Artículos de revistas sobre el tema "Copper monooxygenases"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Copper monooxygenases".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Fukatsu, Arisa, Yuma Morimoto, Hideki Sugimoto y Shinobu Itoh. "Modelling a ‘histidine brace’ motif in mononuclear copper monooxygenases". Chemical Communications 56, n.º 38 (2020): 5123–26. http://dx.doi.org/10.1039/d0cc01392g.
Texto completoMusiani, Francesco, Valquiria Broll, Elisa Evangelisti y Stefano Ciurli. "The model structure of the copper-dependent ammonia monooxygenase". JBIC Journal of Biological Inorganic Chemistry 25, n.º 7 (14 de septiembre de 2020): 995–1007. http://dx.doi.org/10.1007/s00775-020-01820-0.
Texto completoLiew, Elissa F., Daochen Tong, Nicholas V. Coleman y Andrew J. Holmes. "Mutagenesis of the hydrocarbon monooxygenase indicates a metal centre in subunit-C, and not subunit-B, is essential for copper-containing membrane monooxygenase activity". Microbiology 160, n.º 6 (1 de junio de 2014): 1267–77. http://dx.doi.org/10.1099/mic.0.078584-0.
Texto completoFarhan Ul Haque, Muhammad, Bhagyalakshmi Kalidass, Nathan Bandow, Erick A. Turpin, Alan A. DiSpirito y Jeremy D. Semrau. "Cerium Regulates Expression of Alternative Methanol Dehydrogenases in Methylosinus trichosporium OB3b". Applied and Environmental Microbiology 81, n.º 21 (21 de agosto de 2015): 7546–52. http://dx.doi.org/10.1128/aem.02542-15.
Texto completoVu, Van V. y Son Tung Ngo. "Copper active site in polysaccharide monooxygenases". Coordination Chemistry Reviews 368 (agosto de 2018): 134–57. http://dx.doi.org/10.1016/j.ccr.2018.04.005.
Texto completoBlackburn, Ninian J., Brian Reedy, Eilleen Zhou, Robert Carr y Steven J. Benkovic. "Chemistry and spectroscopy of copper monooxygenases". Journal of Inorganic Biochemistry 47, n.º 3-4 (julio de 1992): 8. http://dx.doi.org/10.1016/0162-0134(92)84079-3.
Texto completoChoi, Dong-W., Ryan C. Kunz, Eric S. Boyd, Jeremy D. Semrau, William E. Antholine, J. I. Han, James A. Zahn, Jeffrey M. Boyd, Arlene M. de la Mora y Alan A. DiSpirito. "The Membrane-Associated Methane Monooxygenase (pMMO) and pMMO-NADH:Quinone Oxidoreductase Complex from Methylococcus capsulatus Bath". Journal of Bacteriology 185, n.º 19 (1 de octubre de 2003): 5755–64. http://dx.doi.org/10.1128/jb.185.19.5755-5764.2003.
Texto completoHedegård, Erik Donovan y Ulf Ryde. "Molecular mechanism of lytic polysaccharide monooxygenases". Chemical Science 9, n.º 15 (2018): 3866–80. http://dx.doi.org/10.1039/c8sc00426a.
Texto completoItoh, Shinobu y Shunichi Fukuzumi. "Dioxygen Activation by Copper Complexes. Mechanistic Insights into Copper Monooxygenases and Copper Oxidases". Bulletin of the Chemical Society of Japan 75, n.º 10 (octubre de 2002): 2081–95. http://dx.doi.org/10.1246/bcsj.75.2081.
Texto completoMaiti, Debabrata, Amy A. Narducci Sarjeant y Kenneth D. Karlin. "Copper−Hydroperoxo-Mediated N-Debenzylation Chemistry Mimicking Aspects of Copper Monooxygenases". Inorganic Chemistry 47, n.º 19 (6 de octubre de 2008): 8736–47. http://dx.doi.org/10.1021/ic800617m.
Texto completoFujisawa, K., T. Katayama, N. Kitajima y Y. Moro-oka. "Reaction aspects of peroxo copper complexes relevant to copper containing monooxygenases." Journal of Inorganic Biochemistry 43, n.º 2-3 (agosto de 1991): 216. http://dx.doi.org/10.1016/0162-0134(91)84208-q.
Texto completoMigliore, Agostino y David N. Beratan. "Cu-To-Cu Electron Tunneling in Copper Monooxygenases". Biophysical Journal 106, n.º 2 (enero de 2014): 588a. http://dx.doi.org/10.1016/j.bpj.2013.11.3259.
Texto completoCiano, Luisa, Alessandro Paradisi, Glyn R. Hemsworth, Morten Tovborg, Gideon J. Davies y Paul H. Walton. "Insights from semi-oriented EPR spectroscopy studies into the interaction of lytic polysaccharide monooxygenases with cellulose". Dalton Transactions 49, n.º 11 (2020): 3413–22. http://dx.doi.org/10.1039/c9dt04065j.
Texto completoITO, M., K. FUJISAWA, N. KITAJIMA y Y. MORO-OKA. "ChemInform Abstract: Model Studies on Nonheme Monooxygenases. Chemical Models for Nonheme Iron and Copper Monooxygenases". ChemInform 28, n.º 28 (3 de agosto de 2010): no. http://dx.doi.org/10.1002/chin.199728284.
Texto completoBissaro, Bastien y Vincent G. H. Eijsink. "Lytic polysaccharide monooxygenases: enzymes for controlled and site-specific Fenton-like chemistry". Essays in Biochemistry 67, n.º 3 (marzo de 2023): 575–84. http://dx.doi.org/10.1042/ebc20220250.
Texto completoMurrell, J. Colin, Ian R. McDonald y Bettina Gilbert. "Regulation of expression of methane monooxygenases by copper ions". Trends in Microbiology 8, n.º 5 (mayo de 2000): 221–25. http://dx.doi.org/10.1016/s0966-842x(00)01739-x.
Texto completoConcia, Alda Lisa, Maria Rosa Beccia, Maylis Orio, Francine Terra Ferre, Marciela Scarpellini, Frédéric Biaso, Bruno Guigliarelli, Marius Réglier y A. Jalila Simaan. "Copper Complexes as Bioinspired Models for Lytic Polysaccharide Monooxygenases". Inorganic Chemistry 56, n.º 3 (6 de enero de 2017): 1023–26. http://dx.doi.org/10.1021/acs.inorgchem.6b02165.
Texto completoBeeson, William T., Christopher M. Phillips, Jamie H. D. Cate y Michael A. Marletta. "Oxidative Cleavage of Cellulose by Fungal Copper-Dependent Polysaccharide Monooxygenases". Journal of the American Chemical Society 134, n.º 2 (28 de diciembre de 2011): 890–92. http://dx.doi.org/10.1021/ja210657t.
Texto completoNgo, Son Tung, Han N. Phan, Chinh N. Le, Nhung C. T. Ngo, Khanh Bao Vu, Nguyen Thanh Tung, Cuong X. Luu y Van V. Vu. "Fine Tuning of the Copper Active Site in Polysaccharide Monooxygenases". Journal of Physical Chemistry B 124, n.º 10 (28 de enero de 2020): 1859–65. http://dx.doi.org/10.1021/acs.jpcb.9b08114.
Texto completoBogush, T. A., F. V. Donenko, S. M. Sitdikova y N. V. Andronova. "Interaction of the copper complex Cu-2 with liver monooxygenases". Bulletin of Experimental Biology and Medicine 104, n.º 4 (octubre de 1987): 1394–96. http://dx.doi.org/10.1007/bf00834954.
Texto completoHamamura, Natsuko, Chris M. Yeager y Daniel J. Arp. "Two Distinct Monooxygenases for Alkane Oxidation inNocardioides sp. Strain CF8". Applied and Environmental Microbiology 67, n.º 11 (1 de noviembre de 2001): 4992–98. http://dx.doi.org/10.1128/aem.67.11.4992-4998.2001.
Texto completoBissaro, Bastien, Bennett Streit, Ingvild Isaksen, Vincent G. H. Eijsink, Gregg T. Beckham, Jennifer L. DuBois y Åsmund K. Røhr. "Molecular mechanism of the chitinolytic peroxygenase reaction". Proceedings of the National Academy of Sciences 117, n.º 3 (6 de enero de 2020): 1504–13. http://dx.doi.org/10.1073/pnas.1904889117.
Texto completoMerkler, David J., Raviraj Kulathila, Wilson A. Francisco, David E. Ash y Joseph Bell. "The irreversible inactivation of two copper-dependent monooxygenases by sulfite: peptidylglycine α-amidating enzyme and dopamine β-monooxygenase". FEBS Letters 366, n.º 2-3 (12 de junio de 1995): 165–69. http://dx.doi.org/10.1016/0014-5793(95)00516-c.
Texto completoCowley, Ryan E., Li Tian y Edward I. Solomon. "Mechanism of O2 activation and substrate hydroxylation in noncoupled binuclear copper monooxygenases". Proceedings of the National Academy of Sciences 113, n.º 43 (10 de octubre de 2016): 12035–40. http://dx.doi.org/10.1073/pnas.1614807113.
Texto completoTandrup, Tobias, Kristian E. H. Frandsen, Katja S. Johansen, Jean-Guy Berrin y Leila Lo Leggio. "Recent insights into lytic polysaccharide monooxygenases (LPMOs)". Biochemical Society Transactions 46, n.º 6 (31 de octubre de 2018): 1431–47. http://dx.doi.org/10.1042/bst20170549.
Texto completoRochman, Fauziah F., Miye Kwon, Roshan Khadka, Ivica Tamas, Azriel Abraham Lopez-Jauregui, Andriy Sheremet, Angela V. Smirnova et al. "Novel copper-containing membrane monooxygenases (CuMMOs) encoded by alkane-utilizing Betaproteobacteria". ISME Journal 14, n.º 3 (3 de diciembre de 2019): 714–26. http://dx.doi.org/10.1038/s41396-019-0561-2.
Texto completoSabbadin, Federico, Saioa Urresti, Bernard Henrissat, Anna O. Avrova, Lydia R. J. Welsh, Peter J. Lindley, Michael Csukai et al. "Secreted pectin monooxygenases drive plant infection by pathogenic oomycetes". Science 373, n.º 6556 (12 de agosto de 2021): 774–79. http://dx.doi.org/10.1126/science.abj1342.
Texto completoLiu, Yucui, Wei Ma y Xu Fang. "The Role of the Residue at Position 2 in the Catalytic Activity of AA9 Lytic Polysaccharide Monooxygenases". International Journal of Molecular Sciences 24, n.º 9 (5 de mayo de 2023): 8300. http://dx.doi.org/10.3390/ijms24098300.
Texto completoPrigge, S. T., R. E. Mains, B. A. Eipper y L. M. Amzel* **. "New insights into copper monooxygenases and peptide amidation: structure, mechanism and function". Cellular and Molecular Life Sciences 57, n.º 8 (agosto de 2000): 1236–59. http://dx.doi.org/10.1007/pl00000763.
Texto completoItoh, Shinobu. "Dioxygen activation by copper complexes supported by 2-(2-pyridyl)ethylamine ligands. Mechanistic insights into copper monooxygenases and copper oxidases". Journal of Inorganic Biochemistry 96, n.º 1 (julio de 2003): 20. http://dx.doi.org/10.1016/s0162-0134(03)80437-3.
Texto completoIpsen, Johan Ø., Magnus Hallas-Møller, Søren Brander, Leila Lo Leggio y Katja S. Johansen. "Lytic polysaccharide monooxygenases and other histidine-brace copper proteins: structure, oxygen activation and biotechnological applications". Biochemical Society Transactions 49, n.º 1 (15 de enero de 2021): 531–40. http://dx.doi.org/10.1042/bst20201031.
Texto completoN. Le, Chinh, Cuong X. Luu, Son Tung Ngo y Van V. Vu. "DFT studies of the copper active site in AA13 polysaccharide monooxygenase". Ministry of Science and Technology, Vietnam 64, n.º 4 (15 de diciembre de 2022): 28–31. http://dx.doi.org/10.31276/vjste.64(4).28-31.
Texto completoCourtade, Gaston, Reinhard Wimmer, Åsmund K. Røhr, Marita Preims, Alfons K. G. Felice, Maria Dimarogona, Gustav Vaaje-Kolstad et al. "Interactions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenase". Proceedings of the National Academy of Sciences 113, n.º 21 (5 de mayo de 2016): 5922–27. http://dx.doi.org/10.1073/pnas.1602566113.
Texto completoBlain, Ingrid, Patrick Slama, Michel Giorgi, Thierry Tron y Marius Réglier. "Copper-containing monooxygenases: enzymatic and biomimetic studies of the O-atom transfer catalysis". Reviews in Molecular Biotechnology 90, n.º 2 (abril de 2002): 95–112. http://dx.doi.org/10.1016/s1389-0352(01)00068-x.
Texto completoFilandr, Frantisek, Daniel Kavan, Daniel Kracher, Christophe V. F. P. Laurent, Roland Ludwig, Petr Man y Petr Halada. "Structural Dynamics of Lytic Polysaccharide Monooxygenase during Catalysis". Biomolecules 10, n.º 2 (5 de febrero de 2020): 242. http://dx.doi.org/10.3390/biom10020242.
Texto completoItoh, Shinobu, Hajime Nakao y Shunichi Fukuzumi. "Mechanistic studies of aliphatic ligand hydroxylation of a copper complex by dioxygen: A model reaction for copper monooxygenases". Journal of Inorganic Biochemistry 67, n.º 1-4 (julio de 1997): 65. http://dx.doi.org/10.1016/s0162-0134(97)89946-1.
Texto completoItoh, Shinobu, Hajime Nakao, Lisa M. Berreau, Toshihiko Kondo, Mitsuo Komatsu y Shunichi Fukuzumi. "Mechanistic Studies of Aliphatic Ligand Hydroxylation of a Copper Complex by Dioxygen: A Model Reaction for Copper Monooxygenases". Journal of the American Chemical Society 120, n.º 12 (abril de 1998): 2890–99. http://dx.doi.org/10.1021/ja972809q.
Texto completoIvanova, Anastasia A., Igor Y. Oshkin, Olga V. Danilova, Dmitriy A. Philippov, Nikolai V. Ravin y Svetlana N. Dedysh. "Rokubacteria in Northern Peatlands: Habitat Preferences and Diversity Patterns". Microorganisms 10, n.º 1 (22 de diciembre de 2021): 11. http://dx.doi.org/10.3390/microorganisms10010011.
Texto completoSchicke, Olivier, Bruno Faure, Yannick Carissan, Michel Giorgi, Ariane Jalila Simaan y Marius Réglier. "Synthesis and Characterization of a Dinuclear Copper Complex Bearing a Hydrophobic Cavity as a Model for Copper-Containing Monooxygenases". European Journal of Inorganic Chemistry 2015, n.º 21 (3 de junio de 2015): 3512–18. http://dx.doi.org/10.1002/ejic.201500280.
Texto completoAyub, Hina, Min-Ju Kang, Adeel Farooq y Man-Young Jung. "Ecological Aerobic Ammonia and Methane Oxidation Involved Key Metal Compounds, Fe and Cu". Life 12, n.º 11 (7 de noviembre de 2022): 1806. http://dx.doi.org/10.3390/life12111806.
Texto completoBranch, Jessie, Badri S. Rajagopal, Alessandro Paradisi, Nick Yates, Peter J. Lindley, Jake Smith, Kristian Hollingsworth et al. "C-type cytochrome-initiated reduction of bacterial lytic polysaccharide monooxygenases". Biochemical Journal 478, n.º 14 (28 de julio de 2021): 2927–44. http://dx.doi.org/10.1042/bcj20210376.
Texto completoSvenning, Mette M., Anne Grethe Hestnes, Ingvild Wartiainen, Lisa Y. Stein, Martin G. Klotz, Marina G. Kalyuzhnaya, Anja Spang et al. "Genome Sequence of the Arctic Methanotroph Methylobacter tundripaludum SV96". Journal of Bacteriology 193, n.º 22 (1 de julio de 2011): 6418–19. http://dx.doi.org/10.1128/jb.05380-11.
Texto completoSamanta, Dipayan, Tanvi Govil, Priya Saxena, Lee Krumholz, Venkataramana Gadhamshetty, Kian Mau Goh y Rajesh K. Sani. "Genetical and Biochemical Basis of Methane Monooxygenases of Methylosinus trichosporium OB3b in Response to Copper". Methane 3, n.º 1 (20 de febrero de 2024): 103–21. http://dx.doi.org/10.3390/methane3010007.
Texto completoFrandsen, Kristian E. H. y Leila Lo Leggio. "Lytic polysaccharide monooxygenases: a crystallographer's view on a new class of biomass-degrading enzymes". IUCrJ 3, n.º 6 (14 de octubre de 2016): 448–67. http://dx.doi.org/10.1107/s2052252516014147.
Texto completoWu, Peng, Fangfang Fan, Jinshuai Song, Wei Peng, Jia Liu, Chunsen Li, Zexing Cao y Binju Wang. "Theory Demonstrated a “Coupled” Mechanism for O2 Activation and Substrate Hydroxylation by Binuclear Copper Monooxygenases". Journal of the American Chemical Society 141, n.º 50 (20 de noviembre de 2019): 19776–89. http://dx.doi.org/10.1021/jacs.9b09172.
Texto completoKim, S., J. Stahlberg, M. Sandgren, R. S. Paton y G. T. Beckham. "Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism". Proceedings of the National Academy of Sciences 111, n.º 1 (16 de diciembre de 2013): 149–54. http://dx.doi.org/10.1073/pnas.1316609111.
Texto completoSchröder, Gabriela C., William B. O'Dell, Paul D. Swartz y Flora Meilleur. "Preliminary results of neutron and X-ray diffraction data collection on a lytic polysaccharide monooxygenase under reduced and acidic conditions". Acta Crystallographica Section F Structural Biology Communications 77, n.º 4 (31 de marzo de 2021): 128–33. http://dx.doi.org/10.1107/s2053230x21002399.
Texto completoCastillo, Ivan, Andrea C. Neira, Ebbe Nordlander y Erica Zeglio. "Bis(benzimidazolyl)amine copper complexes with a synthetic ‘histidine brace’ structural motif relevant to polysaccharide monooxygenases". Inorganica Chimica Acta 422 (octubre de 2014): 152–57. http://dx.doi.org/10.1016/j.ica.2014.06.027.
Texto completoXing, Zhilin, Tiantao Zhao, Lijie Zhang, Yanhui Gao, Shuai Liu y Xu Yang. "Effects of copper on expression of methane monooxygenases, trichloroethylene degradation, and community structure in methanotrophic consortia". Engineering in Life Sciences 18, n.º 4 (22 de febrero de 2018): 236–43. http://dx.doi.org/10.1002/elsc.201700153.
Texto completoNaik, Anil D., Pattubala A. N. Reddy, Munirathinam Nethaji y Akhil R. Chakravarty. "Ternary copper(II) complexes of thiosemicarbazones and heterocyclic bases showing N3OS coordination as models for the type-2 centers of copper monooxygenases". Inorganica Chimica Acta 349 (junio de 2003): 149–58. http://dx.doi.org/10.1016/s0020-1693(03)00091-4.
Texto completo