Literatura académica sobre el tema "CO₂ hydrogenation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "CO₂ hydrogenation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "CO₂ hydrogenation"
Godoy, Sebastian, Prashant Deshlahra, Francisco Villagra-Soza, Alejandro Karelovic y Romel Jimenez. "Effects of Site Geometry and Local Composition on Hydrogenation of Surface Carbon to Methane on Ni, Co, and NiCo Catalysts". Catalysts 12, n.º 11 (7 de noviembre de 2022): 1380. http://dx.doi.org/10.3390/catal12111380.
Texto completoZuo, Zheng y Xinzheng Yang. "Mechanistic Insights into Selective Hydrogenation of C=C Bonds Catalyzed by CCC Cobalt Pincer Complexes: A DFT Study". Catalysts 11, n.º 2 (26 de enero de 2021): 168. http://dx.doi.org/10.3390/catal11020168.
Texto completoStepanova, Liudmila N., Roman M. Mironenko, Mikhail V. Trenikhin, Aleksandra N. Serkova, Aleksei N. Salanov y Aleksandr V. Lavrenov. "CoCuMgAl-Mixed-Oxide-Based Catalysts with Fine-Tunable Composition for the Hydrogenation of Furan Compounds". Journal of Composites Science 8, n.º 2 (2 de febrero de 2024): 57. http://dx.doi.org/10.3390/jcs8020057.
Texto completoTanirbergenova Sandugash Kudaibergenovna, Тugelbayeva Dildara Abdikadyrovna, Erezhep Nurzay, Zhylybayeva Nurzhamal Kydyrkhankyzy y Dinistanova Balaussa Kanatbayevna. "OPTIMIZATION OF TECHNOLOGICAL PARAMETERS OF HYDRAGENERATION PROCESS OF ACETYLENE USING A PILOT CATALYTIC PLANT". SERIES CHEMISTRY AND TECHNOLOGY 5, n.º 443 (15 de octubre de 2020): 134–40. http://dx.doi.org/10.32014/2020.2518-1491.90.
Texto completoLeroux, Killian, Jean-Claude Guillemin y Lahouari Krim. "Solid-state formation of CO and H2CO via the CHOCHO + H reaction". Monthly Notices of the Royal Astronomical Society 491, n.º 1 (13 de noviembre de 2019): 289–301. http://dx.doi.org/10.1093/mnras/stz3051.
Texto completoLi, Meng y Dong Ding. "(Invited) Tuning Selective CO2 Electrohydrogenation Under Mid Temperature and Pressure". ECS Meeting Abstracts MA2024-01, n.º 37 (9 de agosto de 2024): 2184. http://dx.doi.org/10.1149/ma2024-01372184mtgabs.
Texto completoStuchlý, Vladimír y Karel Klusáček. "Temperature-programmed hydrogenation of surface carbonaceous deposits on a Ni/SiO2 methanation catalyst". Collection of Czechoslovak Chemical Communications 55, n.º 2 (1990): 354–63. http://dx.doi.org/10.1135/cccc19900354.
Texto completoAbasov, S. I., S. B. Agaeva, M. T. Mamedova, Y. S. Isaeva, A. A. Iskenderova y D. B. Tagiyev. "EFFECT OF AN ALKYL SUBSTITUTE ON HYDROCONVERSION OF INDIVIDUAL AROMATIC HYDROCARBONS ON Co/HZSM-5/SO42-–ZrO2 COMPOSITE CATALYST". Azerbaijan Chemical Journal, n.º 2 (7 de mayo de 2024): 36–43. http://dx.doi.org/10.32737/0005-2531-2024-2-36-43.
Texto completoSu, Diefeng, Zhongzhe Wei, Shanjun Mao, Jing Wang, Yi Li, Haoran Li, Zhirong Chen y Yong Wang. "Reactivity and mechanism investigation of selective hydrogenation of 2,3,5-trimethylbenzoquinone on in situ generated metallic cobalt". Catalysis Science & Technology 6, n.º 12 (2016): 4503–10. http://dx.doi.org/10.1039/c5cy02171e.
Texto completoKongsuebchart, Wilasinee, Apipon Methachittipan, Thatpon Kongviwatanakul, Piyasan Praserthdam, Okorn Mekasuwandumrong y Joongjai Panpranot. "Solvothermal-Derived Nanocrystalline TiO2 Supported Co Catalysts in the Hydrogenation of Carbonmonoxide". Advanced Materials Research 634-638 (enero de 2013): 595–98. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.595.
Texto completoTesis sobre el tema "CO₂ hydrogenation"
Musadi, Maya Ramadianti. "Catalytic hydrogenation of CO₂ for sustainable transport". Thesis, University of Manchester, 2009. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.505377.
Texto completoRennison, A. J. "CO hydrogenation on reduced solid solution catalysts". Thesis, University of Bath, 1987. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378000.
Texto completoBalakrishnan, Nianthrini. "Theoretical Studies of Co Based Catalysts on CO Hydrogenation and Oxidation". Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4434.
Texto completoNozonke, Dumani. "Iron modification of rhodium nano-crystallites for CO hydrogenation". Master's thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/16858.
Texto completoSchweicher, Julien. "Kinetic and mechanistic studies of CO hydrogenation over cobalt-based catalysts". Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210036.
Texto completoTwo different types of catalysts have been investigated during this thesis: cobalt with magnesia used as support or dispersant (Co/MgO) and cobalt with silica used as support (Co/SiO2). Each catalyst from the first class is prepared by precipitation of a mixed Co/Mg oxalate in acetone. This coprecipitation is followed by a thermal decomposition under reductive atmosphere leading to a mixed Co/MgO catalyst. On the other hand, Co/SiO2 catalysts are prepared by impregnation of a commercial silica support with a chloroform solution containing Co nanoparticles. This impregnation is then followed by a thermal activation under reductive atmosphere.
The mixed Co/Mg oxalates and the resulting Co/MgO catalysts have been extensively characterized in order to gain a better understanding of the composition, the structure and the morphology of these materials: thermal treatments under reductive and inert atmospheres (followed by MS, DRIFTS, TGA and DTA), BET surface area measurements, XRD and electron microscopy studies have been performed. Moreover, an original in situ technique for measuring the H2 chemisorption surface area of catalysts has been developed and used over our catalysts.
The performances of the Co/MgO and Co/SiO2 catalysts have then been evaluated in the CO+H2 reaction at atmospheric pressure. Chemical Transient Kinetics (CTK) experiments have been carried out in order to obtain information about the reaction kinetics and mechanism and the nature of the catalyst active surface under reaction conditions. The influence of several experimental parameters (temperature, H2 and CO partial pressures, total volumetric flow rate) and the effect of passivation are also discussed with regard to the catalyst behavior.
Our results indicate that the FT active surface of Co/MgO 10/1 (molar ratio) is entirely covered by carbon, oxygen and hydrogen atoms, most probably associated as surface complexes (possibly formate species). Thus, this active surface does not present the properties of a metallic Co surface (this has been proved by performing original experiments consisting in switching from the CO+H2 reaction to the propane hydrogenolysis reaction (C3H8+H2) which is sensitive to the metallic nature of the catalyst). CTK experiments have also shown that gaseous CO is the monomer responsible for chain lengthening in the FT reaction (and not any CHx surface intermediates as commonly believed). Moreover, CO chemisorption has been found to be irreversible under reaction conditions.
The CTK results obtained over Co/SiO2 are quite different and do not permit to draw sharp conclusions concerning the FT reaction mechanism. More detailed studies would have to be carried out over these samples.
Finally, Co/MgO catalysts have also been studied on a combined DRIFTS/MS experimental set-up in Belfast. CTK and Steady-State Isotopic Transient Kinetic Analysis (SSITKA) experiments have been carried out. While formate and methylene (CH2) groups have been detected by DRIFTS during the FT reaction, the results indicate that these species play no role as active intermediates. These formates are most probably located on MgO or at the Co/MgO interface, while methylene groups stand for skeleton CH2 in either hydrocarbon or carboxylate. Unfortunately, formate/methylene species have not been detected by DRIFTS over pure Co catalyst without MgO, because of the full signal absorption.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
DAUBREGE, FRANCK. "Etude de la mise en regime des catalyseurs a base de cuivre et de cobalt destines a la synthese d'alcools superieurs a partir de co/h#2". Paris 6, 1990. http://www.theses.fr/1990PA066465.
Texto completoYao, Libo. "Sustainable, energy-efficient hydrogenation processes for selective chemical syntheses". University of Akron / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=akron1626172267871778.
Texto completoAoyama, Yoshimasa. "Hybridization of 4d Metal Nanoparticles with Metal-Organic Framework and the Investigation of the Catalytic Property". Kyoto University, 2020. http://hdl.handle.net/2433/254504.
Texto completoJi, Qinqin. "The synthesis of higher alcohols from CO2 hydrogenation with Co, Cu, Fe-based catalysts". Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAF023/document.
Texto completoCO2 is a clean carbon source for the chemical reactions, many researchers have studied the utilization of CO2. Higher alcohols are clean fuel additives. The synthesis of higher alcohols from CO hydrogenation has also been studied by many researchers, but there are few literatures about the synthesis of higher alcohols from CO2 hydrogenation, which is a complex and difficult reaction. The catalysts that used for higher alcohols synthesis need at least two active phases and goodcooperation. In our study, we tested the Co. Cu. Fe spinel-based catalysts and the effect of supports (CNTs and TUD-1) and promoters (K, Na, Cs) to the HAS reaction. We found that catalyst CuFe-precursor-800 is beneficial for the synthesis of C2+ hydrocarbons and higher alcohols. In the CO2 hydrogenation, Co acts as a methanation catalyst rather than acting as a FT catalyst, because of the different reaction mechanism between CO hydrogenation and CO2 hydrogenation. In order to inhibit the formation of huge amount of hydrocarbons, it is better to choose catalysts without Co in the CO2 hydrogenation reaction. Compared the functions of CNTs and TUD-1, we found that CNTs is a perfect support for the synthesis of long-chain products (higher alcohols and C2+ hydrocarbons). The TUD-1 support are more suitable for synthesis of single-carbon products (methane and methanol).The addition of alkalis as promoters does not only lead to increase the conversion of CO2 and H2, but also sharply increased the selectivity to the desired products, higher alcohols. The catalyst 0.5K30CuFeCNTs owns the highest productivities (370.7 g∙kg-1∙h-1) of higher alcohols at 350 °C and 50 bar
FERREIRA, ELINER A. "Estudo das propriedades magnéticas e da microestrutura em imãs permanentes à base de Pr-Fe-B-Co-Nd obtidos pelos processos HD e HDDR". reponame:Repositório Institucional do IPEN, 2008. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11694.
Texto completoMade available in DSpace on 2014-10-09T14:06:59Z (GMT). No. of bitstreams: 0
Dissertação (Mestrado)
IPEN/D
Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN-SP
Libros sobre el tema "CO₂ hydrogenation"
Gascoin, F. Co hydrogenation over Ru-Co/SiO2 catalysts. Manchester: UMIST, 1994.
Buscar texto completoMoman, A. A. CO hydrogenation over Ru-Cs/SiO2 catalysts. Manchester: UMIST, 1994.
Buscar texto completoTungkamani, S. CO hydrogenation over Ru-Rb/SiO2 catalysts. Manchester: UMIST, 1996.
Buscar texto completoFatolas, K. CO Hydrogenation over Ru - Mn/SiO2 catalysts. Manchester: UMIST, 1996.
Buscar texto completoVerbrugge, Alwin S. CO hydrogenation over Ru-Cu/SiO2 catalysts. Manchester: UMIST, 1996.
Buscar texto completoBraca, Giuseppe, ed. Oxygenates by Homologation or CO Hydrogenation with Metal Complexes. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0874-4.
Texto completo1937-, Braca Giuseppe, ed. Oxygenates by homologation or CO hydrogenation with metal complexes. Dordrecht [The Netherlands]: Kluwer Academic Publishers, 1994.
Buscar texto completoScott, M. W. CO hydrogenation over Ru-Mn supported BI-metallic catalyst. Manchester: UMIST, 1995.
Buscar texto completoKollenburg, O. Van. CO hydrogenation over Ni/SiO2 catalysts calcined at different temperatures. Manchester: UMIST, 1996.
Buscar texto completoReynier, Stephan Francois A. Synthesis and hydrogenation activity of heterogeneous dichlorodicarbonylbis (triphenylphosphine) ruthenium(II), (Ph3P)2RuCl2(CO)2, catalysts. Ottawa: National Library of Canada, 1996.
Buscar texto completoCapítulos de libros sobre el tema "CO₂ hydrogenation"
Zhang, Y., Y. Tsushio, Hirotoshi Enoki y Etsuo Akiba. "Hydrogenation Properties of Mg-Co and Its Related Alloys". En Materials Science Forum, 2453–56. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-960-1.2453.
Texto completoHolladay, Johnathan E., Todd A. Werpy y Danielle S. Muzatko. "Catalytic Hydrogenation of Glutamic Acid". En Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO, 857–69. Totowa, NJ: Humana Press, 2004. http://dx.doi.org/10.1007/978-1-59259-837-3_70.
Texto completoBraca, Giuseppe. "Mono Alcohols, Glycols, and their Ethers and Esters by CO Hydrogenation". En Oxygenates by Homologation or CO Hydrogenation with Metal Complexes, 1–88. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0874-4_1.
Texto completoBraca, Giuseppe. "Alcohols and Derivatives by Homologation with Syngas". En Oxygenates by Homologation or CO Hydrogenation with Metal Complexes, 89–190. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0874-4_2.
Texto completoBraca, Giuseppe. "Hydrocarbonylation of Aldehydes and their Derivatives". En Oxygenates by Homologation or CO Hydrogenation with Metal Complexes, 191–219. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0874-4_3.
Texto completoWesner, D. A., F. P. Coenen y H. P. Bonzel. "Structural Changes on Ni Surfaces Induced by Catalytic CO Hydrogenation". En Springer Series in Surface Sciences, 612–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73343-7_100.
Texto completoAnderson, James A. y Mahmoud M. Khader. "An in Situ Infrared Study of Hydrogenation of CO over Rh/ZrO2". En Progress in Fourier Transform Spectroscopy, 363–65. Vienna: Springer Vienna, 1997. http://dx.doi.org/10.1007/978-3-7091-6840-0_83.
Texto completoYang, Qingxin y Evgenii V. Kondratenko. "Status of Catalyst Development for CO2 Hydrogenation to Platform Chemicals CH3OH and CO". En Green Chemistry and Sustainable Technology, 81–104. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8822-8_4.
Texto completoPanagiotopoulou, Paraskevi y Xenophon E. Verykios. "Metal–support interactions of Ru-based catalysts under conditions of CO and CO2 hydrogenation". En Catalysis, 1–23. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781788019477-00001.
Texto completoOskam, A., R. R. Andréa, D. J. Stufkens y M. A. Vuurman. "Identification of H2-, D2-, N2- Bonded Intermediates in the Cr(CO)6 Photocatalyzed Hydrogenation Reactions". En Photochemistry and Photophysics of Coordination Compounds, 243–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72666-8_44.
Texto completoActas de conferencias sobre el tema "CO₂ hydrogenation"
Cui, Z., Y. Zheng y Y. Hao. "Water-Promoted Ethanol Production via CO2 Hydrogenation through Plasma Catalysis over Cu-based Catalyst". En 2024 IEEE International Conference on Plasma Science (ICOPS), 1. IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10626062.
Texto completoDou, L., Y. Gao, Y. Xu, C. Zhang y T. Shao. "A sustainable route for CH3OH synthesis via plasma-enabled CO2 hydrogenation: the effects of H2O additive and packing materials". En 2024 IEEE International Conference on Plasma Science (ICOPS), 1. IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10627361.
Texto completoWang, Yi, Lei Sun, Yan Li, Yi-fan Zhang, De-dong Han, Li-feng Liu, Jin-feng Kang, Xing Zhang y Ru-qi Han. "Hydrogenation Induced Room-Temperature Ferromagnetism in Co-doped ZnO Nanocrystals". En 2007 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2007. http://dx.doi.org/10.7567/ssdm.2007.p-12-1.
Texto completoTang Qingjie, Liu Bo y Fan Shao. "Effect of manganese on Iron-Ruthenium complex catalyst for CO hydrogenation". En Environment (ICMREE). IEEE, 2011. http://dx.doi.org/10.1109/icmree.2011.5930645.
Texto completoHUANG, PENGMIAN, ZILI LIU y MIAO ZHENG. "SELECTIVE HYDROGENATION OF CINNAMALDEHYDE TO CINNAMYL ALCOHOL OVER CO-FE/Γ-AL2O3 CATALYSTS". En Proceedings of the 4th International Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702623_0174.
Texto completoShopska, Maya, Alfonso Caballero, Silviya Todorova, Katerina Aleksieva, Krassimir Tenchev, Hristo Kolev, Martin Fabian y Georgi Kadinov. "Comparative Investigation of (10%Co+0.5%Pd)/TiO2(Al2O3) Catalysts in CO Hydrogenation at Low and High Pressure". En The 2nd International Electronic Conference on Catalysis Sciences—A Celebration of Catalysts 10th Anniversary. Basel Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/eccs2021-11105.
Texto completoWatanabe, Naoki, Hiroshi Hidaka y Akira Kouchi. "Relative Reaction Rates of Hydrogenation and Deuteration of Solid CO at Very Low Temperatures". En ASTROCHEMISTRY: From Laboratory Studies to Astronomical Observations. AIP, 2006. http://dx.doi.org/10.1063/1.2359547.
Texto completoJoshi, Niharika, Indu Kaul, Nirmalya Ballav y Prasenjit Ghosh. "Spin enhancement and band gap opening of ferrimagnetic graphene on fcc-Co(111) surface upon hydrogenation". En SOLID STATE PHYSICS: PROCEEDINGS OF THE 57TH DAE SOLID STATE PHYSICS SYMPOSIUM 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4791227.
Texto completoKoh, Mei Kee, Munirah Md Zain y Abdul Rahman Mohamed. "Exploring transition metal (Cr, Mn, Fe, Co, Ni) promoted copper-catalyst for carbon dioxide hydrogenation to methanol". En 6TH INTERNATIONAL CONFERENCE ON ENVIRONMENT (ICENV2018): Empowering Environment and Sustainable Engineering Nexus Through Green Technology. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5117066.
Texto completoPinkard, Brian R., Elizabeth G. Rasmussen, John C. Kramlich, Per G. Reinhall y Igor V. Novosselov. "Supercritical Water Gasification of Ethanol for Fuel Gas Production". En ASME 2019 13th International Conference on Energy Sustainability collocated with the ASME 2019 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/es2019-3950.
Texto completoInformes sobre el tema "CO₂ hydrogenation"
Bartholomew, C. H. Effects of dispersion and support on adsorption, catalytic and electronic properties of cobalt/alumina Co hydrogenation catalysts. Office of Scientific and Technical Information (OSTI), septiembre de 1990. http://dx.doi.org/10.2172/5575665.
Texto completoAuthor, Not Given. Hydrogenation of Clean Carbon Monoxide (CO) and Carbon Dioxide (CO2) Gas Streams to Higher Molecular Weight Alcohols. Office of Scientific and Technical Information (OSTI), febrero de 2012. http://dx.doi.org/10.2172/1035373.
Texto completoBartholomew, C. H. Effects of dispersion and support on adsorption, catalytic and electronic properties of cobalt/alumina Co hydrogenation catalysts. Final progress report, August 1, 1987--July 31, 1990. Office of Scientific and Technical Information (OSTI), septiembre de 1990. http://dx.doi.org/10.2172/10135056.
Texto completoKung, Kyle Yi. Sum frequency generation vibrational spectroscopy studies of adsorbates on Pt(111): Studies of CO at high pressures and temperatures, coadsorbed with olefins and its role as a poison in ethylene hydrogenation. Office of Scientific and Technical Information (OSTI), diciembre de 2000. http://dx.doi.org/10.2172/790020.
Texto completoRucker, T. G. The effect of additives on the reactivity of palladium surfaces for the chemisorption and hydrogenation of carbon monoxide: A surface science and catalytic study. [LaMO/sub 3/(M = Cr, Mn, Fe, Co, Rh)]. Office of Scientific and Technical Information (OSTI), junio de 1987. http://dx.doi.org/10.2172/6389716.
Texto completo