Artículos de revistas sobre el tema "Crop improvement"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Crop improvement.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Crop improvement".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Choudhary, Mukesh, Vishal Singh, Vignesh Muthusamy y Shabir Hussain Wani. "Harnessing Crop Wild Relatives for Crop Improvement". LS: International Journal of Life Sciences 6, n.º 2 (2017): 73. http://dx.doi.org/10.5958/2319-1198.2017.00009.4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Merchán, Kelly. "Crop Improvement ≠ Plant Breeding". CSA News 66, n.º 5 (22 de abril de 2021): 28–31. http://dx.doi.org/10.1002/csan.20445.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

CLEGG, MICHAEL T. "Genetics of Crop Improvement". American Zoologist 26, n.º 3 (agosto de 1986): 821–34. http://dx.doi.org/10.1093/icb/26.3.821.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Gosal, Satbir S., Shabir H. Wani y Manjit S. Kang. "Biotechnology and Crop Improvement". Journal of Crop Improvement 24, n.º 2 (29 de abril de 2010): 153–217. http://dx.doi.org/10.1080/15427520903584555.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Evans, Adrian. "Innovations in crop improvement". Crop Protection 12, n.º 3 (mayo de 1993): 237. http://dx.doi.org/10.1016/0261-2194(93)90116-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Smith, Steven M. "Crop improvement utilizing biotechnology". Agricultural Systems 36, n.º 2 (enero de 1991): 246–47. http://dx.doi.org/10.1016/0308-521x(91)90032-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Praveen Rao, V. "Breeding for Crop Improvement". Current Science 114, n.º 02 (25 de enero de 2018): 256. http://dx.doi.org/10.18520/cs/v114/i02/256-257.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Springer, Nathan M. "Epigenetics and crop improvement". Trends in Genetics 29, n.º 4 (abril de 2013): 241–47. http://dx.doi.org/10.1016/j.tig.2012.10.009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Ramulu, K. S., V. K. Sharma, T. N. Naumova, P. Dijkhuis y M. M. van Lookeren Campagne. "Apomixis for crop improvement". Protoplasma 208, n.º 1-4 (marzo de 1999): 196–205. http://dx.doi.org/10.1007/bf01279090.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Sourdille, Pierre y Pierre Devaux. "Crop Improvement: Now and Beyond". Biology 10, n.º 5 (10 de mayo de 2021): 421. http://dx.doi.org/10.3390/biology10050421.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Singh, Arvinder y Muskan Bokolia. "CRISPR/Cas for Crop Improvement". Resonance 26, n.º 2 (febrero de 2021): 227–40. http://dx.doi.org/10.1007/s12045-021-1121-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Shigeoka, S. "Transgenic approaches to crop improvement". Japanese journal of crop science 71, Supplement2 (2002): 318–21. http://dx.doi.org/10.1626/jcs.71.supplement2_318.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Lai, Kaitao, Michał T. Lorenc y David Edwards. "Genomic Databases for Crop Improvement". Agronomy 2, n.º 1 (20 de marzo de 2012): 62–73. http://dx.doi.org/10.3390/agronomy2010062.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Cody, Jon, Nathan Swyers, Morgan McCaw, Nathaniel Graham, Changzeng Zhao y James Birchler. "Minichromosomes: Vectors for Crop Improvement". Agronomy 5, n.º 3 (6 de julio de 2015): 309–21. http://dx.doi.org/10.3390/agronomy5030309.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Shen, Lisha y Hao Yu. "Epitranscriptome engineering in crop improvement". Molecular Plant 14, n.º 9 (septiembre de 2021): 1418–20. http://dx.doi.org/10.1016/j.molp.2021.08.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Kumari, Rima. "Allele Mining for Crop Improvement". International Journal of Pure & Applied Bioscience 6, n.º 1 (28 de febrero de 2018): 1456–65. http://dx.doi.org/10.18782/2320-7051.6073.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Bevan, Michael W., Cristobal Uauy, Brande B. H. Wulff, Ji Zhou, Ksenia Krasileva y Matthew D. Clark. "Genomic innovation for crop improvement". Nature 543, n.º 7645 (marzo de 2017): 346–54. http://dx.doi.org/10.1038/nature22011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Evans, L. T. "Is Crop Improvement Still Needed?" Journal of Crop Improvement 14, n.º 1-2 (13 de septiembre de 2005): 1–7. http://dx.doi.org/10.1300/j411v14n01_01.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Sneller, Clay H., Randall L. Nelson, T. E. Carter y Zhanglin Cui. "Genetic Diversity in Crop Improvement". Journal of Crop Improvement 14, n.º 1-2 (13 de septiembre de 2005): 103–44. http://dx.doi.org/10.1300/j411v14n01_06.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Zhang, Jingyu, Xin-Min Li, Hong-Xuan Lin y Kang Chong. "Crop Improvement Through Temperature Resilience". Annual Review of Plant Biology 70, n.º 1 (29 de abril de 2019): 753–80. http://dx.doi.org/10.1146/annurev-arplant-050718-100016.

Texto completo
Resumen
Abnormal environmental temperature affects plant growth and threatens crop production. Understanding temperature signal sensing and the balance between defense and development in plants lays the foundation for improvement of temperature resilience. Here, we summarize the current understanding of cold signal perception/transduction as well as heat stress response. Dissection of plant responses to different levels of cold stresses (chilling and freezing) illustrates their common and distinct signaling pathways. Axillary bud differentiation in response to chilling is presented as an example of the trade-off between defense and development. Vernalization is a cold-dependent development adjustment mediated by O-GlcNAcylation and phosphorylation to sense long-term cold. Recent progress on major quantitative trait loci genes for heat tolerance has been summarized. Molecular mechanisms in utilizing temperature-sensitive sterility in super hybrid breeding in China are revealed. The way to improve crop temperature resilience using integrative knowledge of omics as well as systemic and synthetic biology, especially the molecular module program, is summarized.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Brennan, Charles. "Concise Encyclopaedia of Crop Improvement". International Journal of Food Science & Technology 44, n.º 10 (octubre de 2009): 2085. http://dx.doi.org/10.1111/j.1365-2621.2008.01771.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Parry, M. A. J., P. J. Madgwick, C. Bayon, K. Tearall, A. Hernandez-Lopez, M. Baudo, M. Rakszegi et al. "Mutation discovery for crop improvement". Journal of Experimental Botany 60, n.º 10 (10 de junio de 2009): 2817–25. http://dx.doi.org/10.1093/jxb/erp189.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Burgess, Darren J. "Branching out for crop improvement". Nature Reviews Genetics 18, n.º 7 (5 de junio de 2017): 393. http://dx.doi.org/10.1038/nrg.2017.48.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Martin, Gregory B. "Gene discovery for crop improvement". Current Opinion in Biotechnology 9, n.º 2 (abril de 1998): 220–26. http://dx.doi.org/10.1016/s0958-1669(98)80119-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Dunwell, Jim M. "Transgenic approaches to crop improvement". Journal of Experimental Botany 51, suppl_1 (febrero de 2000): 487–96. http://dx.doi.org/10.1093/jexbot/51.suppl_1.487.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Verhage, Leonie. "The colour of crop improvement". Plant Journal 103, n.º 6 (septiembre de 2020): 1965–66. http://dx.doi.org/10.1111/tpj.14971.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Rafalski, Antoni. "Molecular techniques in crop improvement". Plant Science 163, n.º 6 (diciembre de 2002): 1177. http://dx.doi.org/10.1016/s0168-9452(02)00330-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Brown, D. C. W. y T. A. Thorpe. "Crop improvement through tissue culture". World Journal of Microbiology & Biotechnology 11, n.º 4 (julio de 1995): 409–15. http://dx.doi.org/10.1007/bf00364616.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Rafalski, J. Antoni. "Association genetics in crop improvement". Current Opinion in Plant Biology 13, n.º 2 (abril de 2010): 174–80. http://dx.doi.org/10.1016/j.pbi.2009.12.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Varshney, Rajeev K., Pallavi Sinha, Vikas K. Singh, Arvind Kumar, Qifa Zhang y Jeffrey L. Bennetzen. "5Gs for crop genetic improvement". Current Opinion in Plant Biology 56 (agosto de 2020): 190–96. http://dx.doi.org/10.1016/j.pbi.2019.12.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Kerchev, Pavel, Barbara De Smet, Cezary Waszczak, Joris Messens y Frank Van Breusegem. "Redox Strategies for Crop Improvement". Antioxidants & Redox Signaling 23, n.º 14 (10 de noviembre de 2015): 1186–205. http://dx.doi.org/10.1089/ars.2014.6033.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

St. Martin, S. K. "Plant Adaption and Crop Improvement". Crop Science 38, n.º 1 (enero de 1998): 274–75. http://dx.doi.org/10.2135/cropsci1998.0011183x003800010047x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Lin, Rongshuang. "Concise Encyclopedia of Crop Improvement". Journal of Environmental Quality 38, n.º 3 (mayo de 2009): 1329. http://dx.doi.org/10.2134/jeq2008.0023br.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Hussain,, G., M. S. Wani,, M. A. Mir,, Z. A. Rather y K. M. Bhat,. "Micrografting for fruit crop improvement". African Journal of Biotechnology 13, n.º 25 (18 de junio de 2014): 2474–83. http://dx.doi.org/10.5897/ajb2013.13602.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Heffner, Elliot L., Mark E. Sorrells y Jean-Luc Jannink. "Genomic Selection for Crop Improvement". Crop Science 49, n.º 1 (enero de 2009): 1–12. http://dx.doi.org/10.2135/cropsci2008.08.0512.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

GOODMAN, R. M., H. HAUPTLI, A. CROSSWAY y V. C. KNAUF. "Gene Transfer in Crop Improvement". Science 236, n.º 4797 (3 de abril de 1987): 48–54. http://dx.doi.org/10.1126/science.236.4797.48.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Sane, P. V. y U. C. Lavania. "Innovative Approaches to Crop Improvement". Proceedings of the Indian National Science Academy 80, n.º 1 (18 de marzo de 2014): 17. http://dx.doi.org/10.16943/ptinsa/2014/v80i1/55082.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

McCouch, Susan. "Wild Alleles for Crop Improvement". Nature Biotechnology 17, S5 (diciembre de 1999): 32. http://dx.doi.org/10.1038/70392.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Pauls, K. P. "Plant biotechnology for crop improvement". Biotechnology Advances 13, n.º 4 (enero de 1995): 673–93. http://dx.doi.org/10.1016/0734-9750(95)02010-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Cramer, Rainer, Laurence Bindschedler y Ganesh Agrawal. "Plant Proteomics in Crop Improvement". PROTEOMICS 13, n.º 12-13 (junio de 2013): 1771. http://dx.doi.org/10.1002/pmic.201370104.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Cortés, Andrés J., María Ángeles Castillejo y Roxana Yockteng. "‘Omics’ Approaches for Crop Improvement". Agronomy 13, n.º 5 (19 de mayo de 2023): 1401. http://dx.doi.org/10.3390/agronomy13051401.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Murín, Gustáv y Karol Mičieta. "Improvement of Crop Production by Means of a Storage Effect". International Journal of Environmental and Agriculture Research 3, n.º 5 (31 de mayo de 2017): 12–25. http://dx.doi.org/10.25125/agriculture-journal-ijoear-apr-2017-26.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Goldman, I. L. "Principles of Crop Improvement. 2nd ed." HortTechnology 10, n.º 3 (enero de 2000): 638b—640. http://dx.doi.org/10.21273/horttech.10.3.638b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Ward, Richard W. "Principles of Crop Improvement, 2nd Edition". Crop Science 40, n.º 2 (marzo de 2000): 562–63. http://dx.doi.org/10.2135/cropsci2000.0006br.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Kim, Hyeran, Sang-Tae Kim, Sang-Gyu Kim y Jin-Soo Kim. "Targeted Genome Editing for Crop Improvement". Plant Breeding and Biotechnology 3, n.º 4 (30 de noviembre de 2015): 283–90. http://dx.doi.org/10.9787/pbb.2015.3.4.283.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Messina, Carlos D., Fred van Eeuwijk, Tom Tang, Sandra K. Truong, Ryan F. McCormick, Frank Technow, Owen Powell et al. "Crop Improvement for Circular Bioeconomy Systems". Journal of the ASABE 65, n.º 3 (2022): 491–504. http://dx.doi.org/10.13031/ja.14912.

Texto completo
Resumen
HighlightsWe describe and demonstrate a multidimensional framework to integrate environmental and genomic predictors to enable crop improvement for a circular bioeconomy.A model training procedure based on multiple phenotypes is shown to improve predictive skill.The decision set comprised of model outputs can inform selection for both productivity and circularity metrics.Abstract. Contemporary agricultural systems are poised to transition from linear to circular, adopting concepts of recycling, repurposing, and regeneration. This transition will require changing crop improvement objectives to consider the entire system, and thus provide solutions to improve complex systems for higher productivity, resource use efficiency, and environmental quality. The methods and approaches that underpinned the doubling of yields during the last century may no longer be fully adequate to target crop improvement for circular agricultural systems. Here we propose a multidimensional framework for prediction with outcomes useful to assess both crop performance traits and environmental sustainability of the designed agricultural systems. The study focuses on maize harvestable grain yield and total carbon production, water use, and use efficiency for yield and carbon. The framework builds on the crop growth model whole genome prediction system, which is enabled by advanced phenomics and the integration of symbolic and sub-symbolic artificial intelligence. We demonstrate the approach and prediction accuracy advantages over a standard statistical genomic prediction approach used to breed maize hybrids for yield, flowering time, and kernel set using a dataset comprised of 7004 hybrids, 103 breeding populations, and 62 environments resulting from six years of experimentation in maize drought breeding in the U.S. We propose this framework to motivate a dialogue for how to enable circularity in agriculture through prediction-based systems design. Keywords: Circular bioeconomy, Circular economy, Crop improvement, Crop models, Drought, Gene editing, Genomic prediction, Maize, Plant breeding.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Messina, Carlos D., Fred van Eeuwijk, Tom Tang, Sandra K. Truong, Ryan F. McCormick, Frank Technow, Owen Powell et al. "Crop Improvement for Circular Bioeconomy Systems". Journal of the ASABE 65, n.º 3 (2022): 491–504. http://dx.doi.org/10.13031/ja.14912.

Texto completo
Resumen
HighlightsWe describe and demonstrate a multidimensional framework to integrate environmental and genomic predictors to enable crop improvement for a circular bioeconomy.A model training procedure based on multiple phenotypes is shown to improve predictive skill.The decision set comprised of model outputs can inform selection for both productivity and circularity metrics.Abstract. Contemporary agricultural systems are poised to transition from linear to circular, adopting concepts of recycling, repurposing, and regeneration. This transition will require changing crop improvement objectives to consider the entire system, and thus provide solutions to improve complex systems for higher productivity, resource use efficiency, and environmental quality. The methods and approaches that underpinned the doubling of yields during the last century may no longer be fully adequate to target crop improvement for circular agricultural systems. Here we propose a multidimensional framework for prediction with outcomes useful to assess both crop performance traits and environmental sustainability of the designed agricultural systems. The study focuses on maize harvestable grain yield and total carbon production, water use, and use efficiency for yield and carbon. The framework builds on the crop growth model whole genome prediction system, which is enabled by advanced phenomics and the integration of symbolic and sub-symbolic artificial intelligence. We demonstrate the approach and prediction accuracy advantages over a standard statistical genomic prediction approach used to breed maize hybrids for yield, flowering time, and kernel set using a dataset comprised of 7004 hybrids, 103 breeding populations, and 62 environments resulting from six years of experimentation in maize drought breeding in the U.S. We propose this framework to motivate a dialogue for how to enable circularity in agriculture through prediction-based systems design. Keywords: Circular bioeconomy, Circular economy, Crop improvement, Crop models, Drought, Gene editing, Genomic prediction, Maize, Plant breeding.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Temesgen, Begna. "Speed breeding to accelerate crop improvement". International Journal of Agricultural Science and Food Technology 8, n.º 2 (2 de junio de 2022): 178–86. http://dx.doi.org/10.17352/2455-815x.000161.

Texto completo
Resumen
Global food security has become a major issue as the human population grows and the environment changes, with the current rate of improvement of several important crops inadequate to meet future demand. Crop plants have extended generation times, which contributes to the slow rate of progress. However, speed breeding has revolutionized the entire world by reducing generation time and speeding up breeding and research programs to improve crop varieties. In the absence of an integrated pre-breeding program, breeding new and high-performing cultivars with market-preferred traits can take more than ten years. After the first cross with parental genotypes, a large amount of time, space, and resources are committed to the selection and genetic advancement stages during the early stages of breeding. Speed breeding has the ability to shorten the time it takes to develop, market, and commercialize cultivars. Crop improvement in the face of a fast-changing environment and an ever-increasing human population is a major concern for scientists around the world. Current crop enhancement projects are progressing at a rate that is insufficient to meet food demand. Crop redesign is urgently needed for climate resilience, as well as long-term yield and nutrition. Crop progress is slowed significantly by the long generation time required by crop plants during the breeding process. Speed breeding is now being used on a large scale to shorten generation time and support multiple crop generations per year as a solution in this approach. Researchers are now using an integrated approach to improve breeding efficiency, combining speed breeding with current plant breeding and genetic engineering methods. Speed breeding is a promising approach for achieving nutritional security and sustainable agriculture by shortening breeding cycles for food and industrial crop enhancement. Speed breeding is a methodology that allows plant breeders to improve crop production by adjusting temperature, light duration, and intensity to boost plant development. It uses an artificial source of light, which is kept on continuously, to activate the photosynthetic process, which leads to growth and reproduction much earlier than normal. This will assist in meeting the demands of the future’s rising population. This can be accomplished using a variety of technologies, including genotyping, marker-assisted selection, high throughput phenotyping; gene editing, genomic selection, and re-domestication, all of which can be combined with speed breeding to allow plant breeders to keep up with a changing climate and growing human population.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Soriano, Jose Miguel. "Molecular Marker Technology for Crop Improvement". Agronomy 10, n.º 10 (24 de septiembre de 2020): 1462. http://dx.doi.org/10.3390/agronomy10101462.

Texto completo
Resumen
Since the 1980s, agriculture and plant breeding have changed with the development of molecular marker technology. In recent decades, different types of molecular markers have been used for different purposes: mapping, marker-assisted selection, characterization of genetic resources, etc. These have produced effective genotyping, but the results have been costly and time-consuming, due to the small number of markers that could be tested simultaneously. Recent advances in molecular marker technologies such as the development of high-throughput genotyping platforms, genotyping by sequencing, and the release of the genome sequences of major crop plants open new possibilities for advancing crop improvement. This Special Issue collects sixteen research studies, including the application of molecular markers in eleven crop species, from the generation of linkage maps and diversity studies to the application of marker-assisted selection and genomic prediction.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Rajagopal, Velamoor, Ramaswamy Manimekalai, Krishnamurthy Devakumar, Rajesh, Anitha Karun, Vittal Niral, Murali Gopal et al. "A database for coconut crop improvement". Bioinformation 1, n.º 2 (11 de agosto de 2005): 75–77. http://dx.doi.org/10.6026/97320630001075.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía