classification of Gagea based on molecular and morphological data. Molecular Phylogenetics and Evolution.2008; 46. XV. Peruzzi L., Peterson A., Tison J.-M., Peterson J. Phylogenetic relationships of GageaSalisb.(Liliaceae) in Italy, inferred from molecular and morphological data matrices. Plant Systematics and Evolution; 2008: 276. XVI. Rib R.D. Honey plants of Kazakhstan. Advertising Digest, 2013. XVII. Scherbakova L.I., Shirshikova N.A. Flora of medicinal plants in the vicinity of Ust-Kamenogorsk. Collection of materials of the scientific-practical conference ‘Unity of Education, Science and Innovation’. Ust-Kamenogorsk: EKSU, 2011. XVIII. syganovA.P. PrimrosesofEastKazakhstan. Ust-Kamenogorsk: EKSU, 2001. XIX. Tsyganov A.P. Flora and vegetation of the South Altai Tarbagatay. Berlin: LAP LAMBERT,2014. XX. Utyasheva, T.R., Berezovikov, N.N., Zinchenko, Yu.K. ProceedingsoftheMarkakolskStateNatureReserve. Ust-Kamenogorsk, 2009. XXI. Xinqi C, Turland NJ. Gagea. Flora of China.2000;24: 117-121. XXII. Zarrei M., Zarre S., Wilkin P., Rix E.M. Systematic revision of the genus GageaSalisb. (Liliaceae) in Iran.BotJourn Linn Soc.2007;154. XXIII. Zarrei M., Wilkin P., Ingroille M.J., Chase M.W. A revised infrageneric classification for GageaSalisb. (Tulipeae; Liliaceae): insights from DNA sequence and morphological data.Phytotaxa.2011:5. View | Download INFLUENCE OF SUCCESSION CROPPING ON ECONOMIC EFFICIENCY OF NO-TILL CROP ROTATIONS Authors: Victor K. Dridiger,Roman S. Stukalov,Rasul G. Gadzhiumarov,Anastasiya A. Voropaeva,Viktoriay A. Kolomytseva, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00042 Abstract: This study was aimed at examining the influence of succession cropping on the economic efficiency of no-till field crop rotations on the black earth in the zone of unstable moistening of the Stavropol krai. A long-term stationary experiment was conducted to examine for the purpose nine field crop rotation patterns different in the number of fields (four to six), set of crops, and their succession in crop rotation. The respective shares of legumes, oilseeds, and cereals in the cropping pattern were 17 to 33, 17 to 40, and 50 to 67 %. It has been established that in case of no-till field crop cultivation the economic efficiency of plant production depends on the set of crops and their succession in rotation. The most economically efficient type of crop rotation is the soya-winter wheat-peas-winter wheat-sunflower-corn six-field rotation with two fields of legumes: in this rotation 1 ha of crop rotation area yields 3 850 grain units per ha at a grain unit prime cost of 5.46 roubles; the plant production output return and profitability were 20,888 roubles per ha and 113 %, respectively. The high production profitabilities provided by the soya-winter wheat-sunflower four-field and the soya-winter-wheat-sunflower-corn-winter wheat five-field crop rotation are 108.7 and 106.2 %, respectively. The inclusion of winter wheat in crop rotation for two years in a row reduces the second winter wheat crop yield by 80 to 100 %, which means a certain reduction in the grain unit harvesting rate to 3.48-3.57 thousands per ha of rotation area and cuts the production profitability down to 84.4-92.3 %. This is why, no-till cropping should not include winter wheat for a second time Keywords: No-till technology,crop rotation,predecessor,yield,return,profitability, Refference: I Badakhova G. Kh. and Knutas A. V., Stavropol Krai: Modern Climate Conditions [Stavropol’skiykray: sovremennyyeklimaticheskiyeusloviya]. Stavropol: SUE Krai Communication Networks, 2007. II Cherkasov G. N. and Akimenko A. S. Scientific Basis of Modernization of Crop Rotations and Formation of Their Systems according to the Specializations of Farms in the Central Chernozem Region [Osnovy moderniz atsiisevooborotoviformirovaniyaikh sistem v sootvetstvii so spetsi-alizatsiyeykhozyaystvTsentral’nogoChernozem’ya]. Zemledelie. 2017; 4: 3-5. III Decree 330 of July 6, 2017 the Ministry of Agriculture of Russia “On Approving Coefficients of Converting to Agricultural Crops to Grain Units [Ob utverzhdeniikoeffitsiyentovperevoda v zernovyyee dinitsysel’s kokhozyaystvennykhkul’tur]. IV Dridiger V. K., About Methods of Research of No-Till Technology [O metodikeissledovaniytekhnologii No-till]//Achievements of Science and Technology of AIC (Dostizheniyanaukiitekhniki APK). 2016; 30 (4): 30-32. V Dridiger V. K. and Gadzhiumarov R. G. Growth, Development, and Productivity of Soya Beans Cultivated On No-Till Technology in the Zone of Unstable Moistening of Stavropol Region [Rost, razvitiyeiproduktivnost’ soiprivozdelyvaniipotekhnologii No-till v zone ne-ustoychivog ouvlazhneniyaStavropol’skogokraya]//Oil Crops RTBVNIIMK (Maslichnyyekul’turyNTBVNIIMK). 2018; 3 (175): 52–57. VI Dridiger V. K., Godunova E. I., Eroshenko F. V., Stukalov R. S., Gadzhiumarov, R. G., Effekt of No-till Technology on erosion resistance, the population of earthworms and humus content in soil (Vliyaniyetekhnologii No-till naprotivoerozionnuyuustoychivost’, populyatsiyudozhdevykhcherveyisoderzhaniyegumusa v pochve)//Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2018; 9 (2): 766-770. VII Karabutov A. P., Solovichenko V. D., Nikitin V. V. et al., Reproduction of Soil Fertility, Productivity and Energy Efficiency of Crop Rotations [Vosproizvodstvoplodorodiyapochv, produktivnost’ ienergeticheskayaeffektivnost’ sevooborotov]. Zemledelie. 2019; 2: 3-7. VIII Kulintsev V. V., Dridiger V. K., Godunova E. I., Kovtun V. I., Zhukova M. P., Effekt of No-till Technology on The Available Moisture Content and Soil Density in The Crop Rotation [Vliyaniyetekhnologii No-till nasoderzhaniyedostupnoyvlagiiplotnost’ pochvy v sevoob-orote]// Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2017; 8 (6): 795-99. IX Kulintsev V. V., Godunova E. I., Zhelnakova L. I. et al., Next-Gen Agriculture System for Stavropol Krai: Monograph [SistemazemledeliyanovogopokoleniyaStavropol’skogokraya: Monogtafiya]. Stavropol: AGRUS Publishers, Stavropol State Agrarian University, 2013. X Lessiter Frank, 29 reasons why many growers are harvesting higher no-till yields in their fields than some university scientists find in research plots//No-till Farmer. 2015; 44 (2): 8. XI Rodionova O. A. Reproduction and Exchange-Distributive Relations in Farming Entities [Vosproizvodstvoiobmenno-raspredelitel’nyyeotnosheniya v sel’skokhozyaystvennykhorganizatsiyakh]//Economy, Labour, and Control in Agriculture (Ekonomika, trud, upravleniye v sel’skomkhozyaystve). 2010; 1 (2): 24-27. XII Sandu I. S., Svobodin V. A., Nechaev V. I., Kosolapova M. V., and Fedorenko V. F., Agricultural Production Efficiency: Recommended Practices [Effektivnost’ sel’skokhozyaystvennogoproizvodstva (metodicheskiyerekomendatsii)]. Moscow: Rosinforagrotech, 2013. XIII Sotchenko V. S. Modern Corn Cultivation Technologies [Sovremennayatekhnologiyavozdelyvaniya]. Moscow: Rosagrokhim, 2009. View | Download DEVELOPMENT AND TESTING OF AUTONOMOUS PORTABLE SEISMOMETER DESIGNED FOR USE AT ULTRALOW TEMPERATURES IN ARCTIC ENVIRONMENT Authors: Mikhail A. Abaturov,Yuriy V. Sirotinskiy, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00043 Abstract: This paper is concerned with solving one of the issues of the general problem of designing geophysical equipment for the natural climatic environment of the Arctic. The relevance of the topic has to do with an increased global interest in this region. The paper is aimed at considering the basic principles of developing and the procedure of testing seismic instruments for use at ultralow climatic temperatures. In this paper the indicated issue is considered through the example of a seismic module designed for petroleum and gas exploration by passive seismoacoustic methods. The seismic module is a direct-burial portable unit of around 5 kg in weight, designed to continuously measure and record microseismic triaxial orthogonal (ZNE) noise in a range from 0.1 to 45 Hz during several days in autonomous mode. The functional chart of designing the seismic module was considered, and concrete conclusions were made for choosing the necessary components to meet the ultralow-temperature operational requirements. The conclusions made served for developing appropriate seismic module. In this case, the components and tools used included a SAFT MP 176065 xc low-temperature lithium cell, industrial-spec electronic component parts, a Zhaofeng Geophysical ZF-4.5 Chinese primary electrodynamic seismic sensor, housing seal parts made of frost-resistant silicone materials, and finely dispersed silica gel used as water-retaining sorbent to avoid condensation in the housing. The paper also describes a procedure of low-temperature collation tests at the lab using a New Brunswick Scientific freezing plant. The test results proved the operability of the developed equipment at ultralow temperatures down to -55°C. In addition, tests were conducted at low microseismic noises in the actual Arctic environment. The possibility to detect signals in a range from 1 to 10 Hz at the level close to the NLNM limit (the Peterson model) has been confirmed, which allows monitoring and exploring petroleum and gas deposits by passive methods. As revealed by this study, the suggested approaches are efficient in developing high-precision mobile seismic instruments for use at ultralow climatic temperatures. The solution of the considered instrumentation and methodical issues is of great practical significance as a constituent of the generic problem of Arctic exploration. Keywords: Seismic instrumentation,microseismic monitoring,Peterson model,geological exploration,temperature ratings,cooling test, Refference: I. AD797: Ultralow Distortion, Ultralow Noise Op Amp, Analog Devices, Inc., Data Sheet (Rev. K). Analog Devices, Inc. URL: https://www.analog.com/media/en/technical-documentation/data-sheets/AD797.pdf(Date of access September 2, 2019). II. Agafonov, V. M., Egorov, I. V., and Shabalina, A. S. Operating Principles and Technical Characteristics of a Small-Sized Molecular–Electronic Seismic Sensor with Negative Feedback [Printsipyraboty I tekhnicheskiyekharakteristikimalogabaritnogomolekulyarno-elektronnogoseysmodatchika s otritsatel’noyobratnoysvyaz’yu]. SeysmicheskiyePribory (Seismic Instruments). 2014; 50 (1): 1–8. DOI: 10.3103/S0747923914010022. III. Antonovskaya, G., Konechnaya, Ya.,Kremenetskaya, E., Asming, V., Kvaema, T., Schweitzer, J., Ringdal, F. Enhanced Earthquake Monitoring in the European Arctic. Polar Science. 2015; 1 (9): 158-167. IV. Anthony, R. E., Aster, R. C., Wiens, D., Nyblade, Andr., Anandakrishnan, Sr., Huerta, Audr., Winberry, J. P., Wilson, T., and Rowe, Ch. The Seismic Noise Environment of Antarctica. Seismological Research Letters. 2015; 86(1): 89-100. DOI: 10.1785/0220150005 V. Brincker, R., Lago, T. L., Andersen, P., and Ventura, C. Improving the Classical Geophone Sensor Element by Digital Correction. In Conference Proceedings: IMAC-XXIII: A Conference & Exposition on Structural Dynamics Society for Experimental Mechanics, 2005. URL: https://www.researchgate.net/publication/242452637_Improving_the_Classical_Geophone_Sensor_Element_by_Digital_Correction(Date of access September 2, 2019). VI. Bylaw 164 of the State Committee for Construction of the Russian Federation “On adopting amendments to SNiP 31-01-99 “Construction climatology”. URL: https://base.garant.ru/2322381/(Date of access September 2, 2019). VII. Chao Xu, Junbo Wang, Deyong Chen, Jian Chen, Bowen Liu, Wenjie Qi, XichenZheng, Hua Wei, Guoqing Zhang. The Electrochemical Seismometer Based on a Novel Designed.Sensing Electrode for Undersea Exploration. 20th International Conference on Solid-State Sensors, Actuators and Microsystems &Eurosensors XXXIII (TRANSDUCERS &EUROSENSORS XXXIII). IEEE, 2019. DOI: 10.1109/TRANSDUCERS.2019.8808450. VIII. Chebotareva, I. Ya. New algorithms of emission tomography for passive seismic monitoring of a producing hydrocarbon deposit: Part I. Algorithms of processing and numerical simulation [Novyye algoritmyemissionnoyto mografiidlyapassivnogoseysmicheskogomonitoringarazrabatyvayemykhmestorozhdeniyuglevodorodov. Chast’ I: Algoritmyobrabotki I chislennoyemodelirovaniye]. FizikaZemli. 2010; 46(3):187-98. DOI: 10.1134/S106935131003002X IX. Danilov, A. V. and Konechnaya, Ya. V. Analytical comparison of seismic instruments for stationary surveys in the Arctic [Sravnitel’nyyanalizseysmicheskoyapparaturydlyastatsionarnykhnablyudeniy v Arktike]. DSYS. URL: https://dsys.ru/upload/id254_docPDF_FranzJosefLand.pdf(Date of access September 2, 2019). X. Dew point temperature calculator. Maple Tech. International LLC. URL: https://www.calculator.net/dew-point-calculator.html?airtemperature=20&airtemperatureunit=celsius&humidity=0.34&dewpoint=&dewpointunit=celsius&x=51&y=14(Date of access September 2, 2019). XI. Frolov, A. S. Matching of wave fields recorded by different geophysical receivers [Soglasovaniyevolnovykhpoley, poluchennykh s primeneniyemrazlichnoyregistriruyushcheyapparatury]. Abstracts IX International scientific and technical conference competition of young specialists “Geophysics-2013”. Saint-Petersburg: Gubkin University, 2013. URL: https://www.gubkin.ru/faculty/geology_and_geophysics/chairs_and_departments/exploration_geophysics_and_computers_systems/files/2013_SPb_Frolov.pdf. (Date of access September 2, 2019). XII. Gibbons, S. J., Asming, V., Fedorov, A., Fyen, J., Kero, J., Kozlovskaya, E., Kværna, T., Liszka, L., Näsholm, S.P., Raita, T., Roth, M., Tiira, T., Vinogradov, Yu. The European Arctic: A laboratory for seismoacoustic studies. Seism. Res. Letters. 2015; 86 (3): 917–928. XIII. GOST 8.395-80. State system for ensuring the uniformity of measurements. Reference conditions of measurements while calibrating. General requirements [Gosudarstvennayasistemaobespecheniyaedinstvaizmereniy. Normal’nyyeusloviyaizmereniypripoverke. Obshchiyetrebovaniya]. Moscow: Standartinform, 2008. URL: http://gostrf.com/normadata/1/4294821/4294821960.pdf (Date of access September 2, 2019). XIV. Guralp 6TD. Operators’ Guide. Document Number: MAN-T60-0002, Issue J: April, 2017. Guralp Systems Limited. URL: https://www.guralp.com/documents/MAN-T60-0002.pdf (Date of access September 2, 2019). XV. Inshakova, A. S., Barykina, E. S., and Kozlov, V. V. Role of silica gel in adsorption air drying [Rol’ silikagelya v adsorbtsionnoyosushkevozdukha]. AlleyaNauki (Alley of Science). 2017; 15. URL: https://www.alley- science.ru/domains_data/files/November2017/ROL%20SILIKAGELYa%20V%20ADSORBCIONNOY%20OSUShKE%20VOZDUHA.pdf(Date of access September 2, 2019). XVI. Ioffe, D. and Pozdnyakov, P. Searching for Hidden Reserves of Modern Microchip Circuits. Part I [Poiskskrytykhrezervovsovremennykhmikroskhem. Chast’ I].Komponenty I tekhnologii (Components and Technologies). 2015; 4: 144-46. XVII. Jiang Xu, Xi Wang, Ningyi Yuan, Jianning Ding, Si Qin, Joselito M. Razal, Xuehang Wang, ShanhaiGe, Gogotsi, Yu. Extending the low temperature operational limit of Li-ion battery to −80 °C. Energy Storage Materials (IF0). Published 2019-04-27. DOI: 10.1016/j.ensm.2019.04.033. XVIII. Kouznetsov, O. L., Lyasch, Y. F., Chirkin, I. A., Rizanov, E. G., LeRoy, S. D., Koligaev, S. O. Long-term monitoring of microseismic emissions: Earth tides, fracture distribution, and fluid content. SEG, APPG Interpretation. 2016: 4 (2): T191–T204. XIX. Laverov, N. P., Bogoyavlenskiy, V. I., Bogoyavlenskiy, I. V. Fundamental Aspects of Rational Management of the Petroleum and Gas Resources of the Arctic and the Russian Continental Shelf: Strategy, Prospects, and Problems [Fundamental’nyyeaspektyratsional’nogoosvoyeniyaresursovneftiigazaArktiki I shel’faRossii: strategiya, perspektivyi problem].Arktika: ekologiya I ekonomika [Arctic: Ecology and Economy]. 2016; 2 (22): 4-13. XX. Lee, P. Low Noise Amplifier Selection Guide for Optimal Noise Performance, Analog Devices, Inc., AN-940 Application Note. Analog Devices, Inc. URL: https://www.analog.com/media/en/technical-documentation/application-notes/AN-940.pdf(Date of access September 2, 2019). XXI. Markatis, N., Polychronopoulou, K., Tselentis, Ak. Passive seismic tomography: A passive concept actively evolving. First Break. 2012; 30 (7): 83-90. XXII. Matveev, I. V. and Matveeva, N. V. Portable seismic recorder “SEISAR-5” with very low energy consumption for autonomous work in harsh climatic conditions [Portativnyyseysmicheskiyregistrator «Seysar-5» s ochen’ nizkimenergopotrebleniyemdlyaavtonomnoyraboty v slozhnykhklimatic heskikhusloviyakh]. Nauka I tekhnologicheskierazrabotki (Science and Technological Developments). 2017; 96 (3): 33-40. [Special Issue “Applied Geophysics: New Developments and Results. Part 1. Seismology and Seismic Exploration]. DOI: 10.21455/std2017.3-3. XXIII. Mishra, R. The Temperature Ratings of Electronic Parts.Electronics Cooling magazine. URL: http://www.electronics-cooling.com/2004/02/the-temperature-ratings-of-electronic-parts(Date of access September 2, 2019). XXIV. Moore, Sue E.; Stabeno, Phyllis J.; Van Pelt, Thomas I. The Synthesis of Arctic Research (SOAR) project. Deep-Sea Research Part II. 152: 1-7. DOI: 10.1016/j.dsr2.2018.05.013. XXV. MS-SPORT Viscous Silicone Lubricant with Fluoroplastic. ToR2257-010-45540231-2003. OOO VMPAUTO, URL: https://smazka.ru/attachments/get/469/ms-sport-tds.pdf(Date of access September 2, 2019). XXVI. New Brunswick™ Premium -86 °C Freezers. Operating manual. URL: https://www.eppendorf.com/product-media/doc/en/142770_Operating-Manual/New-Brunswick_Freezers_Operating-manual-86-C-Premium-Freezers.pdf(Date of access September 2, 2019). XXVII. New seismic digitizer/recorder for passive seismic monitoring applications. LandTech Enterprises. URL: http://www.landtechsa.com/Images/Instrument/SRi32L/SRi32L.pdf(Date of access September 2, 2019). XXVIII. Parker, T., Winberry, P., Huerta, A., Bainbridge, G., Devanney, P. Direct Burial Broadband Seismic Instrumentation for Polar Environments. Nanometrics Inc. URL: https://www.nanometrics.ca/sites/default/files/2017-11/direct_burial_bb_seismic_instrumentation_for_polar_environments.pdf. (Date of access September 2, 2019). XXIX. Peterson, J. Observation and Modeling of Seismic Background Noise. Albuquerque, New Mexico: US Department of Interior Geological Survey, 1993. XXX. Razinkov, O.G., Sidorov-Biryukov, D. D., Townsend, B., Parker, T., Bainbridge, G., Greiss, R. Strengths and Applications of Direct Burial Seismic Instruments [Preimushchestva I oblastiprimeneniyaseysmicheskikhpriborovdlyapryamoyustanovki v grunt] in Proc. VI Sci. Tech. Conf. “Problems of Complex Geophysical Monitoring of the Russian Far East”, Petropavlovsk-Kamchatskiy: Geophysical Survey, Russian Academy of Sciences, 2017. URL: http://www.emsd.ru/conf2017lib/pdf/techn/razinkov.pdf (Date of access September 2, 2019). XXXI. Roux, Ph., Wathelet, M., Roueff, Ant. The San Andreas Fault revisited through seismic-noise and surface-wave tomography. Geophysical Research Letters. 2011; 38 (13). DOI: 10.1029/2011GL047811. XXXII. Rubber O-ring seals for hydraulic and pneumatic equipment. Specifications [Kol’tsarezinovyyeuplotnitel’nyyekruglogosecheniyadlyagidravlicheskikh I pnevmaticheskikhustroystv. Tekhnicheskiyeusloviya]. GOST 18829-2017 Interstate standard. Moscow: Standartinform, 2017. URL: https://files.stroyinf.ru/Data/645/64562.pdf (Date of access September 2, 2019). XXXIII. Sanina, I., Gabsatarova, I., Chernykh, О.,Riznichenko, О., Volosov, S., Nesterkina, M., Konstantinovskaya, N. The Mikhnevo small aperture array enhances the resolution property of seismological observations on the East European Platform. Journal of Seismology (JOSE). 2011; 15 (3): 545-56. (DOI: 10.1007/sl0950-010-9211-х). XXXIV. SM-3VK Magnetoelectric Seismic Pickup. Specifications. ToR-4314-001-02698826-01. N. Laverov Federal Centre for Integrated Arctic Research, Russian Academy of Sciences. URL: http://fciarctic.ru/index.php?page=ckpg (Date of access September 2, 2019). XXXV. Sobisevich, A. L.,Presnov, D. A.,Agafonov, V. M.,Sobisevich, L. E. Autonomous geohydroacoustic ice buoy of new generation [Vmorazhivayemyyavtonomnyygeogidroakusticheskiy buy novogopokoleniya]. Nauka I tekhnologicheskierazrabotki (Science and Technological Developments). 2018; 97 (1): 25–34. [Special issue “Precise Geophysical Monitoring of Natural Hazards. Part 1. Instruments andTechnologies”]. DOI: 10.21455/ std2018.1-3. XXXVI. Zhukov, Y. V. Issues of resistance and reliability of electronic equipment products to the exposure factors [Voprosystoykosti i nadezhnostiizdeliyradioelektronnoytekhniki k vneshnimvozdeystvuyushchimfaktoram]. Provintsial’nyyenauchnyyezapiski (The journal Provincial scientific proceedings). 2019; 1 (9): 118-124. View | Download COMPARATIVE ANALYSIS OF RESULTS OF TREATMENT OF PATIENTS WITH FOOT PATHOLOGY WHO UNDERWENT WEIL OPEN OSTEOTOMY BY CLASSICAL METHOD AND WITHOUT STEOSYNTHESIS Authors: Yuriy V. Lartsev,Dmitrii A. Rasputin,Sergey D. Zuev-Ratnikov,Pavel V.Ryzhov,Dmitry S. Kudashev,Anton A. Bogdanov, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00044 Abstract: The article considers the problem of surgical correction of the second metatarsal bone length. The article analyzes the results of treatment of patients with excess length of the second metatarsal bones that underwent osteotomy with and without osteosynthesis. The results of treatment of patients who underwent metatarsal shortening due to classical Weil-osteotomy with and without osteosynthesis were analyzed. The first group consisted of 34 patients. They underwent classical Weil osteotomy. The second group included 44 patients in whomosteotomy of the second metatarsal bone were not by the screw. When studying the results of the treatment in the immediate postoperative period, weeks 6, 12, slightly better results were observed in patients of the first group, while one year after surgical treatment the results in both groups were comparable. One year after surgical treatment, there were 2.9% (1 patient) of unsatisfactory results in the first group and 4.5% (2 patients) in the second group. Considering the comparability of the results of treatment in remote postoperative period, the choice of concrete method remains with the operating surgeon. Keywords: Flat feet,hallux valgus,corrective osteotomy,metatarsal bones, Refference: I. A novel modification of the Stainsby procedure: surgical technique and clinical outcome [Text] / E. Concannon, R. MacNiocaill, R. Flavin [et al.] // Foot Ankle Surg. – 2014. – Dec., Vol. 20(4). – P. 262–267. II. Accurate determination of relative metatarsal protrusion with a small intermetatarsal angle: a novel simplified method [Text] / L. Osher, M.M. Blazer, S. Buck [et al.] // J. Foot Ankle Surg. – 2014. – Sep.-Oct., Vol. 53(5). – P. 548–556. III. Argerakis, N.G. The radiographic effects of the scarf bunionectomy on rearfoot alignment [Text] / N.G. Argerakis, L.Jr. Weil, L.S. Sr. Weil // Foot Ankle Spec. – 2015. – Apr., Vol. 8(2). – P. 89–94. IV. Bauer, T. Percutaneous forefoot surgery [Text] / T. Bauer // Orthop. Traumatol. Surg. Res. – 2014. – Feb., Vol. 100(1 Suppl.). – P. S191–S204. V. Biomechanical Evaluation of Custom Foot Orthoses for Hallux Valgus Deformity [Text] // J. Foot Ankle Surg. – 2015. – Sep.-Oct., Vol.54(5). – P. 852–855. VI. Chopra, S. Characterization of gait in female patients with moderate to severe hallux valgus deformity [Text] / S. Chopra, K. Moerenhout, X. Crevoisier // Clin. Biomech. (Bristol, Avon). – 2015. – Jul., Vol. 30(6). – P. 629–635. VII. Computer assisted planning and custom-made surgical guide for malunited pronation deformity after first metatarsophalangeal joint arthrodesis in rheumatoid arthritis: a case report [Text] / M. Hirao, S. Ikemoto, H. Tsuboi [et al.] // Comput. Aided Surg. – 2014. – Vol. 19(1-3). – P. 13–19. VIII. Correlation between static radiographic measurements and intersegmental angular measurements during gait using a multisegment foot model [Text] / D.Y. Lee, S.G. Seo, E.J. Kim [et al.] // Foot Ankle Int. – 2015. – Jan., Vol.36(1). – P. 1–10. IX. Correlative study between length of first metatarsal and transfer metatarsalgia after osteotomy of first metatarsal [Text]: [Article in Chinese] / F.Q. Zhang, B.Y. Pei, S.T. Wei [et al.] // Zhonghua Yi XueZaZhi. – 2013. – Nov. 19, Vol. 93(43). – P. 3441–3444. X. Dave, M.H. Forefoot Deformity in Rheumatoid Arthritis: A Comparison of Shod and Unshod Populations [Text] / M.H. Dave, L.W. Mason, K. Hariharan // Foot Ankle Spec. – 2015. – Oct., Vol. 8(5). – P. 378–383. XI. Does arthrodesis of the first metatarsophalangeal joint correct the intermetatarsal M1M2 angle? Analysis of a continuous series of 208 arthrodeses fixed with plates [Text] / F. Dalat, F. Cottalorda, M.H. Fessy [et al.] // Orthop. Traumatol. Surg. Res. – 2015. – Oct., Vol. 101(6). – P. 709–714. XII. Dynamic plantar pressure distribution after percutaneous hallux valgus correction using the Reverdin-Isham osteotomy [Text]: [Article in Spanish] / G. Rodríguez-Reyes, E. López-Gavito, A.I. Pérez-Sanpablo [et al.] // Rev. Invest. Clin. – 2014. – Jul., Vol. 66, Suppl. 1. – P. S79-S84. XIII. Efficacy of Bilateral Simultaneous Hallux Valgus Correction Compared to Unilateral [Text] / A.V. Boychenko, L.N. Solomin, S.G. Parfeyev [et al.] // Foot Ankle Int. – 2015. – Nov., Vol. 36(11). – P. 1339–1343. XIV. Endolog technique for correction of hallux valgus: a prospective study of 30 patients with 4-year follow-up [Text] / C. Biz, M. Corradin, I. Petretta [et al.] // J. OrthopSurg Res. – 2015. – Jul. 2, № 10. – P. 102. XV. First metatarsal proximal opening wedge osteotomy for correction of hallux valgus deformity: comparison of straight versus oblique osteotomy [Text] / S.H. Han, E.H. Park, J. Jo [et al.] // Yonsei Med. J. – 2015. – May, Vol. 56(3). – P. 744–752. XVI. Long-term outcome of joint-preserving surgery by combination metatarsal osteotomies for shortening for forefoot deformity in patients with rheumatoid arthritis [Text] / H. Niki, T. Hirano, Y. Akiyama [et al.] // Mod. Rheumatol. – 2015. – Sep., Vol. 25(5). – P. 683–638. XVII. Maceira, E. Transfer metatarsalgia post hallux valgus surgery [Text] / E. Maceira, M. Monteagudo // Foot Ankle Clin. – 2014. – Jun., Vol. 19(2). – P.285–307. XVIII. Nielson, D.L. Absorbable fixation in forefoot surgery: a viable alternative to metallic hardware [Text] / D.L. Nielson, N.J. Young, C.M. Zelen // Clin. Podiatr. Med. Surg. – 2013. – Jul., Vol. 30(3). – P. 283–293 XIX. Patient’s satisfaction after outpatient forefoot surgery: Study of 619 cases [Text] / A. Mouton, V. Le Strat, D. Medevielle [et al.] // Orthop. Traumatol. Surg. Res. – 2015. – Oct., Vol. 101(6 Suppl.). – P. S217–S220. XX. Preference of surgical procedure for the forefoot deformity in the rheumatoid arthritis patients–A prospective, randomized, internal controlled study [Text] / M. Tada, T. Koike, T. Okano [et al.] // Mod. Rheumatol. – 2015. – May., Vol. 25(3). – P.362–366. XXI. Redfern, D. Percutaneous Surgery of the Forefoot [Text] / D. Redfern, J. Vernois, B.P. Legré // Clin. Podiatr. Med. Surg. – 2015. – Jul., Vol. 32(3). – P. 291–332. XXII. Singh, D. Bullous pemphigoid after bilateral forefoot surgery [Text] / D. Singh, A. Swann // Foot Ankle Spec. – 2015. – Feb., Vol. 8(1). – P. 68–72. XXIII. Treatment of moderate hallux valgus by percutaneous, extra-articular reverse-L Chevron (PERC) osteotomy [Text] / J. Lucas y Hernandez, P. Golanó, S. Roshan-Zamir [et al.] // Bone Joint J. – 2016. – Mar., Vol. 98-B(3). – P. 365–373. XXIV. Weil, L.Jr. Scarf osteotomy for correction of hallux abducto valgus deformity [Text] / L.Jr. Weil, M. Bowen // Clin. Podiatr. Med. Surg. – 2014. – Apr., Vol.31(2). – P. 233–246. View | Download QUANTITATIVE ULTRASONOGRAPHY OF THE STOMACH AND SMALL INTESTINE IN HEALTHYDOGS Authors: Roman A. Tcygansky,Irina I. Nekrasova,Angelina N. Shulunova,Alexander I.Sidelnikov, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00045 Abstract: Purpose.To determine the quantitative echogenicity indicators (and their ratio) of the layers of stomach and small intestine wall in healthy dogs. Methods. A prospective 3-year study of 86 healthy dogs (aged 1-7 yrs) of different breeds and of both sexes. Echo homogeneity and echogenicity of the stomach and intestines wall were determined by the method of Silina, T.L., et al. (2010) in absolute values ​​of average brightness levels of ultrasound image pixels using the 8-bit scale with 256 shades of gray. Results. Quantitative echogenicity indicators of the stomach and the small intestine wall in dogs were determined. Based on the numerical values ​​characterizing echogenicity distribution in each layer of a separate structure of the digestive system, the coefficient of gastric echogenicity is determined as 1:2.4:1.1 (mucosa/submucosa/muscle layers, respectively), the coefficient of duodenum and jejunum echogenicity is determined as 1:3.5:2 and that of ileum is 1:1.8:1. Clinical significance. The echogenicity coefficient of the wall of the digestive system allows an objective assessment of the stomach and intestines wall and can serve as the basis for a quantitative assessment of echogenicity changes for various pathologies of the digestive system Keywords: Ultrasound (US),echogenicity,echogenicity coefficient,digestive system,dogs,stomach,intestines, Refference: I. Agut, A. Ultrasound examination of the small intestine in small animals // Veterinary focus. 2009.Vol. 19. No. 1. P. 20-29. II. Bull. 4.RF patent 2398513, IPC51A61B8 / 00 A61B8 / 14 (2006.01) A method for determining the homoechogeneity and the degree of echogenicity of an ultrasound image / T. Silina, S. S. Golubkov. – No. 2008149311/14; declared 12/16/2008; publ. 09/10/2010 III. Choi, M., Seo, M., Jung, J., Lee, K., Yoon, J., Chang, D., Park, RD. Evaluation of canine gastric motility with ultrasonography // J. of Veterinary Medical Science. – 2002. Vol. 64. – № 1. – P. 17-21. IV. Delaney, F., O’Brien, R.T., Waller, K.Ultrasound evaluation of small bowel thickness compared to weight in normal dogs // Veterinary Radiology and Ultrasound. 2003 Vol. 44, № 5. Р 577-580. V. Diana, A., Specchi, S., Toaldo, M.B., Chiocchetti, R., Laghi, A., Cipone, M. Contrast-enhanced ultrasonography of the small bowel in healthy cats // Veterinary Radiology and Ultrasound. – 2011. – Vol. 52, № 5. – Р. 555-559. VI. Garcia, D.A.A., Froes, T.R. Errors in abdominal ultrasonography in dogs and cats // J. of Small Animal Practice. – 2012. Vol. 53. – № 9. – P. 514-519. VII. Garcia, D.A.A., Froes, T.R. Importance of fasting in preparing dogs for abdominal ultrasound examination of specific organs // J. of Small Animal Practice. – 2014. Vol. 55. – № 12. – P. 630-634. VIII. Gaschen, L., Granger, L.A., Oubre, O., Shannon, D., Kearney, M., Gaschen, F. The effects of food intake and its fat composition on intestinal echogenicity in healthy dogs // Veterinary Radiology and Ultrasound. 2016. Vol. 57. № 5. P. 546-550 IX. Gaschen, L., Kircher, P., Stussi, A., Allenspach, K., Gaschen, F., Doherr, M., Grone, A. Comparison of ultrasonographic findings with clinical activity index (CIBDAI) and diagnosis in dogs with chronic enteropathies // Veterinary radiology and ultrasound. – 2008. – Vol. 49. – № 1. – Р. 56-64. X. Gil, E.M.U. Garcia, D.A.A. Froes, T.R. In utero development of the fetal intestine: Sonographic evaluation and correlation with gestational age and fetal maturity in dogs // Theriogenology. 2015. Vol. 84, №5. Р. 681-686. XI. Gladwin, N.E. Penninck, D.G., Webster, C.R.L. Ultrasonographic evaluation of the thickness of the wall layers in the intestinal tract of dogs // American Journal of Veterinary Research. 2014. Vol. 75, №4. Р. 349-353. XII. Gory, G., Rault, D.N., Gatel, L, Dally, C., Belli, P., Couturier, L., Cauvin, E. Ultrasonographic characteristics of the abdominal esophagus and cardia in dogs // Veterinary Radiology and Ultrasound. 2014. Vol. 55, № 5. P. 552-560. XIII. Günther, C.S. Lautenschläger, I.E., Scholz, V.B. Assessment of the inter- and intraobserver variability for sonographical measurement of intestinal wall thickness in dogs without gastrointestinal diseases | [Inter-und Intraobserver-Variabilitätbei der sonographischenBestimmung der Darmwanddicke von HundenohnegastrointestinaleErkrankungen] // Tierarztliche Praxis Ausgabe K: Kleintiere – Heimtiere. 2014. Vol. 42 №2. Р. 71-78. XIV. Hanazono, K., Fukumoto, S., Hirayama, K., Takashima, K., Yamane, Y., Natsuhori, M., Kadosawa, T., Uchide, T. Predicting Metastatic Potential of gastrointestinal stromal tumors in dog by ultrasonography // J. of Veterinary Medical Science. – 2012. Vol. 74. – № 11. – P. 1477-1482. XV. Heng, H.G., Lim, Ch.K., Miller, M.A., Broman, M.M.Prevalence and significance of an ultrasonographic colonic muscularishyperechoic band paralleling the serosal layer in dogs // Veterinary Radiology and Ultrasound. 2015. Vol. 56 № 6. P. 666-669. XVI. Ivančić, M., Mai, W. Qualitative and quantitative comparison of renal vs. hepatic ultrasonographic intensity in healthy dogs // Veterinary Radiology and Ultrasound. 2008. Vol. 49. № 4. Р. 368-373. XVII. Lamb, C.R., Mantis, P. Ultrasonographic features of intestinal intussusception in 10 dogs // J. of Small Animal Practice. – 2008. Vol. 39. – № 9. – P. 437-441. XVIII. Le Roux, A. B., Granger, L.A., Wakamatsu, N, Kearney, M.T., Gaschen, L.Ex vivo correlation of ultrasonographic small intestinal wall layering with histology in dogs // Veterinary Radiology and Ultrasound.2016. Vol. 57. № 5. P. 534-545. XIX. Nielsen, T. High-frequency ultrasound of Peyer’s patches in the small intestine of young cats / T. Nielsen [et al.] // Journal of Feline Medicine and Surgery. – 2015. – Vol. 18, № 4. – Р. 303-309. XX. PenninckD.G. Gastrointestinal tract. In Nyland T.G., Mattoon J.S. (eds): Small Animal Diagnostic Ultrasound. Philadelphia: WB Saunders. 2002, 2nd ed. Р. 207-230. XXI. PenninckD.G. Gastrointestinal tract. In: PenninckD.G.,d´Anjou M.A. Atlas of Small Animal Ultrasonography. Blackwell Publishing, Iowa. 2008. Р. 281-318. XXII. Penninck, D.G., Nyland, T.G., Kerr, L.Y., Fisher, P.E. Ultrasonographic evaluation of gastrointestinal diseases in small animals // Veterinary Radiology. 1990. Vol. 31. №3. P. 134-141. XXIII. Penninck, D.G.,Webster, C.R.L.,Keating, J.H. The sonographic appearance of intestinal mucosal fibrosis in cats // Veterinary Radiology and Ultrasound. – 2010. – Vol. 51, № 4. – Р. 458-461. XXIV. Pollard, R.E.,Johnson, E.G., Pesavento, P.A., Baker, T.W., Cannon, A.B., Kass, P.H., Marks, S.L. Effects of corn oil administered orally on conspicuity of ultrasonographic small intestinal lesions in dogs with lymphangiectasia // Veterinary Radiology and Ultrasound. 2013. Vol. 54. № 4. P. 390-397. XXV. Rault, D.N., Besso, J.G., Boulouha, L., Begon, D., Ruel, Y. Significance of a common extended mucosal interface observed in transverse small intestine sonograms // Veterinary Radiology and Ultrasound. 2004. Vol. 45. №2. Р. 177-179. XXVI. Sutherland-Smith, J., Penninck, D.G., Keating, J.H., Webster, C.R.L. Ultrasonographic intestinal hyperechoic mucosal striations in dogs are associated with lacteal dilation // Veterinary Radiology and Ultrasound. – 2007. Vol. 48. – № 1. – P. 51-57. View | Download EVALUATION OF ADAPTIVE POTENTIAL IN MEDICAL STUDENTS IN THE CONTEXT OF SEASONAL DYNAMICS Authors: Larisa A. Merdenova,Elena A. Takoeva,Marina I. Nartikoeva,Victoria A. Belyayeva,Fatima S. Datieva,Larisa R. Datieva, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00046 Abstract: The aim of this work was to assess the functional reserves of the body to quantify individual health; adaptation, psychophysiological characteristics of the health quality of medical students in different seasons of the year. When studying the temporal organization of physiological functions, the rhythm parameters of physiological functions were determined, followed by processing the results using the Cosinor Analysis program, which reveals rhythms with an unknown period for unequal observations, evaluates 5 parameters of sinusoidal rhythms (mesor, amplitude, acrophase, period, reliability). The essence of desynchronization is the mismatch of circadian rhythms among themselves or destruction of the rhythms architectonics (instability of acrophases or their disappearance). Desynchronization with respect to the rhythmic structure of the body is of a disregulatory nature, most pronounced in pathological desynchronization. High neurotism, increased anxiety reinforces the tendency to internal desynchronization, which increases with stress. During examination stress, students experience a decrease in the stability of the temporary organization of the biosystem and the tension of adaptive mechanisms develops, which affects attention, mental performance and the quality of adaptation to the educational process. Time is shortened and the amplitude of the “initial minute” decreases, personal and situational anxiety develops, and the level of psychophysiological adaptation decreases. The results of the work are priority because they can be used in assessing quality and level of health. Keywords: Desynchronosis,biorhythms,psycho-emotional stress,mesor,acrophase,amplitude,individual minute, Refference: I. Arendt, J., Middleton, B. Human seasonal and circadian studies in Antarctica (Halley, 75_S) – General and Comparative Endocrinology. 2017: 250-259. (http://dx.doi.org/10.1016/j.ygcen.2017.05.010). II. BalandinYu.P. A brief methodological guide on the use of the agro-industrial complex “Health Sources” / Yu.P. Balandin, V.S. Generalov, V.F. Shishlov. Ryazan, 2007. III. Buslovskaya L.K. Adaptation reactions in students at exam stress/ L.K. Buslovskaya, Yu.P. Ryzhkova. Scientific bulletin of Belgorod State University. Series: Natural Sciences. 2011;17(21):46-52. IV. Chutko L. S. Sindromjemocionalnogovygoranija – Klinicheskie I psihologicheskieaspekty./ L.S Chutko. Moscow: MEDpress-inform, 2013. V. Eroshina K., Paul Wilkinson, Martin Mackey. The role of environmental and social factors in the occurrence of diseases of the respiratory tract in children of primary school age in Moscow. Medicine. 2013:57-71. VI. Fagrell B. “Microcirculation of the Skin”. The physiology and pharmacology of the microcirculation. 2013:423. VII. Gurova O.A. Change in blood microcirculation in students throughout the day. New research. 2013; 2 (35):66-71. VIII. Khetagurova L.G. – Stress/Ed. L.G. Khetagurov. Vladikavkaz: Project-Press Publishing House, 2010. IX. Khetagurova L.G., Urumova L.T. et al. Stress (chronomedical aspects). International Journal of Experimental Education 2010; 12: 30-31. X. Khetagurova L.G., Salbiev K.D., Belyaev S.D., Datieva F.S., Kataeva M.R., Tagaeva I.R. Chronopathology (experimental and clinical aspects/ Ed. L.G. Khetagurov, K.D. Salbiev, S.D.Belyaev, F.S. Datiev, M.R. Kataev, I.R. Tagaev. Moscow: Science, 2004. XI. KlassinaS.Ya. Self-regulatory reactions in the microvasculature of the nail bed of fingers in person with psycho-emotional stress. Bulletin of new medical technologies, 2013; 2 (XX):408-412. XII. Kovtun O.P., Anufrieva E.V., Polushina L.G. Gender-age characteristics of the component composition of the body in overweight and obese schoolchildren. Medical Science and Education of the Urals. 2019; 3:139-145. XIII. Kuchieva M.B., Chaplygina E.V., Vartanova O.T., Aksenova O.A., Evtushenko A.V., Nor-Arevyan K.A., Elizarova E.S., Efremova E.N. A comparative analysis of the constitutional features of various generations of healthy young men and women in the Rostov Region. Modern problems of science and education. 2017; 5:50-59. XIV. Mathias Adamsson1, ThorbjörnLaike, Takeshi Morita – Annual variation in daily light expo-sure and circadian change of melatonin and cortisol consent rations at a northern latitude with large seasonal differences in photoperiod length – Journal of Physiological Anthropology. 2017; 36: 6 – 15. XV. Merdenova L.A., Tagaeva I.R., Takoeva E.A. Features of the study of biological rhythms in children. The results of fundamental and applied research in the field of natural and technical sciences. Materials of the International Scientific and Practical Conference. Belgorod, 2017, pp. 119-123. XVI. Ogarysheva N.V. The dynamics of mental performance as a criterion for adapting to the teaching load. Bulletin of the Samara Scientific Center of the Russian Academy of Sciences. 2014;16:5 (1): S.636-638. XVII. Pekmezovi T. Gene-environment interaction: A genetic-epidemiological approach. Journal of Medical Biochemistry. 2010;29:131-134. XVIII. Rapoport S.I., Chibisov S.M. Chronobiology and chronomedicine: history and prospects/Ed. S.M. Chibisov, S.I. Rapoport ,, M.L. Blagonravova. Chronobiology and Chronomedicine: Peoples’ Friendship University of Russia (RUDN) Press. Moscow, 2018. XIX. Roustit M., Cracowski J.L. “Non-invasive assessment of skin microvascular function in humans: an insight into methods” – Microcirculation 2012; 19 (1): 47-64. XX. Rud V.O., FisunYu.O. – References of the circadian desinchronosis in students. Ukrainian Bulletin of Psychoneurology. 2010; 18(2) (63): 74-77. XXI. Takoeva Z. A., Medoeva N. O., Berezova D. T., Merdenova L. A. et al. Long-term analysis of the results of chronomonitoring of the health of the population of North Ossetia; Vladikavkaz Medical and Biological Bulletin. 2011; 12(12,19): 32-38. XXII. Urumova L.T., Tagaeva I.R., Takoeva E.A., Datieva L.R. – The study of some health indicators of medical students in different periods of the year. Health and education in the XXI century. 2016; 18(4): 94-97. XXIII. Westman J. – Complex diseases. In: Medical genetics for the modern clinician. USA: Lippincott Williams & Wilkins, 2006. XXIV. Yadrischenskaya T.V. Circadian biorhythms of students and their importance in educational activities. Problems of higher education. Pacific State University Press. 2016; 2:176-178. View | Download TRIADIC COMPARATIVE ANALYSIS Authors: Stanislav A.Kudzh,Victor Ya. Tsvetkov, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00047 Abstract: The present study of comparison methods based on the triadic model introduces the following concepts: the relation of comparability and the relation of comparison, and object comparison and attributive comparison. The difference between active and passive qualitative comparison is shown, two triadic models of passive and active comparison and models for comparing two and three objects are described. Triadic comparison models are proposed as an alternative to dyadic comparison models. Comparison allows finding the common and the different; this approach is proposed for the analysis of the nomothetic and ideographic method of obtaining knowledge. The nomothetic method identifies and evaluates the general, while the ideographic method searches for unique in parameters and in combinations of parameters. Triadic comparison is used in systems and methods of argumentation, as well as in the analysis of consistency/inconsistency. Keywords: Comparative analysis,dyad,triad,triadic model,comparability relation,object comparison,attributive comparison,nomothetic method,ideographic method, Refference: I. AltafS., Aslam.M.Paired comparison analysis of the van Baarenmodel using Bayesian approach with noninformativeprior.Pakistan Journal of Statistics and Operation Research 8(2) (2012) 259{270. II. AmooreJ. E., VenstromD Correlations between stereochemical assessments and organoleptic analysis of odorous compounds. Olfaction and Taste (2016) 3{17. III. BarnesJ., KlingerR. Embedding projection for targeted cross-lingual sentiment: model comparisons and a real-world study. Journal of Artificial Intelligence Research 66 (2019) 691{742. doi.org/10.1613/jair.1.11561 IV. Castro-SchiloL., FerrerE.Comparison of nomothetic versus idiographic-oriented methods for making predictions about distal outcomes from time series data. Multivariate Behavioral Research 48(2) (2013) 175{207. V. De BonaG.et al. Classifying inconsistency measures using graphs. Journal of Artificial Intelligence Research 66 (2019) 937{987. VI. FideliR. La comparazione. Milano: Angeli, 1998. VII. GordonT. F., PrakkenH., WaltonD. The Carneades model of argument and burden of proof. Artificial Intelligence 10(15) (2007) 875{896. VIII. GrenzS.J. The social god and the relational self: A Triad theology of the imago Dei. Westminster: John Knox Press, 2001. IX. HermansH.J. M.On the integration of nomothetic and idiographic research methods in the study of personal meaning.Journal of Personality 56(4) (1988) 785{812. X. JamiesonK. G., NowakR. Active ranking using pairwise comparisons.Advances in Neural Information Processing Systems (2011) 2240{2248. XI. JongsmaC.Poythress’s triad logic: a review essay. Pro Rege 42(4) (2014) 6{15. XII. KärkkäinenV.M. Trinity and Religious Pluralism: The Doctrine of the Trinity in Christian Theology of Religions. London: Routledge, 2017. XIII. KudzhS. A., TsvetkovV.Ya. Triadic systems. Russian Technology Magazine 7(6) (2019) 74{882. XIV. NelsonK.E.Some observations from the perspective of the rare event cognitive comparison theory of language acquisition.Children’s Language 6 (1987) 289{331. XV. NiskanenA., WallnerJ., JärvisaloM.Synthesizing argumentation frameworks from examples. Journal of Artificial Intelligence Research 66 (2019) 503{554. XVI. PührerJ.Realizability of three-valued semantics for abstract dialectical frameworks.Artificial Intelligence 278 (2020) 103{198. XVII. SwansonG.Frameworks for comparative research: structural anthropology and the theory of action. In: Vallier, Ivan (Ed.). Comparative methods in sociology: essays on trends and applications.Berkeley: University of California Press, 1971 141{202. XVIII. TsvetkovV.Ya.Worldview model as the result of education.World Applied Sciences Journal 31(2) (2014) 211{215. XIX. TsvetkovV. Ya. Logical analysis and variable scales. Slavic Forum 4(22) (2018) 103{109. XX. Wang S. et al. Transit traffic analysis zone delineating method based on Thiessen polygon. Sustainability 6(4) (2014) 1821{1832. View | Download DEVELOPING TECHNOLOGY OF CREATING WEAR-RESISTANT CERAMIC COATING FOR ICE CYLINDER". JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES spl10, n.º 1 (28 de junio de 2020). http://dx.doi.org/10.26782/jmcms.spl.10/2020.06.00048.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía