Siga este enlace para ver otros tipos de publicaciones sobre el tema: Convergence of Riemannian manifolds.

Libros sobre el tema "Convergence of Riemannian manifolds"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores mejores libros para su investigación sobre el tema "Convergence of Riemannian manifolds".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore libros sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Lee, John M. Riemannian Manifolds. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/b98852.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Lee, John M. Introduction to Riemannian Manifolds. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91755-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Tondeur, Philippe. Foliations on Riemannian Manifolds. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4613-8780-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Lang, Serge, ed. Differential and Riemannian Manifolds. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-4182-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Lang, Serge. Differential and Riemannian manifolds. New York: Springer-Verlag, 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Tondeur, Philippe. Foliations on Riemannian manifolds. New York: Springer-Verlag, 1988.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Riemannian foliations. Boston: Birkhäuser, 1988.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Hebey, Emmanuel. Sobolev Spaces on Riemannian Manifolds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0092907.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Berestovskii, Valerii y Yurii Nikonorov. Riemannian Manifolds and Homogeneous Geodesics. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56658-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

C, Wood John, ed. Harmonic morphisms between Riemannian manifolds. Oxford: Clarendon Press, 2003.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Hebey, Emmanuel. Sobolev spaces on Riemannian manifolds. Berlin: Springer-Verlag, 1996.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Min, Ji. Minimal surfaces in Riemannian manifolds. Providence, R.I: American Mathematical Society, 1993.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Riemannian geometry of contact and symplectic manifolds. 2a ed. New York, NY: Birkhäuser, 2010.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

N, Kupeli Demir y Vázquez-Lorenzo Ramón, eds. Osserman manifolds in semi-Riemannian geometry. Berlin: Springer, 2002.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Foliations on Riemannian manifolds and submanifolds. Boston: Birkhauser, 1998.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Fong, Robert Simon y Peter Tino. Population-Based Optimization on Riemannian Manifolds. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04293-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Duggal, Krishan L. y Ramesh Sharma. Symmetries of Spacetimes and Riemannian Manifolds. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5315-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Shiohama, Katsuhiro, Takashi Sakai y Toshikazu Sunada, eds. Curvature and Topology of Riemannian Manifolds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0075643.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Güneysu, Batu. Covariant Schrödinger Semigroups on Riemannian Manifolds. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68903-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Rovenskii, Vladimir Y. Foliations on Riemannian Manifolds and Submanifolds. Boston, MA: Birkhäuser Boston, 1995. http://dx.doi.org/10.1007/978-1-4612-4270-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

García-Río, Eduardo, Demir N. Kupeli y Ramón Vázquez-Lorenzo. Osserman Manifolds in Semi-Riemannian Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/b83213.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Riemannian manifolds: An introduction to curvature. New York: Springer, 1997.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Duggal, Krishan L. Symmetries of spacetimes and Riemannian manifolds. Dordrecht: Kluwer Academic Publishers, 1999.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Minimal submanifolds in pseudo-Riemannian geometry. New Jersey: World Scientific, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Krzysztof, Galicki, Simanca S. R y Boyer Charles P, eds. Riemannian topology and geometric structures on manifolds. Boston [Mass.]: Birkhäuser, 2009.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Gestur, Ólafsson y Schlichtkrull Henrik 1954-, eds. The selected works of Sigurdur Helgason. Providence, R.I: American Mathematical Society, 2009.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Leonidovich, Verner Alekseĭ y Leningradskiĭ gosudarstvennyĭ pedagogicheskiĭ institut imeni A.I. Gert͡s︡ena., eds. Issledovanii͡a︡ po teorii rimanovykh mnogoobraziĭ i ikh pogruzheniĭ: Mezhvuzovskiĭ sbornik nauchnykh trudov. Leningrad: Leningradskiĭ gos. pedagog. in-t im. A.I. Gert͡s︡ena, 1985.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Galicki, Krzysztof y Santiago R. Simanca, eds. Riemannian Topology and Geometric Structures on Manifolds. Boston, MA: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4743-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Blair, David E. Riemannian Geometry of Contact and Symplectic Manifolds. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4959-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Blair, David E. Riemannian Geometry of Contact and Symplectic Manifolds. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4757-3604-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

1954-, Baum Helga, ed. Twistors and killing spinors on Riemannian manifolds. Stuttgart: Teubner, 1991.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Riemannian geometry: A beginner's guide. Boston: Jones and Bartlett Publishers, 1993.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

G, Ebin D. y American Mathematical Society, eds. Comparison theorems in riemannian geometry. Providence, R.I: American Mathematical Society, 2008.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Riemannian geometry: A beginner's guide. Wellesley, MA: A.K. Peters, 1998.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Conference Board of the Mathematical Sciences., ed. Prescribing the curvature of a Riemannian manifold. Providence, R.I: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 1985.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Kazdan, Jerry L. Prescribing the curvature of a Riemannian manifold. Providence, R.I: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 1985.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Boyer, Charles P. Sasakian geometry. New York: Oxford University Press, 2007.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Barilari, Davide, Ugo Boscain y Mario Sigalotti, eds. Geometry, Analysis and Dynamics on sub-Riemannian Manifolds. Zuerich, Switzerland: European Mathematical Society Publishing House, 2016. http://dx.doi.org/10.4171/162.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Barilari, Davide, Ugo Boscain y Mario Sigalotti, eds. Geometry, Analysis and Dynamics on sub-Riemannian Manifolds. Zuerich, Switzerland: European Mathematical Society Publishing House, 2016. http://dx.doi.org/10.4171/163.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Udrişte, Constantin. Convex Functions and Optimization Methods on Riemannian Manifolds. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8390-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Duggal, Krishan L. y Aurel Bejancu. Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-017-2089-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Deruelle, Nathalie y Jean-Philippe Uzan. Riemannian manifolds. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0042.

Texto completo
Resumen
This chapter introduces the Riemann tensor characterizing curved spacetimes, and then the metric tensor, which allows lengths and durations to be defined. As shown in the preceding chapter, ‘absolute, true, and mathematical’ spacetimes representing ‘relative, apparent, and common’ space and time in Einstein’s theory are Riemannian manifolds supplied with a metric and its associated Levi-Civita connection. Moreover, this metric simultaneously describes the coordinate system chosen to reference the events. The chapter begins with a study of connections, parallel transport, and curvature; the commutation of derivatives, torsion, and curvature; geodesic deviation and curvature; the metric tensor and the Levi-Civita connection; and locally inertial frames. Finally, it discusses Riemannian manifolds.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Deruelle, Nathalie y Jean-Philippe Uzan. Riemannian manifolds. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0064.

Texto completo
Resumen
This chapter is about Riemannian manifolds. It first discusses the metric manifold and the Levi-Civita connection, determining if the metric is Riemannian or Lorentzian. Next, the chapter turns to the properties of the curvature tensor. It states without proof the intrinsic versions of the properties of the Riemann–Christoffel tensor of a covariant derivative already given in Chapter 2. This chapter then performs the same derivation as in Chapter 4 by obtaining the Einstein equations of general relativity by varying the Hilbert action. However, this will be done in the intrinsic manner, using the tools developed in the present and the preceding chapters.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Lee, John M. Introduction to Riemannian Manifolds. Springer, 2019.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Lang, Serge. Differential and Riemannian Manifolds. Springer London, Limited, 2012.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Introduction to Riemannian Manifolds. Springer International Publishing AG, 2021.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Foliations on Riemannian Manifolds. Springer, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Lang, Serge. Differential and Riemannian Manifolds. Springer New York, 2012.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Tondeur, Philippe. Foliations on Riemannian Manifolds. Springer, 2012.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Molino, Pierre. Riemannian Foliations. Springer, 2012.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía