Índice
Literatura académica sobre el tema "Covalent adaptable networks"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Covalent adaptable networks".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Covalent adaptable networks"
McBride, Matthew K., Brady T. Worrell, Tobin Brown, Lewis M. Cox, Nancy Sowan, Chen Wang, Maciej Podgorski, Alina M. Martinez y Christopher N. Bowman. "Enabling Applications of Covalent Adaptable Networks". Annual Review of Chemical and Biomolecular Engineering 10, n.º 1 (7 de junio de 2019): 175–98. http://dx.doi.org/10.1146/annurev-chembioeng-060718-030217.
Texto completoKloxin, Christopher J. y Christopher N. Bowman. "Covalent adaptable networks: smart, reconfigurable and responsive network systems". Chem. Soc. Rev. 42, n.º 17 (12 de abril de 2013): 7161–73. http://dx.doi.org/10.1039/c3cs60046g.
Texto completoWu, Yahe, Yen Wei y Yan Ji. "Polymer actuators based on covalent adaptable networks". Polymer Chemistry 11, n.º 33 (2020): 5297–320. http://dx.doi.org/10.1039/d0py00075b.
Texto completoBowman, Christopher, Filip Du Prez y Julia Kalow. "Introduction to chemistry for covalent adaptable networks". Polymer Chemistry 11, n.º 33 (2020): 5295–96. http://dx.doi.org/10.1039/d0py90102d.
Texto completoGamardella, Francesco, Sara Muñoz, Silvia De la Flor, Xavier Ramis y Angels Serra. "Recyclable Organocatalyzed Poly(Thiourethane) Covalent Adaptable Networks". Polymers 12, n.º 12 (4 de diciembre de 2020): 2913. http://dx.doi.org/10.3390/polym12122913.
Texto completoLee, Kathryn K. y Leslie S. Hamachi. "Big Diels: 3D printing covalent adaptable networks". Matter 4, n.º 8 (agosto de 2021): 2634–37. http://dx.doi.org/10.1016/j.matt.2021.06.025.
Texto completoMelchor Bañales, Alberto J. y Michael B. Larsen. "Thermal Guanidine Metathesis for Covalent Adaptable Networks". ACS Macro Letters 9, n.º 7 (11 de junio de 2020): 937–43. http://dx.doi.org/10.1021/acsmacrolett.0c00352.
Texto completoGuo, Xinru, Feng Liu, Meng Lv, Fengbiao Chen, Fei Gao, Zhenhua Xiong, Xuejiao Chen, Liang Shen, Faman Lin y Xuelang Gao. "Self-Healable Covalently Adaptable Networks Based on Disulfide Exchange". Polymers 14, n.º 19 (21 de septiembre de 2022): 3953. http://dx.doi.org/10.3390/polym14193953.
Texto completoBowman, Christopher N. y Christopher J. Kloxin. "Covalent Adaptable Networks: Reversible Bond Structures Incorporated in Polymer Networks". Angewandte Chemie International Edition 51, n.º 18 (2 de marzo de 2012): 4272–74. http://dx.doi.org/10.1002/anie.201200708.
Texto completoGu, Yu, Yinli Liu y Mao Chen. "High-level hierarchical morphology reinforcing covalent adaptable networks". Chem 7, n.º 8 (agosto de 2021): 1990–92. http://dx.doi.org/10.1016/j.chempr.2021.07.004.
Texto completoTesis sobre el tema "Covalent adaptable networks"
Hammer, Larissa. "Design and Characterization of Double Dynamic Networks Based on Boronic Ester and Imine Dynamic Covalent Bonds". Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLS077.
Texto completoDual dynamic networks (DDNs) are polymeric materials that combine two (or more) distinct crosslinkers in one system. By coupling different crosslinking strategies, precisely tailored materials can be designed. This thesis explores the implementation of the vitrimer concept into DDNs. Elastomeric vitrimers consisting of two interpenetrated dynamic networks that rely on boronic ester metathesis and on imine-aldehyde exchange, respectively, were designed to this aim. Both reactions proceed via a degenerate mechanism and are orthogonal to each other. By the engagement of two types of dynamic covalent crosslinks, two distinct dynamics are established in each subnetwork. To obtain and evaluate the final DDN, the respective subnetworks were synthesized beforehand, and characterized as single networks. The characteristics of the single networks were tailored individually to fulfill their specific needs in terms of dynamic behavior, processability and dimensional stability. These properties were adjusted by changing the molar mass of the thermoplastic precursors, their degree of functionality, their crosslinking density, or the lifetime of the dynamic bonds. The two networks were successfully united into a DDN. In a comparative study, insights were obtained how the individual subnetworks contribute to the DDN’s properties, and whether synergetic effects arise. In fact, the interpenetrated nature of the vitrimer DDN allows increasing at the time creep resistance and elongation at break, which is really challenging to achieve, yet highly desirable for most elastomers. Over and beyond, the obtained materials show great potential for mechanical and chemical recycling
Chakma, Progyateg. "Introducing Adaptability in Polymer Networks Through Dynamic Thiol-Michael Chemistry and Nucleophilic Substitution". Miami University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=miami1593636035333397.
Texto completo