Literatura académica sobre el tema "CRISPR system"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "CRISPR system".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "CRISPR system"
Huescas, C. G. Y., R. I. Pereira, J. Prichula, P. A. Azevedo, J. Frazzon y A. P. G. Frazzon. "Frequency of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) in non-clinical Enterococcus faecalis and Enterococcus faecium strains". Brazilian Journal of Biology 79, n.º 3 (septiembre de 2019): 460–65. http://dx.doi.org/10.1590/1519-6984.183375.
Texto completoSerbanescu, M. A., M. Cordova, K. Krastel, R. Flick, N. Beloglazova, A. Latos, A. F. Yakunin, D. B. Senadheera y D. G. Cvitkovitch. "Role of the Streptococcus mutans CRISPR-Cas Systems in Immunity and Cell Physiology". Journal of Bacteriology 197, n.º 4 (8 de diciembre de 2014): 749–61. http://dx.doi.org/10.1128/jb.02333-14.
Texto completoChapman, Brittany, Jeong Hoon Han, Hong Jo Lee, Isabella Ruud y Tae Hyun Kim. "Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit". Genes 14, n.º 4 (13 de abril de 2023): 906. http://dx.doi.org/10.3390/genes14040906.
Texto completoLa Russa, Marie F. y Lei S. Qi. "The New State of the Art: Cas9 for Gene Activation and Repression". Molecular and Cellular Biology 35, n.º 22 (14 de septiembre de 2015): 3800–3809. http://dx.doi.org/10.1128/mcb.00512-15.
Texto completoKarlson, Chou Khai Soong, Siti Nurfadhlina Mohd-Noor, Nadja Nolte y Boon Chin Tan. "CRISPR/dCas9-Based Systems: Mechanisms and Applications in Plant Sciences". Plants 10, n.º 10 (29 de septiembre de 2021): 2055. http://dx.doi.org/10.3390/plants10102055.
Texto completoYang, Jiayi. "Applications of the CRISPR-Cas9 system in cancer models". Theoretical and Natural Science 21, n.º 1 (20 de diciembre de 2023): 28–33. http://dx.doi.org/10.54254/2753-8818/21/20230804.
Texto completoShi, Yuqian. "CRISPR/Cas System in Human Genetic Diseases". Highlights in Science, Engineering and Technology 74 (29 de diciembre de 2023): 78–85. http://dx.doi.org/10.54097/ztchmw71.
Texto completoKiro, Ruth, Moran G. Goren, Ido Yosef y Udi Qimron. "CRISPR adaptation in Escherichia coli subtypeI-E system". Biochemical Society Transactions 41, n.º 6 (20 de noviembre de 2013): 1412–15. http://dx.doi.org/10.1042/bst20130109.
Texto completoHeussler, Gary E., Jon L. Miller, Courtney E. Price, Alan J. Collins y George A. O'Toole. "Requirements for Pseudomonas aeruginosa Type I-F CRISPR-Cas Adaptation Determined Using a Biofilm Enrichment Assay". Journal of Bacteriology 198, n.º 22 (29 de agosto de 2016): 3080–90. http://dx.doi.org/10.1128/jb.00458-16.
Texto completoSasaki, Shigenori, Hirohito Ogawa, Hirokazu Katoh y Tomoyuki Honda. "Suppression of Borna Disease Virus Replication during Its Persistent Infection Using the CRISPR/Cas13b System". International Journal of Molecular Sciences 25, n.º 6 (20 de marzo de 2024): 3523. http://dx.doi.org/10.3390/ijms25063523.
Texto completoTesis sobre el tema "CRISPR system"
Stens, Cassandra, Isabella Enoksson y Sara Berggren. "The CRISPR-Cas system". Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-171997.
Texto completoStachler, Aris-Edda [Verfasser]. "Das CRISPR-Cas-System von Haloferax volcanii: CRISPRi und Autoimmunität / Aris-Edda Stachler". Ulm : Universität Ulm, 2017. http://d-nb.info/1140118145/34.
Texto completoRoidos, Paris. "Genome editing with the CRISPR Cas9 system". Thesis, KTH, Skolan för bioteknologi (BIO), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-163694.
Texto completoEllis, Donald Christian. "Genetic screens in vivo using the CRISPR/Cas9 system". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/109640.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 82-87).
An unmet and paramount need in the field of cancer research is to rapidly translate basic biological findings to clinically relevant therapeutics for cancer patients. Recent technological advances have generated many innovative applications to cancer biology and in a short time have yielded a wealth of information about putative vulnerabilities across a range of cancers. The proposed work involves the development of a technique to quickly probe potential cancer-specific vulnerabilities in vivo adopting methods used in genetic screens. By harnessing the information obtained from large datasets in vitro and the utility of cutting-edge endogenous mouse models, the general aim of this work is to create a method that shortens the gap between findings in the lab to viable treatment options for cancer patients.
by Donald Christian Ellis.
S.M.
Maikova, Anna. "The CRISPR-Cas system of human pathogen Clostridium difficile : function and regulation". Thesis, Université de Paris (2019-....), 2019. http://www.theses.fr/2019UNIP7091.
Texto completoClostridium difficile (the novel name – Clostridioides difficile) is a Gram-positive, strictly anaerobic spore forming bacterium, found in soil and aquatic environments as well as in mammalian intestinal tracts. C. difficile is one of the major pathogenic clostridia. This bacterium has become a key public health issue associated with antibiotic therapy in industrialized countries. C. difficile-associated diarrhoea is currently the most frequently occurring nosocomial diarrhoea in Europe and worldwide. Since the last decade the number of severe infection forms has been rising due to emergence of the hypervirulent and epidemic strains as ribotype 027 R20291 strain. C. difficile infection causes diarrhoea, colitis and even death. Many aspects of C. difficile pathogenesis remain poorly understood. Particularly, the molecular mechanisms of its adaptation to changing conditions inside the host are to be scrutinized. During the infection cycle C. difficile survives in bacteriophage-rich gut communities possibly by relying on some special systems that control the genetic exchanges favored within these complex environments. During the last decade, CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems of adaptive prokaryotic immunity against exogenic genetic elements has become the center of interest among various anti-invader bacterial defense systems.Previous studies revealed the presence of abundant and diverse CRISPR RNAs in C. difficile. C. difficile has an original CRISPR system, which is characterized by the presence of an unusually large set of CRISPR arrays (12 arrays in the laboratory 630 strain and 9 ones in the hypervirulent R20291 strain), of two or three sets of cas genes conserved in the majority of sequenced C. difficile genomes and the prophage location of several CRISPR arrays. However, the role CRISPR-Cas plays in the physiology and infectious cycle of this important pathogen remains obscure.The general aims of this work run as follows: 1) to investigate the role and the functionality of C. difficile CRISPR-Cas system in the interactions with foreign DNA elements (such as plasmids), 2) to reveal the way C. difficile CRISPR-Cas system expression is regulated and functions in different states of bacterial culture, including its response to stresses. In the present PhD thesis the functionality of C. difficile CRISPR-Cas system was investigated (Chapter 2). Through conjugation efficiency assays defensive function (in interference) of C. difficile CRISPR-Cas system was demonstrated. The correlation between the previously known levels of expression of CRISPR RNAs and the observed levels of interference has also been shown. Moreover, through the series of interference experiments the functionality of PAMs (protospacer adjacent motifs) was confirmed, which have already been predicted in silico. Additionally, the general functional PAM consensus was determined using PAM libraries experiments. Furthermore, an adaptive function of C. difficile CRISPR-Cas system was shown for laboratory strain. The role of multiple cas operons in C. difficile CRISPR functionality is also demonstrated in this Chapter.In Chapter 3 the link between C. difficile CRISPR-Cas system and a new type I toxin-antitoxin system is demonstrated, as well as a possible co-regulation under biofilm and stress conditions of CRISPR-Cas system and these toxin-antitoxin modules. This Chapter also defines a possible role of c-di-GMP in regulation of C. difficile CRISPR-Cas system. Additionally, Chapter 4 describes the utilization of endogenous C. difficile CRISPR-Cas system as a novel tool for genome editing in C. difficile. Altogether, the obtained data highlight the original features of active C. difficile CRISPR-Cas system and demonstrate its biotechnological potential
Arooj, Mahira. "Precision Genome Engineering and Gene Silencing Using CRISPR/dCas9 System". Thesis, Curtin University, 2018. http://hdl.handle.net/20.500.11937/73571.
Texto completoDhanjal, Jaspreet Kaur. "Computational insights into CRISPR/Cas9 system for improved genome editing". Thesis, IIT Delhi, 2019. http://eprint.iitd.ac.in:80//handle/2074/8077.
Texto completoCui, Xiucheng. "Targeted Gene Editing Using CRISPR/Cas9 in a Wheat Protoplast System". Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36543.
Texto completoAmlinger, Lina. "The type I-E CRISPR-Cas system : Biology and applications of an adaptive immune system in bacteria". Doctoral thesis, Uppsala universitet, Mikrobiologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-312234.
Texto completoSeo, Jooheon. "Modulation of DNA repair pathway after CRISPR/Cas9 mediated Double Stranded Break". Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/74884.
Texto completoMaster of Science
Libros sobre el tema "CRISPR system"
Halpin-Healy, Tyler Sheehan. Structure and Function of a Transposon-Encoded CRISPR-Cas System. [New York, N.Y.?]: [publisher not identified], 2021.
Buscar texto completoUsing Genomic Transgenes and the CRISPR/Cas9 Gene Editing System to Understand How Hedgehog Signaling Regulates Costal2 and Cubitus Interruptus in Drosophila melanogaster. [New York, N.Y.?]: [publisher not identified], 2017.
Buscar texto completoBarrangou, Rodolphe y John van der Oost, eds. CRISPR-Cas Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-662-45794-8.
Texto completoBarrangou, Rodolphe y John van der Oost, eds. CRISPR-Cas Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34657-6.
Texto completoNæss, Petter y Leigh Price, eds. Crisis System. New York : Routledge, 2016. | Series: Ontological explorations: Routledge, 2016. http://dx.doi.org/10.4324/9781315563138.
Texto completo1963-, Elliott Dominic, ed. Key readings in crisis management: Systems and structures for prevention and recovery. New York, NY: Routledge, 2006.
Buscar texto completoThe economy as cultural system: Theory, capitalism, crisis. New York, NY: Continuum International Pub., 2012.
Buscar texto completoQi, Yiping, ed. Plant Genome Editing with CRISPR Systems. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-8991-1.
Texto completoSohn, Manfred. Hat das System einen Fehler oder ist es der Fehler?: Antworten auf die Finanz- und Wirtschaftskrise von links. Bonn: Pahl-Rugenstein, 2009.
Buscar texto completoBanking systems in the crisis: The faces of liberal capitalism. New York: Routledge, 2012.
Buscar texto completoCapítulos de libros sobre el tema "CRISPR system"
Munawar, Nayla y Aftab Ahmad. "CRISPR/Cas System: An Introduction". En CRISPR Crops, 1–35. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7142-8_1.
Texto completoMunawar, Nayla y Aftab Ahmad. "CRISPR/Cas System: An Introduction". En CRISPR Crops, 1–35. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7142-8_1.
Texto completoGopika, Boro Arthi, Arumugam Vijaya Anand, Natchiappan Senthilkumar, Senthil Kalaiselvi y Santhanu Krishnapriya. "Gene Editing Using CRISPR/Cas9 System". En CRISPR and Plant Functional Genomics, 258–70. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003387060-15.
Texto completoChen, Meng y Lei Stanley Qi. "Repurposing CRISPR System for Transcriptional Activation". En RNA Activation, 147–57. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4310-9_10.
Texto completoCong, Le y Feng Zhang. "Genome Engineering Using CRISPR-Cas9 System". En Chromosomal Mutagenesis, 197–217. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1862-1_10.
Texto completoKhan, Zulqurnain, Tahmina Sattar, Maria Siddique, Zulfiqar Ali, Asif Ali Khan, Syed Ovais Aftab, Muhammad Zubair Ghouri, Qaisar Sultan, Nauman Gulzar y Farooq Ahmad. "Reengineering of the CRISPR/Cas System". En The CRISPR/Cas Tool Kit for Genome Editing, 149–86. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6305-5_5.
Texto completoBalan, Vitaly y Jianbin Wang. "The CRISPR System and Cancer Immunotherapy Biomarkers". En Biomarkers for Immunotherapy of Cancer, 301–22. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9773-2_14.
Texto completoKhan, Sultan Habibullah, Hooran Tariq, Iqra Farooq, Hira Tasleeem, Muhammad Zubair Ghouri, Muhammad Salman Mubarik y Zulqurnain Khan. "Applications of CRISPR/Cas System in Plants". En The CRISPR/Cas Tool Kit for Genome Editing, 285–309. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6305-5_9.
Texto completoKhan, Zulqurnain, Zulfiqar Ali, Asif Ali Khan, Tahmina Sattar, Ali Zeshan, Tahira Saboor y Barkha Binyamin. "History and Classification of CRISPR/Cas System". En The CRISPR/Cas Tool Kit for Genome Editing, 29–52. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6305-5_2.
Texto completoBonamino, Martín Hérnan y Eduardo Mannarino Correia. "The CRISPR/Cas System in Human Cancer". En Advances in Experimental Medicine and Biology, 59–71. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-33325-5_4.
Texto completoActas de conferencias sobre el tema "CRISPR system"
Zhang, Liuyijia. "CRISPR/Cas system in human genetic diseases". En Third International Conference on Biological Engineering and Medical Science (ICBioMed2023), editado por Alan Wang. SPIE, 2024. http://dx.doi.org/10.1117/12.3012830.
Texto completoJiang, Qiancheng. "CRISPR-Cas9 system applications in cancer models". En International Conference on Biological Engineering and Medical Science (ICBIOMed2022), editado por Gary Royle y Steven M. Lipkin. SPIE, 2023. http://dx.doi.org/10.1117/12.2669382.
Texto completoBrisson, Jennifer A. "Developing the CRISPR/Cas9 system in the pea aphid". En 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.105396.
Texto completoZhang, Hanlin. "Therapeutic applications of CRISPR-Cas system in infectious diseases". En Third International Conference on Biological Engineering and Medical Science (ICBioMed2023), editado por Alan Wang. SPIE, 2024. http://dx.doi.org/10.1117/12.3012858.
Texto completoXiao, Zening. "Principle, application and prospect of CRISPR-Cas9 regulatory system". En International Conference on Modern Medicine and Global Health (ICMMGH 2023), editado por Sheiladevi Sukumaran. SPIE, 2023. http://dx.doi.org/10.1117/12.2692261.
Texto completoSong, Tianyi, Jingwen Wang y Yinxuan Wu. "CRISPR-Cas system: revolutionizing plant breeding and gene therapy". En International Conference on Modern Medicine and Global Health (ICMMGH 2023), editado por Sheiladevi Sukumaran. SPIE, 2023. http://dx.doi.org/10.1117/12.2692353.
Texto completoSamaniego, Christian Cuba, Hari K. K. Subramanian y Elisa Franco. "Design of a bistable network using the CRISPR/Cas system". En 2017 IEEE Conference on Control Technology and Applications (CCTA). IEEE, 2017. http://dx.doi.org/10.1109/ccta.2017.8062586.
Texto completoDolzhikova, O. A., O. A. Semikolenova, M. I. Meschaninova y D. S. Novopashina. "ALLOSTERIC REGULATION OF CRISPR/CAS9 SYSTEM ON THE RNA LEVEL". En X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-71.
Texto completoHao, Yiqiao. "CRISPR-Cas system: off-target effects and its possible solutions". En Third International Conference on Biological Engineering and Medical Science (ICBioMed2023), editado por Alan Wang. SPIE, 2024. http://dx.doi.org/10.1117/12.3012920.
Texto completoYou, Donghan. "Development and applications of CRISPR/Cas system in genetic engineering". En Third International Conference on Biological Engineering and Medical Science (ICBioMed2023), editado por Alan Wang. SPIE, 2024. http://dx.doi.org/10.1117/12.3013065.
Texto completoInformes sobre el tema "CRISPR system"
Morin, S., L. L. Walling, Peter W. Atkinson, J. Li y B. E. Tabashnik. ets for CRISPR/Cas9-mediated gene drive in Bemisia tabaci. Israel: United States-Israel Binational Agricultural Research and Development Fund, 2021. http://dx.doi.org/10.32747/2021.8134170.bard.
Texto completoVardhaan Ambati, Vardhaan Ambati. Personalized Cancer and Viral Therapy: Clostridium-based Cell Delivery System coupled to CRISPR/Cas9 Nanotherapeutic. Experiment, septiembre de 2016. http://dx.doi.org/10.18258/7926.
Texto completoPowell, Andrew y Giovanni Majnoni. On Endogenous Risk, the Amplification Effects of Financial Systems and Macro Prudential Policies. Inter-American Development Bank, noviembre de 2011. http://dx.doi.org/10.18235/0011345.
Texto completoSanford, Jack y John Weldon. The Biology of Native and Adapted CRISPR-Cas Systems. Journal of Young Investigators, noviembre de 2018. http://dx.doi.org/10.22186/jyi.35.5.81-91.
Texto completoSpivack, Marla. Applying Systems Thinking to Education: The RISE Systems Framework. Research on Improving Systems of Education (RISE), mayo de 2021. http://dx.doi.org/10.35489/bsg-rise-ri_2021/028.
Texto completoHausmann, Ricardo y Michael Gavin. The Roots of Banking Crises: The Macroeconomic Context. Inter-American Development Bank, enero de 1996. http://dx.doi.org/10.18235/0011541.
Texto completoFederico, Pablo M. Developing an Index of Liquidity-Risk Exposure: An Application to Latin American and Caribbean Banking Systems. Inter-American Development Bank, noviembre de 2012. http://dx.doi.org/10.18235/0009083.
Texto completoSoloviev, Vladimir, Andrii Bielinskyi y Viktoria Solovieva. Entropy Analysis of Crisis Phenomena for DJIA Index. [б. в.], junio de 2019. http://dx.doi.org/10.31812/123456789/3179.
Texto completoSoloviev, Vladimir y Andrey Belinskij. Methods of nonlinear dynamics and the construction of cryptocurrency crisis phenomena precursors. [б. в.], 2018. http://dx.doi.org/10.31812/123456789/2851.
Texto completoBarjum, Daniel. PDIA for Systems Change: Tackling the Learning Crisis in Indonesia. Research on Improving Systems of Education (RISE), septiembre de 2022. http://dx.doi.org/10.35489/bsg-rise-ri_2022/046.
Texto completo