Libros sobre el tema "Covariance matrice"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 25 mejores mejores libros para su investigación sobre el tema "Covariance matrice".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore libros sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Tsukuma, Hisayuki y Tatsuya Kubokawa. Shrinkage Estimation for Mean and Covariance Matrices. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1596-5.
Texto completoJong, Robert M. de. Consistency of kernel estimators of heteroscedastic and autocorrelated covariance matrices. Cardiff: Cardiff Business School, 1996.
Buscar texto completoSrivastava, M. S. Classification with a preassigned error rate when two covariance matrices are equal. Toronto: University of Toronto, Dept. of Statistics, 1998.
Buscar texto completoWoodruff, David. A note on a relationship between covariance matrices and consistently estimated variance components. Iowa City, Iowa: American College Testing Program, 1995.
Buscar texto completoU.S. Nuclear Regulatory Commission. Division of Systems Analysis and Regulatory Effectiveness. y Oak Ridge National Laboratory, eds. PUFF-III: A code for processing ENDF uncertainty data into multigroup covariance matrices. Washington, DC: U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, 2000.
Buscar texto completoU.S. Nuclear Regulatory Commission. Division of Systems Analysis and Regulatory Effectiveness. y Oak Ridge National Laboratory, eds. PUFF-III: A code for processing ENDF uncertainty data into multigroup covariance matrices. Washington, DC: U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, 2000.
Buscar texto completoKubokawa, T. Robust improvements in estimation of mean and covariance matrices in elliptically contoured distribution. Toronto: University of Toronto, Dept. of Statistics, 1997.
Buscar texto completoPynnönen, Seppo. Testing for additional information in variables in multivariate normal classification with unequal covariance matrices. Vaasa: Universitas Wasaensis, 1988.
Buscar texto completoBose, Arup y Monika Bhattacharjee. Large Covariance and Autocovariance Matrices. Taylor & Francis Group, 2018.
Buscar texto completoBose, Arup. Large Covariance and Autocovariance Matrices. Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9780203730652.
Texto completoBose, Arup y Monika Bhattacharjee. Large Covariance and Autocovariance Matrices. Taylor & Francis Group, 2018.
Buscar texto completoBose, Arup y Monika Bhattacharjee. Large Covariance and Autocovariance Matrices. Taylor & Francis Group, 2020.
Buscar texto completoLarge Covariance and Autocovariance Matrices. Taylor & Francis Group, 2018.
Buscar texto completoBose, Arup y Monika Bhattacharjee. Large Covariance and Autocovariance Matrices. Taylor & Francis Group, 2018.
Buscar texto completoBose, Arup y Monika Bhattacharjee. Large Covariance and Autocovariance Matrices. Taylor & Francis Group, 2018.
Buscar texto completoTsukuma, Hisayuki y Tatsuya Kubokawa. Shrinkage Estimation for Mean and Covariance Matrices. Springer, 2020.
Buscar texto completoTsukuma, Hisayuki y Tatsuya Kubokawa. Shrinkage Estimation for Mean and Covariance Matrices. Springer, 2020.
Buscar texto completoBai, Zhidong, Jianfeng Yao y Shurong Zheng. Large Sample Covariance Matrices and High-Dimensional Data Analysis. Cambridge University Press, 2015.
Buscar texto completoLarge Sample Covariance Matrices and High-Dimensional Data Analysis. Cambridge University Press, 2015.
Buscar texto completoZinn-Justin, Paul y Jean-Bernard Zuber. Multivariate statistics. Editado por Gernot Akemann, Jinho Baik y Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.28.
Texto completoPUFF-III: A code for processing ENDF uncertainty data into multigroup covariance matrices. Washington, DC: U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, 2000.
Buscar texto completoA Linear Algebra Primer for Financial Engineering: Covariance Matrices, Eigenvectors, OLS, and more. FE Press, LLC, 2014.
Buscar texto completoBaulieu, Laurent, John Iliopoulos y Roland Sénéor. Relativistic Wave Equations. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788393.003.0006.
Texto completoChirembo, Anderson Mayotcha. Direct versus indirect methods for the estimation of variance-covariance matrices and regression parameters when data are skewed and incomplete. 1995.
Buscar texto completoBack, Kerry E. Factor Models. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780190241148.003.0006.
Texto completo