Artículos de revistas sobre el tema "CONVERSION OF ENERGY"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: CONVERSION OF ENERGY.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "CONVERSION OF ENERGY".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Kishore, Abhishek y Ameen Uddin Ahmad. "Ocean Thermal Energy Conversion". International Journal of Trend in Scientific Research and Development Volume-1, Issue-5 (31 de agosto de 2017): 412–15. http://dx.doi.org/10.31142/ijtsrd2314.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Gates, Bruce C., George W. Huber, Christopher L. Marshall, Phillip N. Ross, Jeffrey Siirola y Yong Wang. "Catalysts for Emerging Energy Applications". MRS Bulletin 33, n.º 4 (abril de 2008): 429–35. http://dx.doi.org/10.1557/mrs2008.85.

Texto completo
Resumen
AbstractCatalysis is the essential technology for chemical transformation, including production of fuels from the fossil resources petroleum, natural gas, and coal. Typical catalysts for these conversions are robust porous solids incorporating metals, metal oxides, and/or metal sulfides. As efforts are stepping up to replace fossil fuels with biomass, new catalysts for the conversion of the components of biomass will be needed. Although the catalysts for biomass conversion might be substantially different from those used in the conversion of fossil feedstocks, the latter catalysts are a starting point in today's research. Major challenges lie ahead in the discovery of efficient biomass conversion catalysts, as well as in the discovery of catalysts for conversion of CO2 and possibly water into liquid fuels.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

YAMABE, Chobei y Kenji HORII. "Direct energy conversion." Journal of the Fuel Society of Japan 68, n.º 11 (1989): 950–60. http://dx.doi.org/10.3775/jie.68.11_950.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Bossel, Ulf. "Alternative Energy Conversion". Ceramics in Modern Technologies 2, n.º 2 (29 de mayo de 2020): 86–91. http://dx.doi.org/10.29272/cmt.2020.0005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Pilon, Laurent y Ian M. McKinley. "PYROELECTRIC ENERGY CONVERSION". Annual Review of Heat Transfer 19, n.º 1 (2016): 279–334. http://dx.doi.org/10.1615/annualrevheattransfer.2016015566.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Batschelet, William H. "Photochemical energy conversion". Journal of Chemical Education 63, n.º 5 (mayo de 1986): 435. http://dx.doi.org/10.1021/ed063p435.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Peter, L. M. "Photochemical energy conversion". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 286, n.º 1-2 (junio de 1990): 292. http://dx.doi.org/10.1016/0022-0728(90)85084-i.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Marignetti, Fabrizio, Haitao Yu y Luigi Cappelli. "Marine Energy Conversion". Advances in Mechanical Engineering 5 (enero de 2013): 457083. http://dx.doi.org/10.1155/2013/457083.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Dragt, J. B. "Wind Energy Conversion". Europhysics News 24, n.º 2 (1993): 27–30. http://dx.doi.org/10.1051/epn/19932402027.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Palacios, Rodrigo E., Stephanie L. Gould, Christian Herrero, Michael Hambourger, Alicia Brune, Gerdenis Kodis, Paul A. Liddell et al. "Bioinspired energy conversion". Pure and Applied Chemistry 77, n.º 6 (1 de enero de 2005): 1001–8. http://dx.doi.org/10.1351/pac200577061001.

Texto completo
Resumen
Artificial photosynthetic antenna systems have been synthesized based on carotenoid polyenes and polymer-polyenes covalently attached to tetrapyrroles. Absorption of light in the blue/green region of the spectra excites the polyenes to their S2 state, and ultrafast singlet energy transfer to the tetrapyrroles occurs when the chromophores are in partial conjugation. The additional participation of other excited states of the polyene in the energy-transfer process is a requirement for perfect antenna function. Analogs of photosynthetic reaction centers consisting of tetrapyrrole chromophores covalently linked to electron acceptors and donors have been prepared. Excitation of these constructs results in a cascade of energy transfer/electron transfer which, in selected cases, forms a final charge-separated state characterized by a giant dipole moment (>150 D), a quantum yield approaching unity, a significant fraction of the photon energy stored as chemical potential, and a lifetime sufficient for reaction with secondary electron donors and acceptors. A new antenna-reaction center complex is described in which a carotenoid moiety is located in partial conjugation with the tetrapyrrole π-system allowing fast energy transfer (<100 fs) between the chromophores. In this assembly, the energy transduction process can be initiated by light absorbed by the polyene.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Herring, A. M. y V. Di Noto. "Electrochemical Energy Conversion". Interface magazine 24, n.º 2 (1 de enero de 2015): 37. http://dx.doi.org/10.1149/2.f01152if.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Crabtree, George W. y Nathan S. Lewis. "Solar energy conversion". Physics Today 60, n.º 3 (marzo de 2007): 37–42. http://dx.doi.org/10.1063/1.2718755.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Kamalov, ValeyF. "Photochemical energy conversion". Journal of Photochemistry and Photobiology B: Biology 5, n.º 2 (abril de 1990): 273–74. http://dx.doi.org/10.1016/1011-1344(90)80014-o.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Lewerenz, Hans-Joachim. "Photoelectrochemical Energy Conversion". ChemPhysChem 13, n.º 12 (23 de marzo de 2012): 2807–8. http://dx.doi.org/10.1002/cphc.201200199.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Leijon, M. y K. Nilsson. "Direct electric energy conversion system for energy conversion from marine currents". Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 221, n.º 2 (marzo de 2007): 201–5. http://dx.doi.org/10.1243/09576509jpe303.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Mori, I. y K. Sumitomo. "Direct energy conversion of plasma energy". IEEE Transactions on Plasma Science 16, n.º 6 (1988): 623–30. http://dx.doi.org/10.1109/27.16550.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Mishima, Tomokazu. "Report on the 7th IEEE Energy Conversion Congress and Exposition (ECCE2015)". Journal of the Japan Institute of Power Electronics 41 (2015): 181. http://dx.doi.org/10.5416/jipe.41.181.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Ohta, Tokio. "Thermoelectric Energy Conversion Technology". IEEJ Transactions on Fundamentals and Materials 116, n.º 3 (1996): 196–201. http://dx.doi.org/10.1541/ieejfms1990.116.3_196.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Matsubara, Kakuei. "Thermoelectric Energy Conversion Technology". IEEJ Transactions on Fundamentals and Materials 116, n.º 3 (1996): 202–6. http://dx.doi.org/10.1541/ieejfms1990.116.3_202.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Kajikawa, Takenobu. "Thremoelectric Energy Conversion Technology". IEEJ Transactions on Fundamentals and Materials 116, n.º 3 (1996): 207–11. http://dx.doi.org/10.1541/ieejfms1990.116.3_207.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Bybee, Karen. "Ocean-Thermal-Energy Conversion". Journal of Petroleum Technology 61, n.º 07 (1 de julio de 2009): 65–66. http://dx.doi.org/10.2118/0709-0065-jpt.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Sobczyk, Wiktoria, Oksana Nagorniuk, Olga Riabushenko y Jakub Wlizło. "Solar Energy Conversion Methods". Edukacja – Technika – Informatyka 23, n.º 1 (2018): 73–76. http://dx.doi.org/10.15584/eti.2018.1.8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Abed, Youssif y Mohamed Mohamed Tantawy. "Solar Energy Conversion.(Dept.E)". MEJ. Mansoura Engineering Journal 4, n.º 2 (16 de diciembre de 2021): 71–91. http://dx.doi.org/10.21608/bfemu.2021.187375.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Ohnaka, Itsuo y Kaoru Kimura. "Thermoelectric Energy Conversion Materials". Journal of the Japan Institute of Metals 63, n.º 11 (1999): 1367. http://dx.doi.org/10.2320/jinstmet1952.63.11_1367.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Tinaikar, Aashay. "Ocean Thermal Energy Conversion". International Journal of Energy and Power Engineering 2, n.º 4 (2013): 143. http://dx.doi.org/10.11648/j.ijepe.20130204.11.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Avery, William H. "Ocean Thermal Energy Conversion". Maritime Studies 1985, n.º 23 (mayo de 1985): 8–10. http://dx.doi.org/10.1080/08102597.1985.11800569.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Moore, Glenis. "Ocean thermal energy conversion". Electronics and Power 33, n.º 10 (1987): 649. http://dx.doi.org/10.1049/ep.1987.0386.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Yokota, Toshikazu. "Unidentified Energy Conversion Technology". Journal of the Society of Mechanical Engineers 95, n.º 886 (1992): 821–24. http://dx.doi.org/10.1299/jsmemag.95.886_821.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Lewis, Nathan S. "Introduction: Solar Energy Conversion". Chemical Reviews 115, n.º 23 (9 de diciembre de 2015): 12631–32. http://dx.doi.org/10.1021/acs.chemrev.5b00654.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Kamat, Prashant V. y Gregory V. Hartland. "Plasmons for Energy Conversion". ACS Energy Letters 3, n.º 6 (31 de mayo de 2018): 1467–69. http://dx.doi.org/10.1021/acsenergylett.8b00721.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Rasor, N. S. "Thermionic energy conversion plasmas". IEEE Transactions on Plasma Science 19, n.º 6 (1991): 1191–208. http://dx.doi.org/10.1109/27.125041.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

WALZ, D. "Biothermokinetics of energy conversion". Biochimica et Biophysica Acta (BBA) - Bioenergetics 1101, n.º 2 (17 de julio de 1992): 257–59. http://dx.doi.org/10.1016/s0005-2728(05)80034-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Wang, Xuxu, Dengwei Jing y Meng Ni. "Solar photocatalytic energy conversion". Science Bulletin 62, n.º 9 (mayo de 2017): 597–98. http://dx.doi.org/10.1016/j.scib.2017.04.021.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Buller, Saskia y Jennifer Strunk. "Nanostructure in energy conversion". Journal of Energy Chemistry 25, n.º 2 (marzo de 2016): 171–90. http://dx.doi.org/10.1016/j.jechem.2016.01.025.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Djilali, Ned. "Materials for energy conversion". Science Bulletin 61, n.º 8 (abril de 2016): 585–86. http://dx.doi.org/10.1007/s11434-016-1047-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Fiechter, Sebastian y Nitin Chopra. "Energy conversion and storage". Nanomaterials and Energy 1, n.º 2 (marzo de 2012): 63–64. http://dx.doi.org/10.1680/nme.12.00005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Ramasamy, R. P. "Bioelectrochemical Energy Conversion Technologies". Interface magazine 24, n.º 3 (1 de enero de 2015): 53. http://dx.doi.org/10.1149/2.f03153if.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Chiu, Ching‐Sang. "Downslope modal energy conversion". Journal of the Acoustical Society of America 95, n.º 3 (marzo de 1994): 1654–57. http://dx.doi.org/10.1121/1.408552.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Dürre, Peter y Thomas Richard. "Microbial Energy Conversion revisited". Current Opinion in Biotechnology 22, n.º 3 (junio de 2011): 309–11. http://dx.doi.org/10.1016/j.copbio.2011.04.021.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Takahashi, P. y A. Trenka. "Ocean thermal energy conversion". Fuel and Energy Abstracts 37, n.º 3 (mayo de 1996): 201. http://dx.doi.org/10.1016/0140-6701(96)88809-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Barragán, V. María. "Membranes for Energy Conversion". Membranes 13, n.º 8 (17 de agosto de 2023): 735. http://dx.doi.org/10.3390/membranes13080735.

Texto completo
Resumen
In the modern world, the level of global energy consumption continues to increase, with current methods of energy generation still greatly dependent on fossil fuels, which will become less accessible in the not-so-distant future [...]
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Dunbar, W. R., N. Lior y R. A. Gaggioli. "The Component Equations of Energy and Exergy". Journal of Energy Resources Technology 114, n.º 1 (1 de marzo de 1992): 75–83. http://dx.doi.org/10.1115/1.2905924.

Texto completo
Resumen
Energy conversion processes inherently have associated irreversibility. A better understanding of energy conversion will motivate intuition to create new energy-conversion and energy-utilization technology. In the present article, such understanding is further enhanced by decomposing the equations of energy and exergy (availability, available energy, useful energy) to reveal the reversible and irreversible parts of energy transformations. New definitions of thermal, strain, chemical, mechanical and thermochemical forms of energy/exergy are justified and expressions for these properties and their changes are rigorously developed. In the resulting equations, terms appear which explicitly reveal the interconversions between the different forms of energy/exergy, including the breakdown into reversible and irreversible conversions. The equations are valid for chemically reacting or non-reacting inelastic fluids, with or without diffusion.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Liu, Fu-Hu, Ya-Hui Chen, Ya-Qin Gao y Er-Qin Wang. "On Current Conversion between Particle Rapidity and Pseudorapidity Distributions in High Energy Collisions". Advances in High Energy Physics 2013 (2013): 1–4. http://dx.doi.org/10.1155/2013/710534.

Texto completo
Resumen
In high energy collisions, one usually needs to give a conversion between the particle rapidity and pseudorapidity distributions. Currently, two equivalent conversion formulas are used in experimental and theoretical analyses. An investigation in the present work shows that the two conversions are incomplete. Then, we give a revision on the current conversion between the particle rapidity and pseudorapidity distributions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Viveiros, Carla, Rui Melicio, Victor Mendes y Jose Igreja. "Adaptive and predictive controllers applied to onshore wind energy conversion system". AIMS Energy 6, n.º 4 (2018): 615–31. http://dx.doi.org/10.3934/energy.2018.4.615.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Nakagawa, T. "Conversion of vortex energy into acoustic energy". Naturwissenschaften 74, n.º 7 (julio de 1987): 338–39. http://dx.doi.org/10.1007/bf00367929.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Hellebrand, H. J., V. Scholz y J. Kern. "Nitrogen conversion and nitrous oxide hot spots in energy crop cultivation". Research in Agricultural Engineering 54, No. 2 (24 de junio de 2008): 58–67. http://dx.doi.org/10.17221/1001-rae.

Texto completo
Resumen
Since 1999, nitrous oxide (N<sub>2</sub>O) soil emissions from sites cultivated with energy plants have been measured by gas chromatography and gas flux chambers in experimental fields. The main aim of this study was the nitrogen conversion factor and its variability for sandy soils under climatic conditions of Central Europe. Annual plants (hemp, rape, rye, sorghum, triticale) and perennial plants (grass, perennial rye, poplar, willow) were fertilised with three different levels of nitrogen (150 kg N/ha/year, 75 kg N/ha/year, and none). The annual nitrogen conversion factors were derived from the annual mean differences between the fertilised sites and non-fertilised control sites. The mean nitrogen conversion factor for the non-cultivated soils was lower (perennial crops: 0.4%) than that for the regularly cultivated soils (annual crops: 0.9%). Few times, enhanced N<sub>2</sub>O emission spots with maxima above 1000 &mu;<sub>2</sub>O/m<sup>2</sup>/h, lasting for several weeks, were observed in the course of measurements. The influence of these local peak emissions on the nitrogen conversion factor is discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Kim, Jaehyung, Hyemin Koo, Wonseok Chang y Daewon Pak. "Biological conversion of CO2to CH4in anaerobic fixed bed reactor under continuous operation". Journal of Energy Engineering 22, n.º 4 (31 de diciembre de 2013): 347–54. http://dx.doi.org/10.5855/energy.2013.22.4.347.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Bagherian, Anthony, Mark Gershon y Sunil Kumar. "Unveiling the nexus of digital conversion and clean energy: An ISM-MICMAC and DEMATEL perspective". AIMS Energy 11, n.º 5 (2023): 810–45. http://dx.doi.org/10.3934/energy.2023040.

Texto completo
Resumen
<abstract> <p>Our aim is to develop a hierarchical framework that assesses the interdependence of digital metrics impacting clean energy in the European energy market. The framework is evaluated to determine its applicability to clean energy and implementation. We utilize a taxonomy of digital metrics with the MICMAC ("Matrice d'Impacts Croisés-Multiplication Appliquée à un Classement") methodology and a questionnaire-based survey using DEMATEL to validate the framework. This results in an efficient hierarchy and contextual relationship between key metrics in the European energy industry. We investigate and simulate ten key metrics of digital conversion for clean energy in the energy domain, identifying the most significant effects, including the "decision-making process" the "sustainable value chain" the "sustainable supply chain", "sustainable product life cycle", and the "interconnection of diverse equipment". The MICMAC methodology is used to classify these parameters for a better understanding of their structure, and DEMATEL is employed to examine cause-and-effect relationships and linkages. The practical implications of this framework can assist institutions, experts, and academics in forecasting essential metrics and can complement existing studies on digital conversion and clean energy. By prioritizing these key parameters, improvements in convenience, efficiency, and the reduction of product fossilization can be achieved. The value and originality of this study lie in the novel advancements in analyzing digital conversion metrics in the European energy industry using a cohesive ISM, MICMAC, and DEMATEL framework.</p> </abstract>
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Maria Alexandre Linard, Fabíola, Cícero Marcos Tavares Cruz, Demercil de Souza Oliveira Júnior, René Pastor Torrico Bascopé y Gustavo Alves de Lima Henn. "Double Conversion Uninterrupted Energy System With Rectifier And The Inverter Integration". Eletrônica de Potência 15, n.º 2 (1 de mayo de 2010): 59–66. http://dx.doi.org/10.18618/rep.2010.2.059066.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Olabisi, O., P. C. Amalu, A. Eyitayo, Adegboyega Adegboyega, H. O. Oyeshola y C. O. Ogunkoya. "Overview of Energy Generation and Conversion Schemes in Sub-Saharan Settlement". International Journal of Research Publication and Reviews 4, n.º 7 (julio de 2023): 1400–1407. http://dx.doi.org/10.55248/gengpi.4.723.48276.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía