Literatura académica sobre el tema "Criminalistique des Images"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Criminalistique des Images".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Tesis sobre el tema "Criminalistique des Images"

1

Darmet, Ludovic. "Vers une approche basée modèle-image flexible et adaptative en criminalistique des images". Thesis, Université Grenoble Alpes, 2020. https://tel.archives-ouvertes.fr/tel-03086427.

Texto completo
Resumen
Les images numériques sont devenues un moyen de communication standard et universel. Elles prennent place dans notre vie de tous les jours, ce qui entraîne directement des inquiétudes quant à leur intégrité. Nos travaux de recherche étudient différentes méthodes pour examiner l’authenticité d’une image numérique. Nous nous plaçons dans un contexte réaliste où les images sont en grandes quantités et avec une large diversité de manipulations et falsifications ainsi que de sources. Cela nous a poussé à développer des méthodes flexibles et adaptative face à cette diversité.Nous nous sommes en premier lieu intéressés à la détection de manipulations à l’aide de la modélisation statistiques des images. Les manipulations sont des opérations élémentaires telles qu’un flou, l’ajout de bruit ou une compression. Dans ce cadre, nous nous sommes plus particulièrement focalisés sur les effets d’un pré-traitement. A cause de limitations de stockage et autres, une image peut être re-dimensionnée ou re-compressée juste après sa capture. L’ajout d’une manipulation se fait donc ensuite sur une image déjà pré-traitée. Nous montrons qu’un pré-redimensionnement pour les images de test induit une chute de performance pour des détecteurs entraînés avec des images en pleine taille. Partant de ce constat, nous introduisons deux nouvelles méthodes pour mitiger cette chute de performance pour des détecteurs basés sur l’utilisation de mixtures de gaussiennes. Ces détecteurs modélisent les statistiques locales, sur des tuiles (patches), d’images naturelles. Cela nous permet de proposer une adaptation de modèle guidée par les changements dans les statistiques locales de l’image. Notre première méthode est une adaptation entièrement non-supervisée, alors que la seconde requière l’accès à quelques labels, faiblement supervisé, pour les images pré-resizées.Ensuite, nous nous sommes tournés vers la détection de falsifications et plus spécifiquement l’identification de copier-coller. Le copier-coller est l’une des falsification les plus populaires. Une zone source est copiée vers une zone cible de la même image. La grande majorité des détecteurs existants identifient indifféremment les deux zones (source et cible). Dans un scénario opérationnel, seulement la zone cible est intéressante car uniquement elle représente une zone de falsification. Ainsi, nous proposons une méthode pour discerner les deux zones. Notre méthode utilise également la modélisation locale des statistiques de l’image à l’aide de mixtures de gaussiennes. La procédure est spécifique à chaque image et ainsi évite la nécessité d’avoir recours à de larges bases d’entraînement et permet une plus grande flexibilité.Des résultats expérimentaux pour toutes les méthodes précédemment décrites sont présentés sur des benchmarks classiques de la littérature et comparés aux méthodes de l’état de l’art. Nous montrons que le détecteur classique de détection de manipulations basé sur les mixtures de gaussiennes, associé à nos nouvelles méthodes d’adaptation de modèle peut surpasser les résultats de récentes méthodes deep-learning. Notre méthode de discernement entre source/cible pour copier-coller égale ou même surpasse les performances des dernières méthodes d’apprentissage profond. Nous expliquons ces bons résultats des méthodes classiques face aux méthodes d’apprentissage profond par la flexibilité et l’adaptabilité supplémentaire dont elles font preuve.Pour finir, cette thèse s’est déroulée dans le contexte très spécial d’un concours organisé conjointement par l’Agence National de la Recherche et la Direction Général de l’Armement. Nous décrivons dans un appendice, les différents tours de ce concours et les méthodes que nous avons développé. Nous dressons également un bilan des enseignements de cette expérience qui avait pour but de passer de benchmarks publics à une détection de falsifications d’images très réalistes
Images are nowadays a standard and mature medium of communication.They appear in our day to day life and therefore they are subject to concernsabout security. In this work, we study different methods to assess theintegrity of images. Because of a context of high volume and versatilityof tampering techniques and image sources, our work is driven by the necessity to developflexible methods to adapt the diversity of images.We first focus on manipulations detection through statistical modeling ofthe images. Manipulations are elementary operations such as blurring,noise addition, or compression. In this context, we are more preciselyinterested in the effects of pre-processing. Because of storagelimitation or other reasons, images can be resized or compressed justafter their capture. Addition of a manipulation would then be applied on analready pre-processed image. We show that a pre-resizing of test datainduces a drop of performance for detectors trained on full-sized images.Based on these observations, we introduce two methods to counterbalancethis performance loss for a pipeline of classification based onGaussian Mixture Models. This pipeline models the local statistics, onpatches, of natural images. It allows us to propose adaptation of themodels driven by the changes in local statistics. Our first method ofadaptation is fully unsupervised while the second one, only requiring a fewlabels, is weakly supervised. Thus, our methods are flexible to adaptversatility of source of images.Then we move to falsification detection and more precisely to copy-moveidentification. Copy-move is one of the most common image tampering technique. Asource area is copied into a target area within the same image. The vastmajority of existing detectors identify indifferently the two zones(source and target). In an operational scenario, only the target arearepresents a tampering area and is thus an area of interest. Accordingly, wepropose a method to disentangle the two zones. Our method takesadvantage of local modeling of statistics in natural images withGaussian Mixture Model. The procedure is specific for each image toavoid the necessity of using a large training dataset and to increase flexibility.Results for all the techniques described above are illustrated on publicbenchmarks and compared to state of the art methods. We show that theclassical pipeline for manipulations detection with Gaussian MixtureModel and adaptation procedure can surpass results of fine-tuned andrecent deep-learning methods. Our method for source/target disentanglingin copy-move also matches or even surpasses performances of the latestdeep-learning methods. We explain the good results of these classicalmethods against deep-learning by their additional flexibility andadaptation abilities.Finally, this thesis has occurred in the special context of a contestjointly organized by the French National Research Agency and theGeneral Directorate of Armament. We describe in the Appendix thedifferent stages of the contest and the methods we have developed, as well asthe lessons we have learned from this experience to move the image forensics domain into the wild
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Thai, Thanh Hai. "Modélisation et détection statistiques pour la criminalistique numérique des images". Phd thesis, Université de Technologie de Troyes, 2014. http://tel.archives-ouvertes.fr/tel-01072541.

Texto completo
Resumen
Le XXIème siècle étant le siècle du passage au tout numérique, les médias digitaux jouent maintenant un rôle de plus en plus important dans la vie de tous les jours. De la même manière, les logiciels sophistiqués de retouche d'images se sont démocratisés et permettent aujourd'hui de diffuser facilement des images falsifiées. Ceci pose un problème sociétal puisqu'il s'agit de savoir si ce que l'on voit a été manipulé. Cette thèse s'inscrit dans le cadre de la criminalistique des images numériques. Deux problèmes importants sont abordés : l'identification de l'origine d'une image et la détection d'informations cachées dans une image. Ces travaux s'inscrivent dans le cadre de la théorie de la décision statistique et roposent la construction de détecteurs permettant de respecter une contrainte sur la probabilité de fausse alarme. Afin d'atteindre une performance de détection élevée, il est proposé d'exploiter les propriétés des images naturelles en modélisant les principales étapes de la chaîne d'acquisition d'un appareil photographique. La éthodologie, tout au long de ce manuscrit, consiste à étudier le détecteur optimal donné par le test du rapport de vraisemblance dans le contexte idéal où tous les aramètres du modèle sont connus. Lorsque des paramètres du modèle sont inconnus, ces derniers sont estimés afin de construire le test du rapport de vraisemblance généralisé dont les erformances statistiques sont analytiquement établies. De nombreuses expérimentations sur des images simulées et réelles permettent de souligner la pertinence de l'approche proposée.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Fan, Wei. "Vers l’anti-criminalistique en images numériques via la restauration d’images". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT035/document.

Texto completo
Resumen
La criminalistique en images numériques se développe comme un outil puissant pour l'authentification d'image, en travaillant de manière passive et aveugle sans l'aide d'informations d'authentification pré-intégrées dans l'image (contrairement au tatouage fragile d'image). En parallèle, l'anti-criminalistique se propose d'attaquer les algorithmes de criminalistique afin de maintenir une saine émulation susceptible d'aider à leur amélioration. En images numériques, l'anti-criminalistique partage quelques similitudes avec la restauration d'image : dans les deux cas, l'on souhaite approcher au mieux les informations perdues pendant un processus de dégradation d'image. Cependant, l'anti-criminalistique se doit de remplir au mieux un objectif supplémentaire, extit{i.e.} : être non détectable par la criminalistique actuelle. Dans cette thèse, nous proposons une nouvelle piste de recherche pour la criminalistique en images numériques, en tirant profit des concepts/méthodes avancés de la restauration d'image mais en intégrant des stratégies/termes spécifiquement anti-criminalistiques. Dans ce contexte, cette thèse apporte des contributions sur quatre aspects concernant, en criminalistique JPEG, (i) l'introduction du déblocage basé sur la variation totale pour contrer les méthodes de criminalistique JPEG et (ii) l'amélioration apportée par l'adjonction d'un lissage perceptuel de l'histogramme DCT, (iii) l'utilisation d'un modèle d'image sophistiqué et d'un lissage non paramétrique de l'histogramme DCT visant l'amélioration de la qualité de l'image falsifiée; et, en criminalistique du filtrage médian, (iv) l'introduction d'une méthode fondée sur la déconvolution variationnelle. Les résultats expérimentaux démontrent l'efficacité des méthodes anti-criminalistiques proposées, avec notamment une meilleure indétectabilité face aux détecteurs criminalistiques actuels ainsi qu'une meilleure qualité visuelle de l'image falsifiée par rapport aux méthodes anti-criminalistiques de l'état de l'art
Image forensics enjoys its increasing popularity as a powerful image authentication tool, working in a blind passive way without the aid of any a priori embedded information compared to fragile image watermarking. On its opponent side, image anti-forensics attacks forensic algorithms for the future development of more trustworthy forensics. When image coding or processing is involved, we notice that image anti-forensics to some extent shares a similar goal with image restoration. Both of them aim to recover the information lost during the image degradation, yet image anti-forensics has one additional indispensable forensic undetectability requirement. In this thesis, we form a new research line for image anti-forensics, by leveraging on advanced concepts/methods from image restoration meanwhile with integrations of anti-forensic strategies/terms. Under this context, this thesis contributes on the following four aspects for JPEG compression and median filtering anti-forensics: (i) JPEG anti-forensics using Total Variation based deblocking, (ii) improved Total Variation based JPEG anti-forensics with assignment problem based perceptual DCT histogram smoothing, (iii) JPEG anti-forensics using JPEG image quality enhancement based on a sophisticated image prior model and non-parametric DCT histogram smoothing based on calibration, and (iv) median filtered image quality enhancement and anti-forensics via variational deconvolution. Experimental results demonstrate the effectiveness of the proposed anti-forensic methods with a better forensic undetectability against existing forensic detectors as well as a higher visual quality of the processed image, by comparisons with the state-of-the-art methods
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Mahfoudi, Gaël. "Authentication of Digital Images and Videos". Thesis, Troyes, 2021. http://www.theses.fr/2021TROY0043.

Texto completo
Resumen
Les médias digitaux font partie de notre vie de tous les jours. Après des années de photojournalisme, nous nous sommes habitués à considérer ces médias comme des témoignages objectifs de la réalité. Cependant les logiciels de retouches d'images et de vidéos deviennent de plus en plus puissants et de plus en plus simples à utiliser, ce qui permet aux contrefacteurs de produire des images falsifiées d'une grande qualité. L'authenticité de ces médias ne peut donc plus être prise pour acquise. Récemment, de nouvelles régulations visant à lutter contre le blanchiment d'argent ont vu le jour. Ces régulations imposent notamment aux institutions financières de vérifier l'identité de leurs clients. Cette vérification est souvent effectuée de manière distantielle au travers d'un Système de Vérification d'Identité à Distance (SVID). Les médias digitaux sont centraux dans de tels systèmes, il est donc essentiel de pouvoir vérifier leurs authenticités. Cette thèse se concentre sur l'authentification des images et vidéos au sein d'un SVID. Suite à la définition formelle d'un tel système, les attaques probables à l'encontre de ceux-ci ont été identifiées. Nous nous sommes efforcés de comprendre les enjeux de ces différentes menaces afin de proposer des solutions adaptées. Nos approches sont basées sur des méthodes de traitement de l'image ou sur des modèles paramétriques. Nous avons aussi proposé de nouvelles bases de données afin d'encourager la recherche sur certains défis spécifiques encore peu étudiés
Digital media are parts of our day-to-day lives. With years of photojournalism, we have been used to consider them as an objective testimony of the truth. But images and video retouching software are becoming increasingly more powerful and easy to use and allow counterfeiters to produce highly realistic image forgery. Consequently, digital media authenticity should not be taken for granted any more. Recent Anti-Money Laundering (AML) relegation introduced the notion of Know Your Customer (KYC) which enforced financial institutions to verify their customer identity. Many institutions prefer to perform this verification remotely relying on a Remote Identity Verification (RIV) system. Such a system relies heavily on both digital images and videos. The authentication of those media is then essential. This thesis focuses on the authentication of images and videos in the context of a RIV system. After formally defining a RIV system, we studied the various attacks that a counterfeiter may perform against it. We attempt to understand the challenges of each of those threats to propose relevant solutions. Our approaches are based on both image processing methods and statistical tests. We also proposed new datasets to encourage research on challenges that are not yet well studied
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Berthet, Alexandre. "Deep learning methods and advancements in digital image forensics". Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS252.

Texto completo
Resumen
Le volume de données visuelles numériques augmente considérablement d'année en années. En parallèle, l’édition d'images est devenue plus facile et plus précise. Les modifications malveillantes sont donc plus accessibles. La criminalistique des images fournit des solutions pour garantir l’authenticité des données visuelles numériques. Tout d’abord, les solutions étaient des méthodes classiques basées sur les artéfacts produits lors de la création d’une image numérique. Puis, comme pour d’autres domaines du traitement d’images, les méthodes sont passées à l’apprentissage profond. Dans un premier temps, nous présentons une étude de l’état de l’art des méthodes d’apprentissage profond pour la criminalistique des images. Notre étude de l’état de l'art souligne le besoin d’appliquer des modules de pré-traitement pour extraire les artéfacts cachés par le contenu des images. Nous avons aussi mis en avant les problèmes concernant les protocoles d’évaluation de la reconnaissance d’image. De plus, nous abordons la contre-criminalistique et présentons la compression basée sur l’intelligence artificielle, qui pourrait être pris en compte comme une attaque. Dans un second temps, cette thèse détaille trois protocoles d’évaluation progressifs qui abordent les problèmes de reconnaissance de caméras. Le protocole final, plus fiable et reproductible, met en avant l’impossibilité des méthodes de l’état de l’art à reconnaître des caméras dans un contexte difficile. Dans un troisième temps, nous étudions l’impact de la compression basée sur l’intelligence artificielle sur deux tâches analysant les artéfacts de compression : la détection de falsifications et la reconnaissance du réseau social
The volume of digital visual data is increasing dramatically year after year. At the same time, image editing has become easier and more precise. Malicious modifications are therefore more accessible. Image forensics provides solutions to ensure the authenticity of digital visual data. Recognition of the source camera and detection of falsified images are among the main tasks. At first, the solutions were classical methods based on the artifacts produced during the creation of a digital image. Then, as in other areas of image processing, the methods moved to deep learning. First, we present a state-of-the-art survey of deep learning methods for image forensics. Our state-of-the-art survey highlights the need to apply pre-processing modules to extract artifacts hidden by image content. We also highlight the problems concerning image recognition evaluation protocols. Furthermore, we address counter-forensics and present compression based on artificial intelligence, which could be considered as an attack. In a second step, this thesis details three progressive evaluation protocols that address camera recognition problems. The final protocol, which is more reliable and reproducible, highlights the impossibility of state-of-the-art methods to recognize cameras in a challenging context. In a third step, we study the impact of compression based on artificial intelligence on two tasks analyzing compression artifacts: tamper detection and social network recognition. The performances obtained show on the one hand that this compression must be taken into account as an attack, but that it leads to a more important decrease than other manipulations for an equivalent image degradation
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Qiao, Tong. "Statistical detection for digital image forensics". Thesis, Troyes, 2016. http://www.theses.fr/2016TROY0006/document.

Texto completo
Resumen
Le XXIème siècle étant le siècle du passage au tout numérique, les médias digitaux jouent un rôle de plus en plus important. Les logiciels sophistiqués de retouche d’images se sont démocratisés et permettent de diffuser facilement des images falsifiées. Ceci pose un problème sociétal puisqu’il s’agit de savoir si ce que l’on voit a été manipulé. Cette thèse s'inscrit dans le cadre de la criminalistique des images. Trois problèmes sont abordés : l'identification de l'origine d'une image, la détection d'informations cachées dans une image et la détection d'un exemple falsification : le rééchantillonnage. Ces travaux s'inscrivent dans le cadre de la théorie de la décision statistique et proposent la construction de détecteurs permettant de respecter une contrainte sur la probabilité de fausse alarme. Afin d'atteindre une performance de détection élevée, il est proposé d'exploiter les propriétés des images naturelles en modélisant les principales étapes de la chaîne d'acquisition d'un appareil photographique. La méthodologie, tout au long de ce manuscrit, consiste à étudier le détecteur optimal donné par le test du rapport de vraisemblance dans le contexte idéal où tous les paramètres du modèle sont connus. Lorsque des paramètres du modèle sont inconnus, ces derniers sont estimés afin de construire le test du rapport de vraisemblance généralisé dont les performances statistiques sont analytiquement établies. De nombreuses expérimentations sur des images simulées et réelles permettent de souligner la pertinence de l'approche proposée
The remarkable evolution of information technologies and digital imaging technology in the past decades allow digital images to be ubiquitous. The tampering of these images has become an unavoidable reality, especially in the field of cybercrime. The credibility and trustworthiness of digital images have been eroded, resulting in important consequences in terms of political, economic, and social issues. To restore the trust to digital images, the field of digital forensics was born. Three important problems are addressed in this thesis: image origin identification, detection of hidden information in a digital image and an example of tampering image detection : the resampling. The goal is to develop a statistical decision approach as reliable as possible that allows to guarantee a prescribed false alarm probability. To this end, the approach involves designing a statistical test within the framework of hypothesis testing theory based on a parametric model that characterizes physical and statistical properties of natural images. This model is developed by studying the image processing pipeline of a digital camera. As part of this work, the difficulty of the presence of unknown parameters is addressed using statistical estimation, making the application of statistical tests straightforward in practice. Numerical experiments on simulated and real images have highlighted the relevance of the proposed approach
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Thai, Thanh Hai. "Statistical modeling and detection for digital image forensics". Thesis, Troyes, 2014. http://www.theses.fr/2014TROY0024/document.

Texto completo
Resumen
Le XXIème siècle étant le siècle du passage au tout numérique, les médias digitaux jouent maintenant un rôle de plus en plus important dans la vie de tous les jours. De la même manière, les logiciels sophistiqués de retouche d’images se sont démocratisés et permettent aujourd’hui de diffuser facilement des images falsifiées. Ceci pose un problème sociétal puisqu’il s’agit de savoir si ce que l’on voit a été manipulé. Cette thèse s'inscrit dans le cadre de la criminalistique des images numériques. Deux problèmes importants sont abordés : l'identification de l'origine d'une image et la détection d'informations cachées dans une image. Ces travaux s'inscrivent dans le cadre de la théorie de la décision statistique et proposent la construction de détecteurs permettant de respecter une contrainte sur la probabilité de fausse alarme. Afin d'atteindre une performance de détection élevée, il est proposé d'exploiter les propriétés des images naturelles en modélisant les principales étapes de la chaîne d'acquisition d'un appareil photographique. La méthodologie, tout au long de ce manuscrit, consiste à étudier le détecteur optimal donné par le test du rapport de vraisemblance dans le contexte idéal où tous les paramètres du modèle sont connus. Lorsque des paramètres du modèle sont inconnus, ces derniers sont estimés afin de construire le test du rapport de vraisemblance généralisé dont les performances statistiques sont analytiquement établies. De nombreuses expérimentations sur des images simulées et réelles permettent de souligner la pertinence de l'approche proposée
The twenty-first century witnesses the digital revolution that allows digital media to become ubiquitous. They play a more and more important role in our everyday life. Similarly, sophisticated image editing software has been more accessible, resulting in the fact that falsified images are appearing with a growing frequency and sophistication. The credibility and trustworthiness of digital images have been eroded. To restore the trust to digital images, the field of digital image forensics was born. This thesis is part of the field of digital image forensics. Two important problems are addressed: image origin identification and hidden data detection. These problems are cast into the framework of hypothesis testing theory. The approach proposes to design a statistical test that allows us to guarantee a prescribed false alarm probability. In order to achieve a high detection performance, it is proposed to exploit statistical properties of natural images by modeling the main steps of image processing pipeline of a digital camera. The methodology throughout this manuscript consists of studying an optimal test given by the Likelihood Ratio Test in the ideal context where all model parameters are known in advance. When the model parameters are unknown, a method is proposed for parameter estimation in order to design a Generalized Likelihood Ratio Test whose statistical performances are analytically established. Numerical experiments on simulated and real images highlight the relevance of the proposed approach
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Doan, Thi Ngoc Canh. "Statistical Methods for Digital Image Forensics". Thesis, Troyes, 2018. http://www.theses.fr/2018TROY0036.

Texto completo
Resumen
L’explosion de la technologie d’imagerie numérique s’est considérablement accrue, posant d’énormes problèmes pour la sécurité de l’information. Grâce à des outils d'édition d'images à faible coût, l'omniprésence des images falsifiées est devenue une réalité incontournable. Cette situation souligne la nécessité d'étendre les recherches actuelles dans le domaine de la criminalistique numérique afin de restaurer la confiance dans les images numériques. Deux problèmes importants sont abordés dans cette thèse: l’estimation du facteur de qualité d’une image JPEG et la détection de la falsification des images numériques. Ces travaux s’inscrivent dans le cadre de la théorie des tests d’hypothèse et proposent la construction de détecteurs permettant de respecter une contrainte sur la probabilité de fausse alarme. Afin d’atteindre une performance de détection élevée, il est proposé d’exploiter un modèle statistique des images naturelles. Ce modèle est construit à partir du processus de formation des images. Des expériences numériques sur des images simulées et réelles ont mis en évidence la pertinence de l'approche proposée
Digital imaging technology explosion has grown significantly posing tremendous security concerns to information security. Under the support of low-cost image editing tools, the ubiquity of tampered images has become an unavoidable reality. This situation highlights the need to improve and extend the current research in the field of digital forensics to restore the trust of digital images. Since each stage of the image history leaves a specific trace on the data, we propose to extract the digital fingerprint as evidence of tampering. Two important problems are addressed in this thesis: quality factor estimation for a given JPEG image and image forgery authentication. For the first problem, a likelihood ratio has been constructed relied on a spatial domain model of the variance of 8 × 8 blocks of JPEG images. In the second part of thesis, the robust forensic detectors have been designed for different types of tampering in the framework of the hypothesis testing theory based on a parametric model that characterizes statistical properties of natural images. The construction of this model is performed by studying the image processing pipeline of a digital camera. The statistical estimation of unknown parameters is employed, leading to application of these tests in practice. This approach allows the design of the most powerful test capable of warranting a prescribed false alarm probability while ensuring a high detection performance. Numerical experiments on simulated and real images have highlighted the relevance of the proposed approach
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Lê, Thi Ai Nhàn. "Statistical Modeling for Detection of Digital Image Forgery". Thesis, Troyes, 2021. http://www.theses.fr/2021TROY0046.

Texto completo
Resumen
À l’ère du numérique, la crédibilité du contenu des images est une préoccupation majeure en raison de la popularité des outils d’édition faciles à utiliser et peu coûteux. Les images falsifiées peuvent être utilisées pour manipuler l’opinion publique lors des élections, commettre des fraudes et discréditer ou faire chanter des personnes. Face à cette situation préoccupante, nous développons dans cette thèse trois techniques efficaces basées sur (i) les traces de dématriçage (ii) les traces de compression JPEG, et (iii) les traces de rééchantillonnage pour détecter les images falsifiées et localiser les différents types de falsification. Bien que ces techniques soient différentes, elles fonctionnent sous l’hypothèse commune que les manipulations peuvent altérer certaines propriétés statistiques sous-jacentes des images naturelles. Un processus de détection en deux étapes a été adopté pour chaque technique de détection : (i) analyser et modéliser les caractéristiques statistiques des images authentiques et falsifiées, puis (ii) concevoir un détecteur statistique pour différencier les images falsifiées des images authentiques en estimant les changements dans leurs modèles. Diverses expérimentations numériques sur plusieurs ensembles de données de référence bien connus mettent en évidence la qualité des performances et la robustesse des techniques de détection proposées
In today’s digital age, the trustworthiness of image content is of great concern due to the dissemination of easy-to-use and low-cost image editing tools. Forged images can be used to manipulate public opinion during elections, commit fraud, discredit or blackmail people. Faced with such a serious situation, we develop in this doctoral project three versatile techniques based on (i) demosaicing traces (ii) JPEG compression traces, and (iii) resampling traces for detecting forged digital images and localizing various types of tampering therein. Although these techniques are different, they work under the common assumption that manipulations may alter some underlying statistical properties of natural images. A two-steps detection process has been adopted for every detection technique: (i) analyze and model statistical features of both the authentic and forged images associated with specific in-camera and/or post-camera traces, then (ii) design a statistical detector to differentiate between the authentic and forged images by estimating statistical changes in their models. Various numerical experiments on several well-known benchmark datasets highlight the performances and robustness of the proposed detection techniques
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Park, Sang-Woo. "Identité et identification des individus : photographie, empreinte, numérisation". Paris, EHESS, 2008. http://www.theses.fr/2008EHES0135.

Texto completo
Resumen
La présente étude s'interroge sur les méthodes d'identification des individus dans une optique sémiologique. Elle se proposer d'étudier ces méthodes en tant qu'elles utilisent des systèmes de représentations constitués de signes. Pour l'identification, le criminaliste transpose une identité physique dans des signes iconiques, verbaux, numériques. Ce sera à partir de ces signes que le criminaliste tentera, en retour, de remonter à l'identité, source de ces signes. C'est toujours sur l'enjeu de l'« aller-retour» entre identité et signes que sont fondées toutes les opérations de l'identification. Cet enjeu caractérise bien la nature de la discipline de la criminalistique. Il s'agit d'une science de l'information, et des signes. Cette étude tente de définir et de comparer précisément les trois systèmes d'images (portrait judiciaire, empreintes digitales et empreintes génétiques) vue de leur valeur pour l'identification. La photographie est à chaque fois utilisée et a donc un rôle central. Une interrogation portant sur les multiples rôles assumés alors par la photographie est donc tout à fait fondamentale pour féconder l'histoire de la photographie
The present study is an inquiry about the method for identification of individuals in a semiological approach. Its purpose is the study of the methods insofar as they use representation systems based on signs. For identification, the criminalist translates a physical identity into iconic, verbal or numerical signs. It is by taking the very same way back that the criminalist will later on attempt to trace back to the identity that is the source of these signs. What is at stake in the process of identification is always this to and fro movement between the identity and its signs on which identification is grounded. This stake is very characteristics of the nature of a forensic science. This is a science of information and a science of signs. This study is an attempt to define and compare precisely these three image systems -criminal photo, fingerprints and DNA fingerprints -as to their respective value for identification. Photography is of a central use, and deserves a special study as such. These so multiple and essential roles played by photography in the identification process show how fundamental an inquiry on the subject may prove for the history of photography
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Criminalistique des Images"

1

Smith, Jill y Brian Dalrymple. Forensic Digital Image Processing: Optimization of Impression Evidence. Taylor & Francis Group, 2018.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Smith, Jill y Brian Dalrymple. Forensic Digital Image Processing: Optimization of Impression Evidence. Taylor & Francis Group, 2018.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Smith, Jill y Brian Dalrymple. Forensic Digital Image Processing: Optimization of Impression Evidence. Taylor & Francis Group, 2018.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía