Literatura académica sobre el tema "Convergence of Markov processes"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Convergence of Markov processes".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Convergence of Markov processes"
Abakuks, A., S. N. Ethier y T. G. Kurtz. "Markov Processes: Characterization and Convergence." Biometrics 43, n.º 2 (junio de 1987): 484. http://dx.doi.org/10.2307/2531839.
Texto completoPerkins, Edwin, S. N. Ethier y T. G. Kurtz. "Markov Processes, Characterization and Convergence." Journal of the Royal Statistical Society. Series A (Statistics in Society) 151, n.º 2 (1988): 367. http://dx.doi.org/10.2307/2982773.
Texto completoFranz, Uwe, Volkmar Liebscher y Stefan Zeiser. "Piecewise-Deterministic Markov Processes as Limits of Markov Jump Processes". Advances in Applied Probability 44, n.º 3 (septiembre de 2012): 729–48. http://dx.doi.org/10.1239/aap/1346955262.
Texto completoFranz, Uwe, Volkmar Liebscher y Stefan Zeiser. "Piecewise-Deterministic Markov Processes as Limits of Markov Jump Processes". Advances in Applied Probability 44, n.º 03 (septiembre de 2012): 729–48. http://dx.doi.org/10.1017/s0001867800005851.
Texto completoHWANG, CHII-RUEY. "ACCELERATING MONTE CARLO MARKOV PROCESSES". COSMOS 01, n.º 01 (mayo de 2005): 87–94. http://dx.doi.org/10.1142/s0219607705000085.
Texto completoAldous, David J. "Book Review: Markov processes: Characterization and convergence". Bulletin of the American Mathematical Society 16, n.º 2 (1 de abril de 1987): 315–19. http://dx.doi.org/10.1090/s0273-0979-1987-15533-9.
Texto completoSwishchuk, Anatoliy y M. Shafiqul Islam. "Diffusion Approximations of the Geometric Markov Renewal Processes and Option Price Formulas". International Journal of Stochastic Analysis 2010 (19 de diciembre de 2010): 1–21. http://dx.doi.org/10.1155/2010/347105.
Texto completoCrank, Keith N. y Prem S. Puri. "A method of approximating Markov jump processes". Advances in Applied Probability 20, n.º 1 (marzo de 1988): 33–58. http://dx.doi.org/10.2307/1427269.
Texto completoCrank, Keith N. y Prem S. Puri. "A method of approximating Markov jump processes". Advances in Applied Probability 20, n.º 01 (marzo de 1988): 33–58. http://dx.doi.org/10.1017/s0001867800017936.
Texto completoDeng, Chang-Song, René L. Schilling y Yan-Hong Song. "Subgeometric rates of convergence for Markov processes under subordination". Advances in Applied Probability 49, n.º 1 (marzo de 2017): 162–81. http://dx.doi.org/10.1017/apr.2016.83.
Texto completoTesis sobre el tema "Convergence of Markov processes"
Hahn, Léo. "Interacting run-and-tumble particles as piecewise deterministic Markov processes : invariant distribution and convergence". Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2024. http://www.theses.fr/2024UCFA0084.
Texto completoThis thesis investigates the long-time behavior of run-and-tumble particles (RTPs), a model for bacteria's moves and interactions in out-of-equilibrium statistical mechanics, using piecewise deterministic Markov processes (PDMPs). The motivation is to improve the particle-level understanding of active phenomena, in particular motility induced phase separation (MIPS). The invariant measure for two jamming RTPs on a 1D torus is determined for general tumbling and jamming, revealing two out-of-equilibrium universality classes. Furthermore, the dependence of the mixing time on model parameters is established using coupling techniques and the continuous PDMP model is rigorously linked to a known on-lattice model. In the case of two jamming RTPs on the real line interacting through an attractive potential, the invariant measure displays qualitative differences based on model parameters, reminiscent of shape transitions and universality classes. Sharp quantitative convergence bounds are again obtained through coupling techniques. Additionally, the explicit invariant measure of three jamming RTPs on the 1D torus is computed. Finally, hypocoercive convergence results are extended to RTPs, achieving sharp \( L^2 \) convergence rates in a general setting that also covers kinetic Langevin and sampling PDMPs
Pötzelberger, Klaus. "On the Approximation of finite Markov-exchangeable processes by mixtures of Markov Processes". Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 1991. http://epub.wu.ac.at/526/1/document.pdf.
Texto completoSeries: Forschungsberichte / Institut für Statistik
Drozdenko, Myroslav. "Weak Convergence of First-Rare-Event Times for Semi-Markov Processes". Doctoral thesis, Västerås : Mälardalen University, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-394.
Texto completoYuen, Wai Kong. "Application of geometric bounds to convergence rates of Markov chains and Markov processes on R[superscript]n". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ58619.pdf.
Texto completoKaijser, Thomas. "Convergence in distribution for filtering processes associated to Hidden Markov Models with densities". Linköpings universitet, Matematik och tillämpad matematik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-92590.
Texto completoLachaud, Béatrice. "Détection de la convergence de processus de Markov". Phd thesis, Université René Descartes - Paris V, 2005. http://tel.archives-ouvertes.fr/tel-00010473.
Texto completoFisher, Diana. "Convergence analysis of MCMC method in the study of genetic linkage with missing data". Huntington, WV : [Marshall University Libraries], 2005. http://www.marshall.edu/etd/descript.asp?ref=568.
Texto completoWang, Xinyu. "Sur la convergence sous-exponentielle de processus de Markov". Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2012. http://tel.archives-ouvertes.fr/tel-00840858.
Texto completoBouguet, Florian. "Étude quantitative de processus de Markov déterministes par morceaux issus de la modélisation". Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S040/document.
Texto completoThe purpose of this Ph.D. thesis is the study of piecewise deterministic Markov processes, which are often used for modeling many natural phenomena. Precisely, we shall focus on their long time behavior as well as their speed of convergence to equilibrium, whenever they possess a stationary probability measure. Providing sharp quantitative bounds for this speed of convergence is one of the main orientations of this manuscript, which will usually be done through coupling methods. We shall emphasize the link between Markov processes and mathematical fields of research where they may be of interest, such as partial differential equations. The last chapter of this thesis is devoted to the introduction of a unified approach to study the long time behavior of inhomogeneous Markov chains, which can provide functional limit theorems with the help of asymptotic pseudotrajectories
Chotard, Alexandre. "Markov chain Analysis of Evolution Strategies". Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112230/document.
Texto completoIn this dissertation an analysis of Evolution Strategies (ESs) using the theory of Markov chains is conducted. Proofs of divergence or convergence of these algorithms are obtained, and tools to achieve such proofs are developed.ESs are so called "black-box" stochastic optimization algorithms, i.e. information on the function to be optimized are limited to the values it associates to points. In particular, gradients are unavailable. Proofs of convergence or divergence of these algorithms can be obtained through the analysis of Markov chains underlying these algorithms. The proofs of log-linear convergence and of divergence obtained in this thesis in the context of a linear function with or without constraint are essential components for the proofs of convergence of ESs on wide classes of functions.This dissertation first gives an introduction to Markov chain theory, then a state of the art on ESs and on black-box continuous optimization, and present already established links between ESs and Markov chains.The contributions of this thesis are then presented:o General mathematical tools that can be applied to a wider range of problems are developed. These tools allow to easily prove specific Markov chain properties (irreducibility, aperiodicity and the fact that compact sets are small sets for the Markov chain) on the Markov chains studied. Obtaining these properties without these tools is a ad hoc, tedious and technical process, that can be of very high difficulty.o Then different ESs are analyzed on different problems. We study a (1,\lambda)-ES using cumulative step-size adaptation on a linear function and prove the log-linear divergence of the step-size; we also study the variation of the logarithm of the step-size, from which we establish a necessary condition for the stability of the algorithm with respect to the dimension of the search space. Then we study an ES with constant step-size and with cumulative step-size adaptation on a linear function with a linear constraint, using resampling to handle unfeasible solutions. We prove that with constant step-size the algorithm diverges, while with cumulative step-size adaptation, depending on parameters of the problem and of the ES, the algorithm converges or diverges log-linearly. We then investigate the dependence of the convergence or divergence rate of the algorithm with parameters of the problem and of the ES. Finally we study an ES with a sampling distribution that can be non-Gaussian and with constant step-size on a linear function with a linear constraint. We give sufficient conditions on the sampling distribution for the algorithm to diverge. We also show that different covariance matrices for the sampling distribution correspond to a change of norm of the search space, and that this implies that adapting the covariance matrix of the sampling distribution may allow an ES with cumulative step-size adaptation to successfully diverge on a linear function with any linear constraint.Finally, these results are summed-up, discussed, and perspectives for future work are explored
Libros sobre el tema "Convergence of Markov processes"
G, Kurtz Thomas, ed. Markov processes: Characterization and convergence. New York: Wiley, 1986.
Buscar texto completoRoberts, Gareth O. Convergence of slice sampler Markov chains. [Toronto: University of Toronto, 1997.
Buscar texto completoBaxter, John Robert. Rates of convergence for everywhere-positive markov chains. [Toronto, Ont.]: University of Toronto, Dept. of Statistics, 1994.
Buscar texto completoRoberts, Gareth O. Quantitative bounds for convergence rates of continuous time Markov processes. [Toronto]: University of Toronto, Dept. of Statistics, 1996.
Buscar texto completoYuen, Wai Kong. Applications of Cheeger's constant to the convergence rate of Markov chains on Rn. Toronto: University of Toronto, Dept. of Statistics, 1997.
Buscar texto completoRoberts, Gareth O. On convergence rates of Gibbs samplers for uniform distributions. [Toronto: University of Toronto, 1997.
Buscar texto completoCowles, Mary Kathryn. Possible biases induced by MCMC convergence diagnostics. Toronto: University of Toronto, Dept. of Statistics, 1997.
Buscar texto completoCowles, Mary Kathryn. A simulation approach to convergence rates for Markov chain Monte Carlo algorithms. [Toronto]: University of Toronto, Dept. of Statistics, 1996.
Buscar texto completoWirsching, Günther J. The dynamical system generated by the 3n + 1 function. Berlin: Springer, 1998.
Buscar texto completoPetrone, Sonia. A note on convergence rates of Gibbs sampling for nonparametric mixtures. Toronto: University of Toronto, Dept. of Statistics, 1998.
Buscar texto completoCapítulos de libros sobre el tema "Convergence of Markov processes"
Zhang, Hanjun, Qixiang Mei, Xiang Lin y Zhenting Hou. "Convergence Property of Standard Transition Functions". En Markov Processes and Controlled Markov Chains, 57–67. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4613-0265-0_4.
Texto completoAltman, Eitan. "Convergence of discounted constrained MDPs". En Constrained Markov Decision Processes, 193–98. Boca Raton: Routledge, 2021. http://dx.doi.org/10.1201/9781315140223-17.
Texto completoAltman, Eitan. "Convergence as the horizon tends to infinity". En Constrained Markov Decision Processes, 199–203. Boca Raton: Routledge, 2021. http://dx.doi.org/10.1201/9781315140223-18.
Texto completoKersting, G. y F. C. Klebaner. "Explosions in Markov Processes and Submartingale Convergence." En Athens Conference on Applied Probability and Time Series Analysis, 127–36. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-0749-8_9.
Texto completoCai, Yuzhi. "How Rates of Convergence for Gibbs Fields Depend on the Interaction and the Kind of Scanning Used". En Markov Processes and Controlled Markov Chains, 489–98. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4613-0265-0_31.
Texto completoBernou, Armand. "On Subexponential Convergence to Equilibrium of Markov Processes". En Lecture Notes in Mathematics, 143–74. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96409-2_5.
Texto completoPop-Stojanovic, Z. R. "Convergence in Energy and the Sector Condition for Markov Processes". En Seminar on Stochastic Processes, 1984, 165–72. Boston, MA: Birkhäuser Boston, 1986. http://dx.doi.org/10.1007/978-1-4684-6745-1_10.
Texto completoFeng, Jin y Thomas Kurtz. "Large deviations for Markov processes and nonlinear semigroup convergence". En Mathematical Surveys and Monographs, 79–96. Providence, Rhode Island: American Mathematical Society, 2006. http://dx.doi.org/10.1090/surv/131/05.
Texto completoNegoro, Akira y Masaaki Tsuchiya. "Convergence and uniqueness theorems for markov processes associated with Lévy operators". En Lecture Notes in Mathematics, 348–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0078492.
Texto completoZverkina, Galina. "Ergodicity and Polynomial Convergence Rate of Generalized Markov Modulated Poisson Processes". En Communications in Computer and Information Science, 367–81. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-66242-4_29.
Texto completoActas de conferencias sobre el tema "Convergence of Markov processes"
Majeed, Sultan Javed y Marcus Hutter. "On Q-learning Convergence for Non-Markov Decision Processes". En Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/353.
Texto completoAmiri, Mohsen y Sindri Magnússon. "On the Convergence of TD-Learning on Markov Reward Processes with Hidden States". En 2024 European Control Conference (ECC). IEEE, 2024. http://dx.doi.org/10.23919/ecc64448.2024.10591108.
Texto completoDing, Dongsheng, Kaiqing Zhang, Tamer Basar y Mihailo R. Jovanovic. "Convergence and optimality of policy gradient primal-dual method for constrained Markov decision processes". En 2022 American Control Conference (ACC). IEEE, 2022. http://dx.doi.org/10.23919/acc53348.2022.9867805.
Texto completoShi, Chongyang, Yuheng Bu y Jie Fu. "Information-Theoretic Opacity-Enforcement in Markov Decision Processes". En Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/749.
Texto completoFerreira Salvador, Paulo J. y Rui J. M. T. Valadas. "Framework based on Markov modulated Poisson processes for modeling traffic with long-range dependence". En ITCom 2001: International Symposium on the Convergence of IT and Communications, editado por Robert D. van der Mei y Frank Huebner-Szabo de Bucs. SPIE, 2001. http://dx.doi.org/10.1117/12.434317.
Texto completoTakagi, Hideaki, Muneo Kitajima, Tetsuo Yamamoto y Yongbing Zhang. "Search process evaluation for a hierarchical menu system by Markov chains". En ITCom 2001: International Symposium on the Convergence of IT and Communications, editado por Robert D. van der Mei y Frank Huebner-Szabo de Bucs. SPIE, 2001. http://dx.doi.org/10.1117/12.434312.
Texto completoHongbin Liang, Lin X. Cai, Hangguan Shan, Xuemin Shen y Daiyuan Peng. "Adaptive resource allocation for media services based on semi-Markov decision process". En 2010 International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2010. http://dx.doi.org/10.1109/ictc.2010.5674663.
Texto completoTayeb, Shahab, Miresmaeil Mirnabibaboli y Shahram Latifi. "Load Balancing in WSNs using a Novel Markov Decision Process Based Routing Algorithm". En 2016 6th International Conference on IT Convergence and Security (ICITCS). IEEE, 2016. http://dx.doi.org/10.1109/icitcs.2016.7740350.
Texto completoChanron, Vincent y Kemper Lewis. "A Study of Convergence in Decentralized Design". En ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/dac-48782.
Texto completoKuznetsova, Natalia y Zhanna Pisarenko. "Financial convergence at the world financial market: pension funds and insurance entities prospects: case of China, EU, USA". En Contemporary Issues in Business, Management and Economics Engineering. Vilnius Gediminas Technical University, 2019. http://dx.doi.org/10.3846/cibmee.2019.037.
Texto completoInformes sobre el tema "Convergence of Markov processes"
Adler, Robert J., Stamatis Gambanis y Gennady Samorodnitsky. On Stable Markov Processes. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1987. http://dx.doi.org/10.21236/ada192892.
Texto completoAthreya, Krishna B., Hani Doss y Jayaram Sethuraman. A Proof of Convergence of the Markov Chain Simulation Method. Fort Belvoir, VA: Defense Technical Information Center, julio de 1992. http://dx.doi.org/10.21236/ada255456.
Texto completoAbdel-Hameed, M. Markovian Shock Models, Deterioration Processes, Stratified Markov Processes Replacement Policies. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 1985. http://dx.doi.org/10.21236/ada174646.
Texto completoNewell, Alan. Markovian Shock Models, Deterioration Processes, Stratified Markov Processes and Replacement Policies. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1986. http://dx.doi.org/10.21236/ada174995.
Texto completoCinlar, E. Markov Processes Applied to Control, Reliability and Replacement. Fort Belvoir, VA: Defense Technical Information Center, abril de 1989. http://dx.doi.org/10.21236/ada208634.
Texto completoRohlicek, J. R. y A. S. Willsky. Structural Decomposition of Multiple Time Scale Markov Processes,. Fort Belvoir, VA: Defense Technical Information Center, octubre de 1987. http://dx.doi.org/10.21236/ada189739.
Texto completoSerfozo, Richard F. Poisson Functionals of Markov Processes and Queueing Networks. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 1987. http://dx.doi.org/10.21236/ada191217.
Texto completoSerfozo, R. F. Poisson Functionals of Markov Processes and Queueing Networks,. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 1987. http://dx.doi.org/10.21236/ada194289.
Texto completoDraper, Bruce A. y J. Ross Beveridge. Learning to Populate Geospatial Databases via Markov Processes. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 1999. http://dx.doi.org/10.21236/ada374536.
Texto completoSethuraman, Jayaram. Easily Verifiable Conditions for the Convergence of the Markov Chain Monte Carlo Method. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 1995. http://dx.doi.org/10.21236/ada308874.
Texto completo