Literatura académica sobre el tema "CRISPR, Cas9, genome editing, gRNA"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "CRISPR, Cas9, genome editing, gRNA".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "CRISPR, Cas9, genome editing, gRNA"
Jo, Areum, Sangwoo Ham, Gum Hwa Lee, Yun-Il Lee, SangSeong Kim, Yun-Song Lee, Joo-Ho Shin y Yunjong Lee. "Efficient Mitochondrial Genome Editing by CRISPR/Cas9". BioMed Research International 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/305716.
Texto completoXie, Kabin, Bastian Minkenberg y Yinong Yang. "Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system". Proceedings of the National Academy of Sciences 112, n.º 11 (2 de marzo de 2015): 3570–75. http://dx.doi.org/10.1073/pnas.1420294112.
Texto completoMekler, Vladimir, Konstantin Kuznedelov y Konstantin Severinov. "Quantification of the affinities of CRISPR–Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences". Journal of Biological Chemistry 295, n.º 19 (1 de abril de 2020): 6509–17. http://dx.doi.org/10.1074/jbc.ra119.012239.
Texto completoBruegmann, Tobias, Khira Deecke y Matthias Fladung. "Evaluating the Efficiency of gRNAs in CRISPR/Cas9 Mediated Genome Editing in Poplars". International Journal of Molecular Sciences 20, n.º 15 (24 de julio de 2019): 3623. http://dx.doi.org/10.3390/ijms20153623.
Texto completoWardhani, Bantari W. K., Meidi U. Puteri, Yukihide Watanabe, Melva Louisa, Rianto Setiabudy y Mitsuyasu Kato. "TMEPAI genome editing in triple negative breast cancer cells". Medical Journal of Indonesia 26, n.º 1 (16 de mayo de 2017): 14–8. http://dx.doi.org/10.13181/mji.v26i1.1871.
Texto completoKong, Qihui, Jie Li, Shoudong Wang, Xianzhong Feng y Huixia Shou. "Combination of Hairy Root and Whole-Plant Transformation Protocols to Achieve Efficient CRISPR/Cas9 Genome Editing in Soybean". Plants 12, n.º 5 (23 de febrero de 2023): 1017. http://dx.doi.org/10.3390/plants12051017.
Texto completoJameel, Mohd Rizwan. "From design to validation of CRISPR/gRNA primers towards genome editing". Bioinformation 18, n.º 5 (31 de mayo de 2022): 471–77. http://dx.doi.org/10.6026/97320630018471.
Texto completoJung, Soo Bin, Chae young Lee, Kwang-Ho Lee, Kyu Heo y Si Ho Choi. "A cleavage-based surrogate reporter for the evaluation of CRISPR–Cas9 cleavage efficiency". Nucleic Acids Research 49, n.º 15 (4 de junio de 2021): e85-e85. http://dx.doi.org/10.1093/nar/gkab467.
Texto completoForeman, Hui-Chen Chang, Varvara Kirillov, Gabrielle Paniccia, Demetra Catalano, Trevor Andrunik, Swati Gupta, Laurie T. Krug y Yue Zhang. "RNA-guided gene editing of the murine gammaherpesvirus 68 genome reduces infectious virus production". PLOS ONE 16, n.º 6 (4 de junio de 2021): e0252313. http://dx.doi.org/10.1371/journal.pone.0252313.
Texto completoYoo, Byung-Chun, Narendra S. Yadav, Emil M. Orozco y Hajime Sakai. "Cas9/gRNA-mediated genome editing of yeast mitochondria and Chlamydomonas chloroplasts". PeerJ 8 (6 de enero de 2020): e8362. http://dx.doi.org/10.7717/peerj.8362.
Texto completoTesis sobre el tema "CRISPR, Cas9, genome editing, gRNA"
Roidos, Paris. "Genome editing with the CRISPR Cas9 system". Thesis, KTH, Skolan för bioteknologi (BIO), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-163694.
Texto completoRan, Fei Ann. "CRISPR-Cas: Development and applications for mammalian genome editing". Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11610.
Texto completoHirosawa, Moe. "Cell-type-specific genome editing with a microRNA-responsive CRISPR-Cas9 switch". Kyoto University, 2019. http://hdl.handle.net/2433/242421.
Texto completoCastanon, velasco Oscar. "Targeting the transposable elements of the genome to enable large-scale genome editing and bio-containment technologies". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX006.
Texto completoProgrammable and site-specific nucleases such as CRISPR-Cas9 have started a genome editing revolution, holding hopes to transform human health. Multiplexing or the ability to simultaneously introduce many distinct modifications in the genome will be required for basic and applied research. It will help to probe the physio-pathological functions of complex genetic circuits and to develop improved cell therapies or anti-viral treatments. By pushing the boundaries of genome engineering, we may reach a point where writing whole mammalian genomes will be possible. Such a feat may lead to the generation of virus-, cancer- or aging- free cell lines, universal donor cell therapies or may even open the way to de-extinction. In this doctoral research project, I outline the current state-of-the-art of multiplexed genome editing, the current limits and where such technologies could be headed in the future. We leveraged this knowledge as well as the abundant transposable elements present in our DNA to build an optimization pipeline and develop a new set of tools that enable large-scale genome editing. We achieved a high level of genome modifications up to three orders of magnitude greater than previously recorded, therefore paving the way to mammalian genome writing. In addition, through the observation of the cytotoxicity generated by multiple double-strand breaks within the genome, we developed a bio-safety switch that could potentially prevent the adverse effects of current and future cell therapies. Finally, I lay out the potential concerns and threats that such an advance in genome editing technology may be bringing and point out possible solutions to mitigate the risks
Valladares, Rodrigo y Hanna Briheim. "Metoder och tillämpningar av CRISPR-Cas9 i cancerforskning. : Samt hur CRISPR-Cas9 kan implementeras i skolundervisningen". Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166140.
Texto completoCRISPR-Cas9 has recently emerged as an effective genome editing tool. The tool derives from an adaptive immune system in prokaryotes. The technology is used for modification of DNA in plants, animals and humans in a simple and inexpensive way. CRISPR-Cas9 has shown great potential in fighting different diseases like cancer which today is a global health issue. It is seen as a promising tool for cancer research when it comes to cancer therapy and drug development. Here we summarize current methods and applications of CRISPR-Cas9 for cancer research. Furthermore, we explore the possibilities of introducing and applying this kind of genetic engineering in biology teaching.
Framläggning, opponering och respondering skedde skriftligt till följd av covid19.
Toffessi, Tcheuyap Vanina. "Development of von Willebrand Factor Zebrafish Mutant Using CRISPR/Cas9 Mediated Genome Editing". Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc984227/.
Texto completoCanver, Matthew. "Elucidation of Mechanisms of Fetal Hemoglobin Regulation by CRISPR/Cas9 Mediated Genome Editing". Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493407.
Texto completoMedical Sciences
Antoniani, Chiara. "A genome editing approach to induce fetal hemoglobin expression for the treatment of β-hemoglobinopathies". Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCB077.
Texto completoΒ-hemoglobinopathies (β-thalassemias and sickle cell disease) are genetic anemias affecting thousands of newborns annually worldwide. β-thalassemias and sickle cell disease (SCD) are caused by mutations affecting the adult hemoglobin expression and are currently treated by red blood cell transfusion and iron chelation regiments. For patients affected by severe β-hemoglobinopathies, allogenic hematopoietic stem cell (HSCs) transplantation is the only definitive therapy. However, transplantation of autologous, genetically corrected HSCs represents an alternative therapy for patients lacking a suitable HSC donor. Naturally occurring large deletions encompassing β- and δ-globin genes in the β-globin gene cluster, defined as Hereditary Persistence of Fetal Hemoglobin (HPFH) traits, lead to increased fetal hemoglobin (HbF) expression ameliorating both thalassemic and SCD clinical phenotypes. In this study, we integrated transcription factor binding site analysis and HPFH genetic data to identify potential HbF silencers in the β-globin locus. Based on this analysis, we designed a CRISPR/Cas9 strategy disrupting: (i) a putative δγ-intergenic HbF silencer targeted by the HbF repressor BCL11A in adult erythroblasts; (ii) the shortest deletion associated with elevated HbF levels (“Corfu” deletion) in β-thalassemic patients, encompassing the putative δγ-intergenic HbF silencer; (iii) a 13.6-kb genomic region including the δ- and β-globin genes and the putative intergenic HbF silencer. Targeting the 13.6-kb region, but not the Corfu and the putative δγ-intergenic regions, caused a robust HbF re-activation and a concomitant reduction in β-globin expression in an adult erythroid cell line and in healthy donor hematopoietic stem/progenitor cells (HSPC)-derived erythroblasts. We provided a proof of principle of this potential therapeutic strategy: disruption of the 13.6-kb region in HSPCs from SCD donors favored the β-to-γ globin switching in a significant proportion of HSPC-derived erythroblasts, leading to the amelioration of the SCD cell phenotype. Finally, we dissected the mechanisms leading to HbF de-repression demonstrating changes in the chromatin conformation and epigenetic modifications within the β-globin locus upon deletion or inversion of the 13.6-kb region. Overall, this study contributes to the knowledge of the mechanisms underlying fetal to adult hemoglobin switching, and provides clues for a genome editing approach to the treatment of SCD and β-thalassemia
Lin, ChieYu. "Characterization and Optimization of the CRISPR/Cas System for Applications in Genome Engineering". Thesis, Harvard University, 2014. http://etds.lib.harvard.edu/hms/admin/view/61.
Texto completoHsu, Patrick David. "Development of the CRISPR nuclease Cas9 for high precision mammalian genome engineering". Thesis, Harvard University, 2014. http://nrs.harvard.edu/urn-3:HUL.InstRepos:13068392.
Texto completoLibros sobre el tema "CRISPR, Cas9, genome editing, gRNA"
María Vaschetto, Luis. CRISPR-/Cas9 Based Genome Editing for Treating Genetic Disorders and Diseases. New York: CRC Press, 2021. http://dx.doi.org/10.1201/9781003088516.
Texto completoKozubek, James. Modern Prometheus: Editing the Human Genome with Crispr-Cas9. Cambridge University Press, 2016.
Buscar texto completoRavindhran, Ramalingam, Govindan Ganesan y Vinoth A. Crop Genome Editing Using CRISPR/Cas9: Theory and Practice. Elsevier Science & Technology, 2019.
Buscar texto completoModern Prometheus: Editing the Human Genome with Crispr-Cas9. Cambridge University Press, 2018.
Buscar texto completoKozubek, Jim. Modern Prometheus: Editing the Human Genome with Crispr-Cas9. Cambridge University Press, 2018.
Buscar texto completoRavindhran, Ramalingam, Govindan Ganesan y Vinoth A. Crop Genome Editing Using CRISPR/Cas9: Theory and Practice. Elsevier Science & Technology Books, 2019.
Buscar texto completoKozubek, James. Modern Prometheus: Editing the Human Genome with Crispr-Cas9. Cambridge University Press, 2019.
Buscar texto completoVaschetto, Luis María. CRISPR-/Cas9 Based Genome Editing for Treating Genetic Disorders and Diseases. Taylor & Francis Group, 2021.
Buscar texto completoVaschetto, Luis M. CRISPR-/Cas9 Based Genome Editing for Treating Genetic Disorders and Diseases. CRC Press LLC, 2022.
Buscar texto completoVaschetto, Luis M. CRISPR-/Cas9 Based Genome Editing for Treating Genetic Disorders and Diseases. Taylor & Francis Group, 2022.
Buscar texto completoCapítulos de libros sobre el tema "CRISPR, Cas9, genome editing, gRNA"
Hoof, Jakob B., Christina S. Nødvig y Uffe H. Mortensen. "Genome Editing: CRISPR-Cas9". En Methods in Molecular Biology, 119–32. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7804-5_11.
Texto completoSeruggia, Davide y Lluis Montoliu. "CRISPR/Cas9 Approaches to Investigate the Noncoding Genome". En Genome Editing, 31–43. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34148-4_2.
Texto completoPatial, Meghna, Kiran Devi y Rohit Joshi. "CRISPR/Cas9-Mediated Targeted Mutagenesis in Medicinal Plants". En Genome Editing, 55–70. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08072-2_3.
Texto completoBansal, Monika y Shabir Hussain Wani. "Virus-Mediated Delivery of CRISPR/CAS9 System in Plants". En Genome Editing, 197–203. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08072-2_10.
Texto completoGurumurthy, Channabasavaiah B., Rolen M. Quadros, Masahiro Sato, Tomoji Mashimo, K. C. Kent Lloyd y Masato Ohtsuka. "CRISPR/Cas9 and the Paradigm Shift in Mouse Genome Manipulation Technologies". En Genome Editing, 65–77. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34148-4_4.
Texto completoKatam, Ramesh, Fatemeh Hasanvand, Vinson Teniyah, Jessi Noel y Virginia Gottschalk. "Biosafety Issue Related to Genome Editing in Plants Using CRISPR-Cas9". En Genome Editing, 289–317. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08072-2_16.
Texto completoSaeed, Fozia, Tariq Shah, Sherien Bukhat, Fazal Munsif, Ijaz Ahmad, Hamad Khan y Aziz Khan. "Genome Engineering as a Tool for Enhancing Crop Traits: Lessons from CRISPR/Cas9". En Genome Editing, 3–25. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08072-2_1.
Texto completoNadakuduti, Satya Swathi, Colby G. Starker, Daniel F. Voytas, C. Robin Buell y David S. Douches. "Genome Editing in Potato with CRISPR/Cas9". En Methods in Molecular Biology, 183–201. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-8991-1_14.
Texto completoLiu, Junqi, Samatha Gunapati, Nicole T. Mihelich, Adrian O. Stec, Jean-Michel Michno y Robert M. Stupar. "Genome Editing in Soybean with CRISPR/Cas9". En Methods in Molecular Biology, 217–34. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-8991-1_16.
Texto completoVelusamy, Thilaga, Anjali Gowripalan y David C. Tscharke. "CRISPR/Cas9-Based Genome Editing of HSV". En Methods in Molecular Biology, 169–83. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9814-2_9.
Texto completoActas de conferencias sobre el tema "CRISPR, Cas9, genome editing, gRNA"
Shukla, Jayanti, Bhairvi Pant, Neema Tufchi, Gracy Chand Paul, Kumud Pant, Manu Pant y Somya Sihna. "CRISPR Cas9 genome editing approach for gRNA of the genes associated with Schizophrenia: A computational approach". En 2022 2nd International Conference on Innovative Sustainable Computational Technologies (CISCT). IEEE, 2022. http://dx.doi.org/10.1109/cisct55310.2022.10046633.
Texto completoStacey, Minviluz. "Utility of CRISPR/Cas in accelerating gene discovery in soybean". En 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/rzne1660.
Texto completoMETLEVA, Anastasia S. y Konstantin V. BESPOMESTNYKH. "Selection of Grna for Genomic Editing of the Bovine Leucosis Virus Susceptible Alleles of the 2 Exon of the Bola-DRB3 Gene by CRISPR/Cas9". En IV International Scientific and Practical Conference "Modern S&T Equipments and Problems in Agriculture". Sibac, 2020. http://dx.doi.org/10.32743/kuz.mepa.2020.148-157.
Texto completoTedesco, Donato, Paul Diehl, Mikhail Makhanov, Sylvain Baron, Dmitry Suchkov y Alex Chenchik. "Abstract C161: CRISPR/Cas9 genome-wide gRNA library screening platform". En Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; November 5-9, 2015; Boston, MA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1535-7163.targ-15-c161.
Texto completoTedesco, Donato, Paul Diehl, Mikhail Makhanov, Sylvain Baron, Dmitry Suchkov, Costa Frangou y Alex Chenchik. "Abstract 4354: CRISPR/Cas9 genome-wide gRNA library for target identification". En Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-4354.
Texto completoRastogi, Khushboo. "Rice Biofortification through CRISPR/Cas9-Multiplex Genome Editing". En ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1383191.
Texto completoShima, K., T. Suzuki, Y. Ma, C. Mayhew, A. Sallese, B. C. Carey, P. Arumugam y B. C. Trapnell. "CRISPR/Cas9 Genome Editing Therapy for Hereditary Pulmonary Alveolar Proteinosis". En American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a4004.
Texto completoКершанская, О. И., Г. Л. Есенбаева, Д. С. Нелидова, З. Н. Садуллаева y С. Н. Нелидов. "PERSPECTIVES OF BREEDING DEVELOPMENT IN BARLEY THROUGH CRISPR/CAS9 GENOME EDITING". En Материалы I Всероссийской научно-практической конференции с международным участием «Геномика и современные биотехнологии в размножении, селекции и сохранении растений». Crossref, 2020. http://dx.doi.org/10.47882/genbio.2020.48.47.015.
Texto completoZheng, Qi, Ling-Jie Kong, Huanyu Jin, Jinling Li y Ruby Yanru Chen-Tsai. "Abstract 663: Factors affecting genome editing using CRISPR/Cas9 in mouse model". En Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-663.
Texto completo"CRISPR/Cas9 – mediated genome editing of bread wheat to modulate heading time". En Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-135.
Texto completoInformes sobre el tema "CRISPR, Cas9, genome editing, gRNA"
Paran, Ilan y Allen Van Deynze. Regulation of pepper fruit color, chloroplasts development and their importance in fruit quality. United States Department of Agriculture, enero de 2014. http://dx.doi.org/10.32747/2014.7598173.bard.
Texto completo