Literatura académica sobre el tema "CONVERSION OF ENERGY"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "CONVERSION OF ENERGY".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "CONVERSION OF ENERGY"
Kishore, Abhishek y Ameen Uddin Ahmad. "Ocean Thermal Energy Conversion". International Journal of Trend in Scientific Research and Development Volume-1, Issue-5 (31 de agosto de 2017): 412–15. http://dx.doi.org/10.31142/ijtsrd2314.
Texto completoGates, Bruce C., George W. Huber, Christopher L. Marshall, Phillip N. Ross, Jeffrey Siirola y Yong Wang. "Catalysts for Emerging Energy Applications". MRS Bulletin 33, n.º 4 (abril de 2008): 429–35. http://dx.doi.org/10.1557/mrs2008.85.
Texto completoYAMABE, Chobei y Kenji HORII. "Direct energy conversion." Journal of the Fuel Society of Japan 68, n.º 11 (1989): 950–60. http://dx.doi.org/10.3775/jie.68.11_950.
Texto completoBossel, Ulf. "Alternative Energy Conversion". Ceramics in Modern Technologies 2, n.º 2 (29 de mayo de 2020): 86–91. http://dx.doi.org/10.29272/cmt.2020.0005.
Texto completoPilon, Laurent y Ian M. McKinley. "PYROELECTRIC ENERGY CONVERSION". Annual Review of Heat Transfer 19, n.º 1 (2016): 279–334. http://dx.doi.org/10.1615/annualrevheattransfer.2016015566.
Texto completoBatschelet, William H. "Photochemical energy conversion". Journal of Chemical Education 63, n.º 5 (mayo de 1986): 435. http://dx.doi.org/10.1021/ed063p435.
Texto completoPeter, L. M. "Photochemical energy conversion". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 286, n.º 1-2 (junio de 1990): 292. http://dx.doi.org/10.1016/0022-0728(90)85084-i.
Texto completoMarignetti, Fabrizio, Haitao Yu y Luigi Cappelli. "Marine Energy Conversion". Advances in Mechanical Engineering 5 (enero de 2013): 457083. http://dx.doi.org/10.1155/2013/457083.
Texto completoDragt, J. B. "Wind Energy Conversion". Europhysics News 24, n.º 2 (1993): 27–30. http://dx.doi.org/10.1051/epn/19932402027.
Texto completoPalacios, Rodrigo E., Stephanie L. Gould, Christian Herrero, Michael Hambourger, Alicia Brune, Gerdenis Kodis, Paul A. Liddell et al. "Bioinspired energy conversion". Pure and Applied Chemistry 77, n.º 6 (1 de enero de 2005): 1001–8. http://dx.doi.org/10.1351/pac200577061001.
Texto completoTesis sobre el tema "CONVERSION OF ENERGY"
Lundin, Staffan. "Marine Current Energy Conversion". Doctoral thesis, Uppsala universitet, Elektricitetslära, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-280763.
Texto completoSilva, Ubiravan Geraldo de Oliveira e. [UNESP]. "Análise energética em refino de petróleo". Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/99282.
Texto completoConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
No trabalho apresentado foi realizada uma análise de eficiência energética levando em conta variáveis tais como a pressão, a temperatura, o estado físico dos componentes e a atividade de cada elemento que compõe a unidade de craqueamento em refino de petróleo. Tal análise foi realizada baseando-se na Primeira e Segunda leis da Termodinâmica. Destacou-se na análise do FCC a geração e a perda de energia com os gases, levando em conta a concentração molar de cada gás na entrada e na saída do FCC. No riser foram levadas em conta as transformações ocorridas e sua cinética com o propósito de fazer uma análise de gasto de energia no processo de formação inicial dos produtos do FCC; com isso, determinaram-se as quantidades de calor que foram utilizados no processo principal de formação. Foram realizadas análises sobre os fluxos de massas no vaso separador com a abordagem de um suposto fluxo interno, que seria a diferença entre as energias adquiridas com o vapor de retificação com os fluxos de carbono arrastados e com energia vinda do riser, e o fluxo de saída também para o processo de retificação no stripper. Verificou-se a energia gerada pelo regenerador e sua distribuição, que é feita com o aquecimento do catalisador na linha de transmissão do stripper e das perdas de energia com a troca do catalisador gasto e pela massa de catalisador que entra no riser. A energia perdida durante o processo foi associada à energia perdida na integralidade e em cada unidade. Verificou-se que uma parcela do calor gerado no processo é absorvida por gases inertes necessários ou integrados a gases reagentes; além disso, observou-se a formação de novos gases e compostos químicos que geram certas quantidades de energia, e que estão e são importantes na contabilização de toda energia que é gerada. Em tal análise levou-se em conta a energia de formação dos gases e a...
In the present study it was performed an analysis of energy efficiency taking into account variables such as pressure, temperature, physical state of the components and activities of each element that makes up a cracker in petroleum refining. The First and Second Law of Thermodynamics were used for the present analysis. It was highlighted in the analysis of the FCC the generation and loss of energy with the gases, taking into account the molar concentration of each gas at the inlet and outlet of the FCC. In the riser it was taken into account the transformations and their kinetics in order to make an analysis of energy use in the process of initial formation of the products of the FCC; with these results, it was determined the amounts of heat that were used in the main proceedings training. It was analyzed the flow of masses in the separator vessel with the approach of a supposed internal flow, which would be the difference between the energy gained steam with the rectification of carbon fluxes and dragged with energy coming from the riser, and the outflow also for the grinding process in stripper. There was the energy generated by the regenerator and its distribution, which is made by heating the catalyst in the transmission line striper and loss of energy with the exchange of spent catalyst and the mass of catalyst entering the riser. The energy lost during the process was associated with the energy that disappeared in the whole and in each unit. It was found that a portion of the heat generated is absorbed by inert gases necessary or integrated reactive gases; in addition, it was observed the formation of new gases and chemicals that generate amounts of energy, and are important in accounting for all energy that is generated. In this analysis it was taken into account the energy of formation of exhaust gases and the opportunities of products formation in the conditions ... (Complete abstract click electronic access below)
Thorburn, Karin. "Electric Energy Conversion Systems : Wave Energy and Hydropower". Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7081.
Texto completoBalouchi, Farouk. "Footfall energy harvesting : footfall energy harvesting conversion mechanisms". Thesis, University of Hull, 2013. http://hydra.hull.ac.uk/resources/hull:8433.
Texto completoZhao, Yixin. "Developing Nanomaterials for Energy Conversion". Cleveland, Ohio : Case Western Reserve University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1270172686.
Texto completoLaestander, Joakim y Simon Laestander. "OTEC - Ocean Thermal Energy Conversion". Thesis, KTH, Energiteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-98974.
Texto completoOTEC är en teknik där kraft utvinns från havsvatten genom att utnyttja temperaturdifferensen mellan ytvatten och vatten från djupet. Denna teknik kräver dock generellt en temperaturdifferens på minst 20K. En sådan temperaturskillnad är geografiskt begränsad till den tropiska zonen runt ekvatorn.I rapporten undersöks om OTEC kan användas till att förse 100 000 människor, boende på en 10 stor generisk ö i just den tropiska zonen, med dess elbehov. I detta projekt har det gjorts en litteraturstudie för att etablera en kunskapsbas och sedan gjorts en matematisk modell i programmet EES och slutligen har resultaten från modellen granskats och diskuterats. I modellen jämfördes två olika cykler och målet var att bestämma vilken av dessa som var det bästa alternativet för ön. För att underlätta beräkningarna gjordes vissa antaganden och förenklingar.Den slutna cykeln var mest effektiv men den öppna cykeln (OC) hade positiva synergieffekter som den sluta cykeln (CC) saknade. Kostnaden för en anläggning baserades på äldre studier och enligt dessa var den öppna cykeln billigare än den slutna. Anläggningar av de båda cyklerna kan tillgodose den fiktiva öns energibehov, det behöver dock byggas fler anläggningar om OC väljs framför CC.Det kommer krävas ytterligare arbete med att utveckla tekniken innan OTEC på allvar kan utmana dagens fossilbränslebaserade energisystem – eller att oljan helt enkelt blir för dyr. Idag är OTEC för dyrt för att kunna motiveras rent ekonomiskt, men om även miljövinsterna beaktas, samt att ön befriar sig från importer och därigenom får större kontroll över sitt eget energisystem, finns goda incitament att investera i OTEC redan idag.
Chin, Timothy Edward. "Electrochemical to mechanical energy conversion". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/63015.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references.
Electrode materials for rechargeable lithium ion batteries are well-known to undergo significant dimensional changes during lithium-ion insertion and extraction. In the battery community, this has often been looked upon negatively as a degradation mechanism. However, the crystallographic strains are large enough to warrant investigation for use as actuators. Lithium battery electrode materials lend themselves to two separate types of actuators. On one hand, intercalation oxides and graphite provide moderate strains, on the order of a few percent, with moderate bandwidth (frequency). Lithium intercalation of graphite can achieve actuation energy densities of 6700 kJ m-3 with strains up to 6.7%. Intercalation oxides provide strains on the order of a couple percent, but allow for increased bandwidth. Using a conventional stacked electrode design, a cell consisting of lithium iron phosphate (LiFePO4) and carbon achieved 1.2% strain with a mechanical power output of 1000 W m 3 . Metals, on the other hand, provide colossal strains (hundreds of percent) upon lithium alloying, but do not cycle well. Instead, a self-amplifying device was designed to provide continuous, prolonged, one-way actuation over longer time scales. This was still able to achieve an energy density of 1700 kJ n 3, significantly greater than other actuation technologies such as shape-memory alloys and conducting polymers, with displacements approaching 10 mm from a 1 mm thick disc. Further, by using lithium metal as the counterelectrode in an electrochemical couple, these actuation devices can be selfpowered: mechanical energy and electrical energy can be extracted simultaneously.
by Timothy Edward Chin.
Ph.D.
Clark, Joanna Helen. "Inorganic materials for energy conversion". Thesis, University of Liverpool, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.569768.
Texto completoQiu, Xiaofeng. "NANOSTRUCTURED MATERIALS FOR ENERGY CONVERSION". Case Western Reserve University School of Graduate Studies / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=case1207243913.
Texto completoRiboni, F. "PHOTOCATALYTIC REACTIONS FOR ENERGY CONVERSION". Doctoral thesis, Università degli Studi di Milano, 2014. http://hdl.handle.net/2434/244319.
Texto completoLibros sobre el tema "CONVERSION OF ENERGY"
Goswami, D. Yogi y Frank Kreith, eds. Energy Conversion. Second edition. | Boca Raton : CRC Press, 2017. | Series:: CRC Press, 2017. http://dx.doi.org/10.1201/9781315374192.
Texto completoKocabiyikoğlu, Zeki Uğurata. Electromechanical Energy Conversion. First edition. | Boca Raton, FL : CRC Press, 2020. |: CRC Press, 2020. http://dx.doi.org/10.1201/9780429317637.
Texto completoPiotrowiak, Piotr, ed. Solar Energy Conversion. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849735445.
Texto completoPleskov, Yuri V. Solar Energy Conversion. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74958-2.
Texto completoLikhtenshtein, Gertz. Solar Energy Conversion. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527647668.
Texto completoKitanovski, Andrej, Jaka Tušek, Urban Tomc, Uroš Plaznik, Marko Ožbolt y Alojz Poredoš. Magnetocaloric Energy Conversion. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-08741-2.
Texto completoRosa, Richard J. Magnetohydrodynamic energy conversion. Washington: Hemisphere Pub. Corp., 1987.
Buscar texto completoSoni, Amit, Dharmendra Tripathi, Jagrati Sahariya y Kamal Nayan Sharma. Energy Conversion and Green Energy Storage. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003258209.
Texto completoBauer, Gottfried H. Photovoltaic Solar Energy Conversion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46684-1.
Texto completoCapítulos de libros sobre el tema "CONVERSION OF ENERGY"
Wolff, Lodwijk Reiner y Valerylvanovit Yarigin. "Thermionic Energy Conversion, Space Technology for Energy Conservation". En Conversion, 199–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-95701-7_32.
Texto completoDemirel, Yaşar. "Energy Conversion". En Energy, 229–303. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2372-9_7.
Texto completoDemirel, Yaşar. "Energy Conversion". En Energy, 241–319. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29650-0_7.
Texto completoDemirel, Yaşar. "Energy Conversion". En Energy, 233–311. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-56164-2_7.
Texto completoSankaranarayanan, Krishnan. "Energy Conversion". En Efficiency and Sustainability in the Energy and Chemical Industries, 103–32. 3a ed. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003304388-12.
Texto completoKurchania, A. K. "Biomass Energy". En Biomass Conversion, 91–122. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28418-2_2.
Texto completoRenner, Joel L. y Marshall J. Reed. "Geothermal Energy". En Energy Conversion, 177–87. Second edition. | Boca Raton : CRC Press, 2017. | Series:: CRC Press, 2017. http://dx.doi.org/10.1201/9781315374192-8.
Texto completoGoswami, D. Yogi y Frank Kreith. "Global Energy Systems". En Energy Conversion, 1–30. Second edition. | Boca Raton : CRC Press, 2017. | Series:: CRC Press, 2017. http://dx.doi.org/10.1201/9781315374192-1.
Texto completoBunce, Richard H. "Gas Turbines". En Energy Conversion, 209–22. Second edition. | Boca Raton : CRC Press, 2017. | Series:: CRC Press, 2017. http://dx.doi.org/10.1201/9781315374192-10.
Texto completoKlett, David E., Elsayed M. Afify, Kalyan K. Srinivasan y Timothy J. Jacobs. "Internal Combustion Engines". En Energy Conversion, 223–55. Second edition. | Boca Raton : CRC Press, 2017. | Series:: CRC Press, 2017. http://dx.doi.org/10.1201/9781315374192-11.
Texto completoActas de conferencias sobre el tema "CONVERSION OF ENERGY"
Eijkel, Jan C. T., Albert van den Berg y Yanbo Xie. "Ballistic energy conversion". En 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, 2017. http://dx.doi.org/10.1109/transducers.2017.7994000.
Texto completoCrabtree, George W., Nathan S. Lewis, David Hafemeister, B. Levi, M. Levine y P. Schwartz. "Solar Energy Conversion". En PHYSICS OF SUSTAINABLE ENERGY: Using Energy Efficiently and Producing It Renewably. AIP, 2008. http://dx.doi.org/10.1063/1.2993729.
Texto completo"Conversion of solar energy, geothermal energy". En CONV-09. Proceedings of International Symposium on Convective Heat and Mass Transfer in Sustainable Energy. Connecticut: Begellhouse, 2009. http://dx.doi.org/10.1615/ichmt.2009.conv.790.
Texto completoHirshfield, J. L., M. A. LaPointe y A. K. Ganguly. "Gyroharmonic conversion experiments". En High energy density microwaves. AIP, 1999. http://dx.doi.org/10.1063/1.59008.
Texto completoWoolf, L. D. "Solar Photothermophotovoltaic Energy Conversion". En 22nd Intersociety Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-9060.
Texto completoRegan, Thomas M., Jose G. Martin, Juanita R. Riccobono y Jacques E. Ludman. "Multisource thermophotovoltaic energy conversion". En SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation, editado por Tomasz Jannson. SPIE, 1995. http://dx.doi.org/10.1117/12.221246.
Texto completoBeresnevich, Vitalijs, Shravan Koundinya Vutukuru, Martins Irbe, Edgars Kovals, Maris Eiduks, Kaspars Burbeckis y Janis Viba. "Wind energy conversion generator". En 20th International Scientific Conference Engineering for Rural Development. Latvia University of Life Sciences and Technologies, Faculty of Engineering, 2021. http://dx.doi.org/10.22616/erdev.2021.20.tf213.
Texto completo"Electro-mechanical energy conversion". En 2016 10th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG). IEEE, 2016. http://dx.doi.org/10.1109/cpe.2016.7544195.
Texto completo"Electro-mechanical energy conversion". En 2015 9th International Conference on Compatibility and Power Electronics (CPE). IEEE, 2015. http://dx.doi.org/10.1109/cpe.2015.7231076.
Texto completo"Photovoltaic energy conversion systems". En IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2013. http://dx.doi.org/10.1109/iecon.2013.6700285.
Texto completoInformes sobre el tema "CONVERSION OF ENERGY"
Atanassov, Plamen. Materials for Energy Conversion: Materials for Energy Conversion and Storage. Office of Scientific and Technical Information (OSTI), marzo de 2017. http://dx.doi.org/10.2172/1349091.
Texto completoHennessy, Daniel, Rodica Sibisan y Mike Rasmussen. Solid State Energy Conversion Energy Alliance (SECA). Office of Scientific and Technical Information (OSTI), septiembre de 2011. http://dx.doi.org/10.2172/1084473.
Texto completoHennessy, Daniel, Rodica Sibisan y Mike Rasmussen. Solid State Energy Conversion Energy Alliance (SECA). Office of Scientific and Technical Information (OSTI), septiembre de 2011. http://dx.doi.org/10.2172/1084477.
Texto completoFayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), enero de 1987. http://dx.doi.org/10.2172/6369309.
Texto completoFayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), enero de 1988. http://dx.doi.org/10.2172/6020364.
Texto completoFayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), noviembre de 1989. http://dx.doi.org/10.2172/6020379.
Texto completoFayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), noviembre de 1986. http://dx.doi.org/10.2172/6022834.
Texto completoFayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), enero de 1992. http://dx.doi.org/10.2172/5118367.
Texto completoCairns, E. J. Energy Conversion and Storage Program. Office of Scientific and Technical Information (OSTI), marzo de 1992. http://dx.doi.org/10.2172/7148265.
Texto completoHutchinson, R. A. Turbulence and energy conversion research. Office of Scientific and Technical Information (OSTI), julio de 1985. http://dx.doi.org/10.2172/6345659.
Texto completo