Artículos de revistas sobre el tema "CRISPR, Cas9, genome editing, gRNA"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "CRISPR, Cas9, genome editing, gRNA".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Jo, Areum, Sangwoo Ham, Gum Hwa Lee, Yun-Il Lee, SangSeong Kim, Yun-Song Lee, Joo-Ho Shin y Yunjong Lee. "Efficient Mitochondrial Genome Editing by CRISPR/Cas9". BioMed Research International 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/305716.
Texto completoXie, Kabin, Bastian Minkenberg y Yinong Yang. "Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system". Proceedings of the National Academy of Sciences 112, n.º 11 (2 de marzo de 2015): 3570–75. http://dx.doi.org/10.1073/pnas.1420294112.
Texto completoMekler, Vladimir, Konstantin Kuznedelov y Konstantin Severinov. "Quantification of the affinities of CRISPR–Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences". Journal of Biological Chemistry 295, n.º 19 (1 de abril de 2020): 6509–17. http://dx.doi.org/10.1074/jbc.ra119.012239.
Texto completoBruegmann, Tobias, Khira Deecke y Matthias Fladung. "Evaluating the Efficiency of gRNAs in CRISPR/Cas9 Mediated Genome Editing in Poplars". International Journal of Molecular Sciences 20, n.º 15 (24 de julio de 2019): 3623. http://dx.doi.org/10.3390/ijms20153623.
Texto completoWardhani, Bantari W. K., Meidi U. Puteri, Yukihide Watanabe, Melva Louisa, Rianto Setiabudy y Mitsuyasu Kato. "TMEPAI genome editing in triple negative breast cancer cells". Medical Journal of Indonesia 26, n.º 1 (16 de mayo de 2017): 14–8. http://dx.doi.org/10.13181/mji.v26i1.1871.
Texto completoKong, Qihui, Jie Li, Shoudong Wang, Xianzhong Feng y Huixia Shou. "Combination of Hairy Root and Whole-Plant Transformation Protocols to Achieve Efficient CRISPR/Cas9 Genome Editing in Soybean". Plants 12, n.º 5 (23 de febrero de 2023): 1017. http://dx.doi.org/10.3390/plants12051017.
Texto completoJameel, Mohd Rizwan. "From design to validation of CRISPR/gRNA primers towards genome editing". Bioinformation 18, n.º 5 (31 de mayo de 2022): 471–77. http://dx.doi.org/10.6026/97320630018471.
Texto completoJung, Soo Bin, Chae young Lee, Kwang-Ho Lee, Kyu Heo y Si Ho Choi. "A cleavage-based surrogate reporter for the evaluation of CRISPR–Cas9 cleavage efficiency". Nucleic Acids Research 49, n.º 15 (4 de junio de 2021): e85-e85. http://dx.doi.org/10.1093/nar/gkab467.
Texto completoForeman, Hui-Chen Chang, Varvara Kirillov, Gabrielle Paniccia, Demetra Catalano, Trevor Andrunik, Swati Gupta, Laurie T. Krug y Yue Zhang. "RNA-guided gene editing of the murine gammaherpesvirus 68 genome reduces infectious virus production". PLOS ONE 16, n.º 6 (4 de junio de 2021): e0252313. http://dx.doi.org/10.1371/journal.pone.0252313.
Texto completoYoo, Byung-Chun, Narendra S. Yadav, Emil M. Orozco y Hajime Sakai. "Cas9/gRNA-mediated genome editing of yeast mitochondria and Chlamydomonas chloroplasts". PeerJ 8 (6 de enero de 2020): e8362. http://dx.doi.org/10.7717/peerj.8362.
Texto completoCheng, Hao, Feng Zhang y Yang Ding. "CRISPR/Cas9 Delivery System Engineering for Genome Editing in Therapeutic Applications". Pharmaceutics 13, n.º 10 (9 de octubre de 2021): 1649. http://dx.doi.org/10.3390/pharmaceutics13101649.
Texto completoSant’Ana, Rodrigo Ribeiro Arnt, Clarissa Alves Caprestano, Rubens Onofre Nodari y Sarah Zanon Agapito-Tenfen. "PEG-Delivered CRISPR-Cas9 Ribonucleoproteins System for Gene-Editing Screening of Maize Protoplasts". Genes 11, n.º 9 (2 de septiembre de 2020): 1029. http://dx.doi.org/10.3390/genes11091029.
Texto completoBhagwat, Aditya M., Johannes Graumann, Rene Wiegandt, Mette Bentsen, Jordan Welker, Carsten Kuenne, Jens Preussner, Thomas Braun y Mario Looso. "multicrispr: gRNA design for prime editing and parallel targeting of thousands of targets". Life Science Alliance 3, n.º 11 (9 de septiembre de 2020): e202000757. http://dx.doi.org/10.26508/lsa.202000757.
Texto completoJi, Jie, Chunyang Zhang, Zhongfeng Sun, Longlong Wang, Deqiang Duanmu y Qiuling Fan. "Genome Editing in Cowpea Vigna unguiculata Using CRISPR-Cas9". International Journal of Molecular Sciences 20, n.º 10 (19 de mayo de 2019): 2471. http://dx.doi.org/10.3390/ijms20102471.
Texto completoEasmin, Farhana, Naim Hassan, Yu Sasano, Keisuke Ekino, Hisataka Taguchi y Satoshi Harashima. "gRNA-transient expression system for simplified gRNA delivery in CRISPR/Cas9 genome editing". Journal of Bioscience and Bioengineering 128, n.º 3 (septiembre de 2019): 373–78. http://dx.doi.org/10.1016/j.jbiosc.2019.02.009.
Texto completoAlok, Anshu, Hanny Chauhan, Santosh Kumar Upadhyay, Ashutosh Pandey, Jitendra Kumar y Kashmir Singh. "Compendium of Plant-Specific CRISPR Vectors and Their Technical Advantages". Life 11, n.º 10 (28 de septiembre de 2021): 1021. http://dx.doi.org/10.3390/life11101021.
Texto completoGasanov, Eugene V., Justyna Jędrychowska, Michal Pastor, Malgorzata Wiweger, Axel Methner y Vladimir P. Korzh. "An improved method for precise genome editing in zebrafish using CRISPR-Cas9 technique". Molecular Biology Reports 48, n.º 2 (22 de enero de 2021): 1951–57. http://dx.doi.org/10.1007/s11033-020-06125-8.
Texto completoYamamoto, Akihiro, Takashi Ishida, Mika Yoshimura, Yuri Kimura y Shinichiro Sawa. "Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs". Plant and Cell Physiology 60, n.º 10 (14 de junio de 2019): 2255–62. http://dx.doi.org/10.1093/pcp/pcz118.
Texto completoLessard, Samuel, Laurent Francioli, Jessica Alfoldi, Jean-Claude Tardif, Patrick T. Ellinor, Daniel G. MacArthur, Guillaume Lettre, Stuart H. Orkin y Matthew C. Canver. "Human genetic variation alters CRISPR-Cas9 on- and off-targeting specificity at therapeutically implicated loci". Proceedings of the National Academy of Sciences 114, n.º 52 (11 de diciembre de 2017): E11257—E11266. http://dx.doi.org/10.1073/pnas.1714640114.
Texto completoWestbrook, Adam W., Murray Moo-Young y C. Perry Chou. "Development of a CRISPR-Cas9 Tool Kit for Comprehensive Engineering of Bacillus subtilis". Applied and Environmental Microbiology 82, n.º 16 (3 de junio de 2016): 4876–95. http://dx.doi.org/10.1128/aem.01159-16.
Texto completoGhoshal, Basudev, Brandon Vong, Colette L. Picard, Suhua Feng, Janet M. Tam y Steven E. Jacobsen. "A viral guide RNA delivery system for CRISPR-based transcriptional activation and heritable targeted DNA demethylation in Arabidopsis thaliana". PLOS Genetics 16, n.º 12 (14 de diciembre de 2020): e1008983. http://dx.doi.org/10.1371/journal.pgen.1008983.
Texto completoAiba, Wataru, Takamitsu Amai, Mitsuyoshi Ueda y Kouichi Kuroda. "Improving Precise Genome Editing Using Donor DNA/gRNA Hybrid Duplex Generated by Complementary Bases". Biomolecules 12, n.º 11 (3 de noviembre de 2022): 1621. http://dx.doi.org/10.3390/biom12111621.
Texto completoTraxler, Elizabeth, Yu Yao, Chunliang Li, Jeremy Grevet, Peng Huang, Shaela Wright, Gerd A. Blobel y Mitchell J. Weiss. "Genome Editing Recreates Hereditary Persistence of Fetal Hemoglobin in Primary Human Erythroblasts". Blood 126, n.º 23 (3 de diciembre de 2015): 640. http://dx.doi.org/10.1182/blood.v126.23.640.640.
Texto completoGao, Zongliang, Minghui Fan, Atze T. Das, Elena Herrera-Carrillo y Ben Berkhout. "Extinction of all infectious HIV in cell culture by the CRISPR-Cas12a system with only a single crRNA". Nucleic Acids Research 48, n.º 10 (13 de abril de 2020): 5527–39. http://dx.doi.org/10.1093/nar/gkaa226.
Texto completoBinyameen, Barkha, Zulqurnain Khan, Sultan Habibullah Khan, Aftab Ahmad, Nayla Munawar, Muhammad Salman Mubarik, Hasan Riaz et al. "Using Multiplexed CRISPR/Cas9 for Suppression of Cotton Leaf Curl Virus". International Journal of Molecular Sciences 22, n.º 22 (21 de noviembre de 2021): 12543. http://dx.doi.org/10.3390/ijms222212543.
Texto completoRoberson, Elisha D. "Identification of high-efficiency 3′GG gRNA motifs in indexed FASTA files with ngg2". PeerJ Computer Science 1 (18 de noviembre de 2015): e33. http://dx.doi.org/10.7717/peerj-cs.33.
Texto completoANURAGI, HIRDAYESH, AMBATI SRIJAN y BHARAT TAINDU JAIN. "RNA-guided multiplex genome engineering using cas9 nucleases for crop improvement: A review". Indian Journal of Agricultural Sciences 88, n.º 12 (11 de diciembre de 2018): 1811–17. http://dx.doi.org/10.56093/ijas.v88i12.85371.
Texto completoOkada, Keita, Kanae Aoki, Teruyuki Tabei, Kota Sugio, Katsunori Imai, Yuki Bonkohara y Yusuke Kamachi. "Key sequence features of CRISPR RNA for dual-guide CRISPR-Cas9 ribonucleoprotein complexes assembled with wild-type or HiFi Cas9". Nucleic Acids Research 50, n.º 5 (15 de febrero de 2022): 2854–71. http://dx.doi.org/10.1093/nar/gkac100.
Texto completoLouie, Wilson, Max W. Shen, Zakir Tahiry, Sophia Zhang, Daniel Worstell, Christopher A. Cassa, Richard I. Sherwood y David K. Gifford. "Machine learning based CRISPR gRNA design for therapeutic exon skipping". PLOS Computational Biology 17, n.º 1 (8 de enero de 2021): e1008605. http://dx.doi.org/10.1371/journal.pcbi.1008605.
Texto completoLouie, Wilson, Max W. Shen, Zakir Tahiry, Sophia Zhang, Daniel Worstell, Christopher A. Cassa, Richard I. Sherwood y David K. Gifford. "Machine learning based CRISPR gRNA design for therapeutic exon skipping". PLOS Computational Biology 17, n.º 1 (8 de enero de 2021): e1008605. http://dx.doi.org/10.1371/journal.pcbi.1008605.
Texto completoKato, Yuya, Hirotaka Tabata, Kumiko Sato, Mariko Nakamura, Izumu Saito y Tomoko Nakanishi. "Adenovirus Vectors Expressing Eight Multiplex Guide RNAs of CRISPR/Cas9 Efficiently Disrupted Diverse Hepatitis B Virus Gene Derived from Heterogeneous Patient". International Journal of Molecular Sciences 22, n.º 19 (29 de septiembre de 2021): 10570. http://dx.doi.org/10.3390/ijms221910570.
Texto completoLi, Qi, Bingbing Sun, Jun Chen, Yiwen Zhang, Yu Jiang y Sheng Yang. "A modified pCas/pTargetF system for CRISPR-Cas9-assisted genome editing in Escherichia coli". Acta Biochimica et Biophysica Sinica 53, n.º 5 (25 de marzo de 2021): 620–27. http://dx.doi.org/10.1093/abbs/gmab036.
Texto completoArakawa, Hiroshi. "A method to convert mRNA into a gRNA library for CRISPR/Cas9 editing of any organism". Science Advances 2, n.º 8 (agosto de 2016): e1600699. http://dx.doi.org/10.1126/sciadv.1600699.
Texto completoNurkhasanah, Hidayati, Suharsono Suharsono y Tri Joko Santoso. "Construction and Introduction of CRISPR/Cas9-gRNA-Vinv for Editing A Gene Controlling Cold-Induced Sweetening [CIS] Character on Potato". Jurnal AgroBiogen 18, n.º 1 (15 de agosto de 2022): 21. http://dx.doi.org/10.21082/jbio.v18n1.2022.p21-32.
Texto completoZhang, Ping, Yu Wang, Chenxi Li, Xiaoyu Ma, Lan Ma y Xudong Zhu. "Simplified All-In-One CRISPR-Cas9 Construction for Efficient Genome Editing in Cryptococcus Species". Journal of Fungi 7, n.º 7 (24 de junio de 2021): 505. http://dx.doi.org/10.3390/jof7070505.
Texto completoAguilar, Rhiannon R., Zih-Jie Shen y Jessica K. Tyler. "A Simple, Improved Method for Scarless Genome Editing of Budding Yeast Using CRISPR-Cas9". Methods and Protocols 5, n.º 5 (4 de octubre de 2022): 79. http://dx.doi.org/10.3390/mps5050079.
Texto completoMubarok, Muhamad Husni, Atmitri Sisharmini, Aniversari Apriana, Tri Joko Santoso y Suharsono Suharsono. "(CRISPR/Cas9 Cassette Construction for OsARF2 Gene Editing and Development of Transgenic Rice Nipponbare Containing CRISPR/Cas9-OsARF2". Jurnal AgroBiogen 18, n.º 1 (4 de octubre de 2022): 45. http://dx.doi.org/10.21082/jbio.v18n1.2022.p45-56.
Texto completoPark, So Hyun, Ciaran M. Lee, Harshavardhan Deshmukh y Gang Bao. "Therapeutic Crispr/Cas9 Genome Editing for Treating Sickle Cell Disease". Blood 128, n.º 22 (2 de diciembre de 2016): 4703. http://dx.doi.org/10.1182/blood.v128.22.4703.4703.
Texto completoAtmanli, Ayhan, Andreas C. Chai, Miao Cui, Zhaoning Wang, Takahiko Nishiyama, Rhonda Bassel-Duby y Eric N. Olson. "Cardiac Myoediting Attenuates Cardiac Abnormalities in Human and Mouse Models of Duchenne Muscular Dystrophy". Circulation Research 129, n.º 6 (3 de septiembre de 2021): 602–16. http://dx.doi.org/10.1161/circresaha.121.319579.
Texto completoSong, Letian, Jean-Paul Ouedraogo, Magdalena Kolbusz, Thi Truc Minh Nguyen y Adrian Tsang. "Efficient genome editing using tRNA promoter-driven CRISPR/Cas9 gRNA in Aspergillus niger". PLOS ONE 13, n.º 8 (24 de agosto de 2018): e0202868. http://dx.doi.org/10.1371/journal.pone.0202868.
Texto completoDhokane, Dhananjay, Bhaskar Bhadra y Santanu Dasgupta. "CRISPR based targeted genome editing of Chlamydomonas reinhardtii using programmed Cas9-gRNA ribonucleoprotein". Molecular Biology Reports 47, n.º 11 (19 de octubre de 2020): 8747–55. http://dx.doi.org/10.1007/s11033-020-05922-5.
Texto completoKhan, Sikandar. "Recent Advancement and Innovations in CRISPR/Cas and CRISPR Related Technologies: A review". Biotechnology and Bioprocessing 2, n.º 5 (24 de junio de 2021): 01–12. http://dx.doi.org/10.31579/2766-2314/042.
Texto completoMoniruzzaman, M., Yun Zhong, Zhifeng Huang y Guangyan Zhong. "Having a Same Type IIS Enzyme’s Restriction Site on Guide RNA Sequence Does Not Affect Golden Gate (GG) Cloning and Subsequent CRISPR/Cas Mutagenesis". International Journal of Molecular Sciences 23, n.º 9 (28 de abril de 2022): 4889. http://dx.doi.org/10.3390/ijms23094889.
Texto completoPrasanth, Jagannadham y Thirugnanavel Anbalagan. "CRISPR-based genome editing: Catching impossibles for citrus improvements". International Journal of Agricultural and Applied Sciences 2, n.º 1 (30 de junio de 2021): 24–29. http://dx.doi.org/10.52804/ijaas2021.212.
Texto completoKurniawati, Devi Ayu, NFN Suharsono y Tri Joko Santoso. "Editing of PCNA Gene by CRISPR/Cas9 Technology to Improve the Red Chili Resistance to Yellow Leaf Curl Disease". Jurnal AgroBiogen 16, n.º 2 (11 de diciembre de 2020): 79. http://dx.doi.org/10.21082/jbio.v16n2.2020.p79-88.
Texto completoTang, Ning, Yumei Xia, Yijie Zhan, Junhao Dan, Mulan Yu, Xiaolan Bu y Mengliang Cao. "Improvement of Chloroplast Transformation Using CRISPR/Cas9". Journal of Biobased Materials and Bioenergy 14, n.º 3 (1 de junio de 2020): 401–7. http://dx.doi.org/10.1166/jbmb.2020.1970.
Texto completoYang, Yue, Donghua Li, Fen Wan, Bohong Chen, Guanglan Wu, Feng Li, Yanliang Ren, Puping Liang, Jian Wan y Zhou Songyang. "Identification and Analysis of Small Molecule Inhibitors of CRISPR-Cas9 in Human Cells". Cells 11, n.º 22 (11 de noviembre de 2022): 3574. http://dx.doi.org/10.3390/cells11223574.
Texto completoPark, So Hyun Julie Park, Mingming Cao, Yankai Zhang, Vivien A. Sheehan y Gang Bao. "CRISPR/Cas9 Editing Induces High Rates of Unintended Large Gene Modifications in HSPCs from Patients with Sickle Cell Disease". Blood 138, Supplement 1 (5 de noviembre de 2021): 3969. http://dx.doi.org/10.1182/blood-2021-150739.
Texto completoRiesenberg, Stephan, Nelly Helmbrecht, Philipp Kanis, Tomislav Maricic y Svante Pääbo. "Improved gRNA secondary structures allow editing of target sites resistant to CRISPR-Cas9 cleavage". Nature Communications 13, n.º 1 (25 de enero de 2022). http://dx.doi.org/10.1038/s41467-022-28137-7.
Texto completoAllen, Daniel, Michael Rosenberg y Ayal Hendel. "Using Synthetically Engineered Guide RNAs to Enhance CRISPR Genome Editing Systems in Mammalian Cells". Frontiers in Genome Editing 2 (28 de enero de 2021). http://dx.doi.org/10.3389/fgeed.2020.617910.
Texto completo