Siga este enlace para ver otros tipos de publicaciones sobre el tema: Controled radical polymerization.

Artículos de revistas sobre el tema "Controled radical polymerization"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Controled radical polymerization".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Chen, Mao, Honghong Gong y Yu Gu. "Controlled/Living Radical Polymerization of Semifluorinated (Meth)acrylates". Synlett 29, n.º 12 (18 de abril de 2018): 1543–51. http://dx.doi.org/10.1055/s-0036-1591974.

Texto completo
Resumen
Fluorinated polymers are important materials for applications in many areas. This article summarizes the development of controlled/living radical polymerization (CRP) of semifluorinated (meth)acrylates, and briefly introduces their reaction mechanisms. While the classical CRP such as atom transfer radical polymerization (ATRP), reversible addition-fragmentation chain transfer (RAFT) polymerization and nitroxide-mediated radical polymerization (NMP) have promoted the preparation of semifluorinated polymers with tailor-designed architectures, recent development of photo-CRP has led to unprecedented accuracy and monomer scope. We expect that synthetic advances will facilitate the engineering of advanced fluorinated materials with unique properties.1 Introduction2 Atom Transfer Radical Polymerization3 Reversible Addition-Fragmentation Chain Transfer Polymerization4 Nitroxide-Mediated Radical Polymerization5 Photo-CRP Mediated with Metal Complexes6 Metal-free Photo-CRP7 Conclusion
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Jenkins, Aubrey D., Richard G. Jones y Graeme Moad. "Terminology for reversible-deactivation radical polymerization previously called "controlled" radical or "living" radical polymerization (IUPAC Recommendations 2010)". Pure and Applied Chemistry 82, n.º 2 (18 de noviembre de 2009): 483–91. http://dx.doi.org/10.1351/pac-rep-08-04-03.

Texto completo
Resumen
This document defines terms related to modern methods of radical polymerization, in which certain additives react reversibly with the radicals, thus enabling the reactions to take on much of the character of living polymerizations, even though some termination inevitably takes place. In recent technical literature, these reactions have often been loosely referred to as, inter alia, "controlled", "controlled/living", or "living" polymerizations. The use of these terms is discouraged. The use of "controlled" is permitted as long as the type of control is defined at its first occurrence, but the full name that is recommended for these polymerizations is "reversible-deactivation radical polymerization".
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Lowe, A. B. y C. L. McCormick. "Homogeneous Controlled Free Radical Polymerization in Aqueous Media". Australian Journal of Chemistry 55, n.º 7 (2002): 367. http://dx.doi.org/10.1071/ch02053.

Texto completo
Resumen
The ability to conduct controlled radical polymerizations (CRP) in homogeneous aqueous media is discussed. Three main techniques, namely stable free radical polymerization (SFRP), with an emphasis on nitroxide-mediated polymerization (NMP), atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer polymerization (RAFT) are examined. No examples exist of homogeneous aqueous NMP polymerization, but mixed water/solvent systems are discussed with specific reference to the NMP of sodium 4-styrenesulfonate. Aqueous ATRP is possible, although monomer choice is limited to methacrylates and certain styrenics. Finally, homogeneous aqueous RAFT polymerizations are examined. We demonstrate the greater versatility of this technique, at least in terms of monomer variety, by discussing the controlled polymerization of charged and neutral acrylamido monomers and of a series of ionic styrenic monomers. Many of these monomers cannot/have not been polymerized by either NMP or ATRP.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Save, Maud, Yohann Guillaneuf y Robert G. Gilbert. "Controlled Radical Polymerization in Aqueous Dispersed Media". Australian Journal of Chemistry 59, n.º 10 (2006): 693. http://dx.doi.org/10.1071/ch06308.

Texto completo
Resumen
Controlled radical polymerization (CRP), sometimes also termed ‘living’ radical polymerization, offers the potential to create a wide range of polymer architectures, and its implementation in aqueous dispersed media (e.g. emulsion polymerization, used on a vast scale industrially) opens the way to large-scale manufacture of products based on this technique. Until recently, implementing CRP in aqueous dispersed media was plagued with problems such as loss of ‘living’ character and loss of colloidal stability. This review examines the basic mechanistic processes in free-radical polymerization in aqueous dispersed media (e.g. emulsion polymerization), and then examines, through this mechanistic understanding, the new techniques that have been developed over the last few years to implement CRP successfully in emulsion polymerizations and related processes. The strategies leading to these successes can thus be understood in terms of the various mechanisms which dominate CRP systems in dispersed media; these mechanisms are sometimes quite different from those in conventional free-radical polymerization in these media.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Braun, Dietrich. "Origins and Development of Initiation of Free Radical Polymerization Processes". International Journal of Polymer Science 2009 (2009): 1–10. http://dx.doi.org/10.1155/2009/893234.

Texto completo
Resumen
At present worldwide about 45% of the manufactured plastic materials and 40% of synthetic rubber are obtained by free radical polymerization processes. The first free radically synthesized polymers were produced between 1910 and 1930 by initiation with peroxy compounds. In the 1940s the polymerization by redox processes was found independently and simultaneously at IG Farben in Germany and ICI in Great Britain. In the 1950s the systematic investigation of azo compounds as free radical initiators followed. Compounds with labile C–C-bonds were investigated as initiators only in the period from the end of the 1960s until the early 1980s. At about the same time, iniferters with cleavable S–S-bonds were studied in detail. Both these initiator classes can be designated as predecessors for “living” or controlled free radical polymerizations with nitroxyl-mediated polymerizations, reversible addition fragmentation chain transfer processes (RAFT), and atom transfer radical polymerizations (ATRP).
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Monteiro, M. J., R. Bussels, S. Beuermann y M. Buback. "High Pressure 'Living' Free-Radical Polymerization of Styrene in the Presence of RAFT". Australian Journal of Chemistry 55, n.º 7 (2002): 433. http://dx.doi.org/10.1071/ch02079.

Texto completo
Resumen
Reversible addition-fragmentation chain transfer (RAFT) polymerization of styrene was studied at high pressure, employing two dithioester RAFT agents with an isopropylcyano (5) and a cumyl (6) leaving group, respectively. The high-pressure reaction resulted in low polydispersity polymer. It was found that controlled polymerizations can be performed at increased pressures with a high degree of monomer conversion, which signifies that high-pressure polymerizations can be utilized for the production of higher molecular weight polystyrene of controlled microstructure. Retardation of styrene polymerization was also observed at high pressure in the presence of RAFT agents (5) and (6). It is postulated that the retarding potential of these two RAFT agents is associated with an intermediate radical termination mechanism. High-pressure free-radical polymerizations open the way to producing living polymers with high rates, and thus lower impurities such as 'dead' polymer that are formed through bimolecular termination reactions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Matyjaszewski, Krzysztof. "Radical Nature of Cu-Catalyzed Controlled Radical Polymerizations (Atom Transfer Radical Polymerization)". Macromolecules 31, n.º 15 (julio de 1998): 4710–17. http://dx.doi.org/10.1021/ma980357b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Zhang, Zhenghe, Pengcheng Zhang, Yong Wang y Weian Zhang. "Recent advances in organic–inorganic well-defined hybrid polymers using controlled living radical polymerization techniques". Polymer Chemistry 7, n.º 24 (2016): 3950–76. http://dx.doi.org/10.1039/c6py00675b.

Texto completo
Resumen
Controlled living radical polymerizations, such as ATRP and RAFT polymerization, could be utilized for the preparation of well-defined organic–inorganic hybrid polymers based on POSS, PDMS, silica nanoparticles, graphene, CNTs and fullerene.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Ha, Nguyen Tran y Duong Ba Vu. "Organic photo-catalyst for controlled synthesis of poly(methyl methacrylate) using spirooxazine initiator". Tạp chí Khoa học 14, n.º 9 (20 de septiembre de 2019): 94. http://dx.doi.org/10.54607/hcmue.js.14.9.299(2017).

Texto completo
Resumen
Photoinitiated metal-free controlled living radical polymerization of methyl methacrylates was investigated using the nuclear aromatic compound of pyrene. In the presence of photoredox catalysts and UV irradiation, spirooxazine initiator was used as initiator for polymerization of methyl methacrylate with good control over molecular weight in range of 10000 – 14000 g/mol and polydispersity below 1.5. Moreover, the obtained polymer also exhibited photochromic properties under UV irradiation both in solution and in solid state film. We are reliable believe that organic-based photoredox catalysts will enable new applications for controlled radical polymerizations in both small molecules and polymer chemistry.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Steenbock, Marco, Markus Klapper y Klaus Müllen. "Triazolinyl radicals - new additives for controlled radical polymerization". Macromolecular Chemistry and Physics 199, n.º 5 (1 de mayo de 1998): 763–69. http://dx.doi.org/10.1002/(sici)1521-3935(19980501)199:5<763::aid-macp763>3.0.co;2-s.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Steenbock, Marco, Markus Klapper y Klaus Müllen. "Triazolinyl radicals – new additives for controlled radical polymerization". Macromolecular Chemistry and Physics 199, n.º 5 (mayo de 1998): 763–69. http://dx.doi.org/10.1002/macp.1998.021990509.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Yilmaz, Gorkem. "One-Pot Synthesis of Star Copolymers by the Combination of Metal-Free ATRP and ROP Processes". Polymers 11, n.º 10 (27 de septiembre de 2019): 1577. http://dx.doi.org/10.3390/polym11101577.

Texto completo
Resumen
A completely metal-free strategy is demonstrated for the preparation of star copolymers by combining atom transfer radical polymerization (ATRP) and ring-opening polymerization (ROP) for the syntheses of block copolymers. These two different metal-free controlled/living polymerizations are simultaneously realized in one reaction medium in an orthogonal manner. For this purpose, a specific core with functional groups capable of initiating both polymerization types is synthesized. Next, vinyl and lactone monomers are simultaneously polymerized under visible light irradiation using specific catalysts. Spectral and chromatographic evidence demonstrates the success of the strategy as star copolymers are synthesized with controlled molecular weights and narrow distributions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Jiang, Jianguo, Weifeng Chen, Aimin Cheng, Jin Guo y Yueshu Liu. "Preparation of Polyacrylamide with Improved Tacticity and Low Molecular Weight Distribution". BIO Web of Conferences 55 (2022): 01028. http://dx.doi.org/10.1051/bioconf/20225501028.

Texto completo
Resumen
Polyacrylamide with improved tacticity and low molecular weight distribution was obtained via stereospecific atom transfer radical polymerization (ATRP) using the mixture of Lewis acids Y(OTf)3 and AlCl3 in a certain ratio as stereospecific catalyst and chloroacetic acid/ Cu2O / N,N,N’,N’-tetramethylethylenediamine( TMEDA) as initiating system. The initiating system afforded persistently controlled ATRP of acrylamide with lower polydispersity index ranging from 1.12 to 1.35 as well as a moderate polymerization process. The participation of the mixture of Lewis acids Y(OTf)3 and AlCl3 as stereospecific catalyst in the stereospecific ATRP of acrylamide contributed optimal stereospecific PAM with the meso content 80%~83%. Polymerization kinetics displayed a living/controlled nature of the present polymerizations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Matyjaszewski, Krzysztof, Takeo Shigemoto, Jean M. J. Fréchet y Marc Leduc. "Controlled/“Living” Radical Polymerization with Dendrimers Containing Stable Radicals". Macromolecules 29, n.º 12 (enero de 1996): 4167–71. http://dx.doi.org/10.1021/ma9600163.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Matyjaszewski, Krzysztof. "Controlled radical polymerization". Current Opinion in Solid State and Materials Science 1, n.º 6 (diciembre de 1996): 769–76. http://dx.doi.org/10.1016/s1359-0286(96)80101-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Gaynor, Scott, Dorota Greszta, Daniela Mardare, Mircea Teodorescu y Krzysztof Matyjaszewski. "Controlled Radical Polymerization". Journal of Macromolecular Science, Part A 31, n.º 11 (enero de 1994): 1561–78. http://dx.doi.org/10.1080/10601329408545868.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Bertin, Denis y Bernard Boutevin. "Controlled radical polymerization". Polymer Bulletin 37, n.º 3 (septiembre de 1996): 337–44. http://dx.doi.org/10.1007/bf00318066.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Eisen, Moris S. "Controlled Radical Polymerizations". Israel Journal of Chemistry 52, n.º 3-4 (abril de 2012): 204–5. http://dx.doi.org/10.1002/ijch.201200022.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Matyjaszewski, Krzysztof. "Controlling polymer structures by atom transfer radical polymerization and other controlled/living radical polymerizations". Macromolecular Symposia 195, n.º 1 (julio de 2003): 25–32. http://dx.doi.org/10.1002/masy.200390131.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Nguyen, Duc Hung y Philipp Vana. "On the Mechanism of Radical Polymerization of Methyl Methacrylate with Dithiobenzoic Acid as Mediator". Australian Journal of Chemistry 59, n.º 8 (2006): 549. http://dx.doi.org/10.1071/ch06158.

Texto completo
Resumen
Dithiobenzoic acid (DTBA) induces controlled polymerization behaviour in methyl methacrylate polymerization at 60°C, accompanied by a pronounced induction period of several hours. DTBA is partially transformed during this induction period into a dithioester with a tertiary ester group moiety, which constitutes an efficient reversible addition–fragmentation chain transfer (RAFT) agent. The transformation reaction is proposed to proceed via a hydrogen abstraction from DTBA by radicals and subsequent termination of the formed phenylcarbonothioylsulfanyl radical with propagating radicals. The proposed reaction scheme was implemented into a computer model, by which the rate coefficient of the hydrogen abstraction from DTBA and of the reinitiation of the intermediate phenylcarbonothioylsulfanyl radical was estimated. The model is in agreement with all of the species observable by electrospray ionization mass spectrometry, with the extent of the experimental induction periods, and with the absolute concentrations of dithioesters that act as efficient RAFT agents during the polymerization. A protocol that uses a cocktail of initiators is introduced, by which the induction period in DTBA-mediated polymerization is effectively eliminated.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Adams, ME, M. Trau, RG Gilbert, DH Napper y DF Sangster. "The Entry of Free Radicals Into Polystyrene Latex Particles". Australian Journal of Chemistry 41, n.º 12 (1988): 1799. http://dx.doi.org/10.1071/ch9881799.

Texto completo
Resumen
Mechanistic understanding of the processes governing the kinetics of emulsion polymerization has both scientific and technical interest. One component of this process that is poorly understood at present is that of free radical entry into latex particles. Measurements were made of the entry rate coefficient as a function of temperature for free radicals entering polystyrene latex particles in seeded emulsion polymerizations initiated by γ-rays. The activation energy for entry was found to be less than 24�3 kJ mol-1, consistent with entry being controlled by a physical (e.g., diffusional ) rather than a chemical process. Measurement of the entry rate coefficient as a function of the γ-ray dose rate suggested that the factors that determine the entry rate when the primary free radicals are uncharged are similar to those that determine the entry rate for charged free radicals derived from chemical initiation by peroxydisulfate. This result was consistent with measurements of the entry rate coefficient of charged free radicals derived from peroxydisulfate; these data were found to be virtually independent of both the extent of the latex surface coverage by the anionic surfactant sodium dodecyl sulfate and the ionic strength of the continuous phase. The data refute several proposals given in the literature for the rate-determining step for entry, being inconsistent with control by (1) collision of free radicals with the latex particles, (2) surfactant desorption , and (3) an electrostatic barrier arising from the colloidal nature of the entering free radical. The origin of the activation energy for entry remains obscure.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Severin, K., M. Haas, E. Solari, O. Nguyen, S. Gautier y R. Scopelliti. "RT-Controlled Radical Polymerization". Synfacts 2006, n.º 5 (mayo de 2006): 0446. http://dx.doi.org/10.1055/s-2006-934385.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Matyjaszewski, Krzysztof y James Spanswick. "Controlled/living radical polymerization". Materials Today 8, n.º 3 (marzo de 2005): 26–33. http://dx.doi.org/10.1016/s1369-7021(05)00745-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Pan, Xiangcheng, Mehmet Atilla Tasdelen, Joachim Laun, Thomas Junkers, Yusuf Yagci y Krzysztof Matyjaszewski. "Photomediated controlled radical polymerization". Progress in Polymer Science 62 (noviembre de 2016): 73–125. http://dx.doi.org/10.1016/j.progpolymsci.2016.06.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Tasdelen, Mehmet Atilla, Mustafa Uygun y Yusuf Yagci. "Photoinduced Controlled Radical Polymerization". Macromolecular Rapid Communications 32, n.º 1 (31 de agosto de 2010): 58–62. http://dx.doi.org/10.1002/marc.201000351.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Tasdelen, Mehmet Atilla y Yusuf Yagci. "Photochemical Methods for the Preparation of Complex Linear and Cross-linked Macromolecular Structures". Australian Journal of Chemistry 64, n.º 8 (2011): 982. http://dx.doi.org/10.1071/ch11113.

Texto completo
Resumen
In this contribution, the current state of the art is summarized and an overview of photoinitiating systems for both radical and cationic polymerizations and their potential application in the preparation of complex linear and cross-linked macromolecular structures are described. Recent relevant studies have been devoted to developing novel free radical and cationic photoinitiators having spectroscopic sensitivity in the near-UV or visible range. Photoinitiated controlled radical polymerization methods leading to tailor-made polymers with predetermined structure and architecture are briefly presented. Several synthetic methodologies for the preparation of epoxy and (meth)acrylate based formulations containing clay or metal nanoparticles are also summarized. The nanoparticles are homogenously distributed in the network without macroscopic agglomeration. Applicability to both free radical and cationic systems is demonstrated.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Matyjaszewski, Krzysztof. "Transformation of “living” carbocationic and other polymerizations to controlled/“living” radical polymerization". Macromolecular Symposia 132, n.º 1 (julio de 1998): 85–101. http://dx.doi.org/10.1002/masy.19981320111.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Thurecht, Kristofer J. y Steven M. Howdle. "Controlled Dispersion Polymerization in Supercritical Carbon Dioxide". Australian Journal of Chemistry 62, n.º 8 (2009): 786. http://dx.doi.org/10.1071/ch09081.

Texto completo
Resumen
Recent advances in controlled polymerization have led to increased activity in controlled free radical polymerization in unconventional solvents. This short report focuses on the renewed interest in dispersion polymerization in supercritical CO2 brought about by the application of controlled free radical polymerization techniques. The emergence of novel and industrially-applicable materials is discussed, as well as the dependence of material properties and morphology upon factors such as surfactant type and how it is employed during the polymerization.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

LIU, PENG y TINGMEI WANG. "SURFACE-INITIATED ATOM TRANSFER RADICAL POLYMERIZATION OF HYDROXYETHYL ACRYLATE FROM ACTIVATED CARBON POWDER WITH HOMOGENIZED SURFACE GROUPS". Surface Review and Letters 14, n.º 02 (abril de 2007): 269–75. http://dx.doi.org/10.1142/s0218625x07009359.

Texto completo
Resumen
The well-defined poly(hydroxyethyl acrylate) (PHEA) brushes were grafted from the surfaces of the activated carbon (AC) powder with the controlled/"living" radical polymerization technique. First, surface functional groups of the AC powder were homogenized to hydroxyl groups by oxidizing with nitric acid and then reducing with lithium tetrahydroaluminate ( LiAlH 4) at first. Second, the surface hydroxyl groups were treated with bromoacetylbromide, and the bromoacetyl groups were introduced. And in the third step, the bromoacetyl activated carbon ( BrA-AC ) powder were used as macro-initiators for the surface-initiated atom transfer radical polymerization (SI-ATRP) of hydroxyethyl acrylate (HEA) in the presence of 1,10-phenanthroline and Cu(I)Br as catalyst in a water system. The graft parameters calculated from the elemental analyses (EA) results, conversion of monemer (C%) and percentage of grafting (PG%) were 5.74% and 28.7%, respectively, after polymerizing for 5 h. The graft polymerizations exhibited the characteristics of a controlled/"living" polymerization, and no homopolymer was found in the proposed polymerizing process. The preparation procedure of the poly(hydroxyethyl acrylate) grafted activated carbon (PHEA-AC) powder was also investigated by X-ray photoelectron spectroscopy (XPS). The PHEA-AC powder is expected to be used as selective adsorbents because of their abundant homogenized surface hydroxyl groups.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Sun, Yong Lian, Bo Zhu, Shan Shan Zhou, Bao Lei Chen, Jian Gao y Yong Wei Li. "The Research Status and Applications of Atom Transfer Radical Polymerization". Advanced Materials Research 1033-1034 (octubre de 2014): 978–86. http://dx.doi.org/10.4028/www.scientific.net/amr.1033-1034.978.

Texto completo
Resumen
ATRP is one of the most active fields in polymer science. The feature of ATRP is chain propagation by way of transfer of halide atom with or without the catalysis of transition mental compounds. The termination reaction between radicals is reduced by low concentration of free radicals under the control of the fast transfer. A variety of monomers including styrene, acrylates, methacrylates, and dienes can be used in this technique. ATRP is a simple and inexpensive process for controlled "living" radical polymerization leading to well-defined homopolymers and copolymers. In this paper, the mechanism, initiator, catalyst systems, polymerization mediums and conditions of ATRP are introduced, the prospect of ATRP is also discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Bon, Stefan A. F., Michiel Bosveld, Bert Klumperman y Anton L. German. "Controlled Radical Polymerization in Emulsion". Macromolecules 30, n.º 2 (enero de 1997): 324–26. http://dx.doi.org/10.1021/ma961003s.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Matyjaszewski, Krzysztof, Scott Gaynor, Dorota Greszta, Daniela Mardare y Takeo Shigemoto. "?Living? and controlled radical polymerization". Journal of Physical Organic Chemistry 8, n.º 4 (abril de 1995): 306–15. http://dx.doi.org/10.1002/poc.610080414.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Caille, Jean-Raphaël, Antoine Debuigne y Robert Jérôme. "Controlled Radical Polymerization of Styrene by Quinone Transfer Radical Polymerization (QTRP)". Macromolecules 38, n.º 1 (enero de 2005): 27–32. http://dx.doi.org/10.1021/ma048561o.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Matyjaszewski, Krzysztof. "Transition Metal Catalysis in Controlled Radical Polymerization: Atom Transfer Radical Polymerization". Chemistry - A European Journal 5, n.º 11 (5 de noviembre de 1999): 3095–102. http://dx.doi.org/10.1002/(sici)1521-3765(19991105)5:11<3095::aid-chem3095>3.0.co;2-#.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Fantin, Marco, Francesca Lorandi, Armando Gennaro, Abdirisak Isse y Krzysztof Matyjaszewski. "Electron Transfer Reactions in Atom Transfer Radical Polymerization". Synthesis 49, n.º 15 (4 de julio de 2017): 3311–22. http://dx.doi.org/10.1055/s-0036-1588873.

Texto completo
Resumen
Electrochemistry may seem an outsider to the field of polymer science and controlled radical polymerization. Nevertheless, several electrochemical methods have been used to determine the mechanism of atom transfer radical polymerization (ATRP), using both a thermodynamic and a kinetic approach. Indeed, electron transfer reactions involving the metal catalyst, initiator/dormant species, and propagating radicals play a crucial role in ATRP. In this mini-review, electrochemical properties of ATRP catalysts and initiators are discussed, together with the mechanism of the atom and electron transfer in ATRP.1 Introduction2 Thermodynamic and Electrochemical Properties of ATRP Catalysts3 Thermodynamic and Electrochemical Properties of Alkyl Halides and Alkyl Radicals4 Atom Transfer from an Electrochemical and Thermodynamic Standpoint5 Mechanism of Electron Transfer in ATRP6 Electroanalytical Techniques for the Kinetics of ATRP Activation7 Electrochemically Mediated ATRP8 Conclusions
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Whitfield, Richard, Nghia P. Truong y Athina Anastasaki. "Sequence-controlled Polymers via Controlled Radical Polymerization". CHIMIA International Journal for Chemistry 73, n.º 4 (24 de abril de 2019): 331. http://dx.doi.org/10.2533/chimia.2019.331.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Stenzel, Martina H. y Christopher Barner-Kowollik. "The living dead – common misconceptions about reversible deactivation radical polymerization". Materials Horizons 3, n.º 6 (2016): 471–77. http://dx.doi.org/10.1039/c6mh00265j.

Texto completo
Resumen
We illustrate common misconceptions and errors when interpreting polymerization data from ‘Living/controlled’ radical polymerization, preferably termed ‘reversible deactivation radical polymerization’ (RDRP). Avoiding the discussed errors leads to better defined materials for soft matter materials applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Steenbock, M., M. Klapper, K. Müllen, C. Bauer y M. Hubrich. "Decomposition of Stable Free Radicals as “Self-Regulation” in Controlled Radical Polymerization". Macromolecules 31, n.º 16 (agosto de 1998): 5223–28. http://dx.doi.org/10.1021/ma980425u.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Sepulveda, Victor, Ligia Sierra y Betty López. "Low Dispersity and High Conductivity Poly(4-styrenesulfonic acid) Membranes Obtained by Inexpensive Free Radical Polymerization of Sodium 4-styrenesulfonate". Membranes 8, n.º 3 (7 de agosto de 2018): 58. http://dx.doi.org/10.3390/membranes8030058.

Texto completo
Resumen
Controlled polymerizations are often used to synthesize polymers with low dispersity, which involves expensive initiators, constrained atmospheres, and multi-step purifying processes, especially with water soluble monomers. These drawbacks make the synthesis very expensive and of little industrial value. In this report, an inexpensive free radical polymerization of sodium 4-styrenesulfonate, using benzoyl peroxide as initiator in water/N,N-dimethylformamide solutions, is presented. After polymerization, an easy fiber precipitation method is implemented to extract and purify the polymer, obtaining conversions up to 99%, recoveries up to 98%, and molecular weight dispersities in the range of 1.15–1.85, where the pseudo-controlled behavior is attributed to a thermodynamic limiting molecular weight solubility. Three different methods were used to bring the polymer to its acid form, obtaining Ion Exchange Capacities as high as 4.8 meq/g. Finally, polymeric membranes were prepared and reached conductivities up to 164 mS/cm, which makes them good candidates as proton exchange membranes in fuel cells.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Busch, Markus, Marion Roth, Martina H. Stenzel, Thomas P. Davis y Christopher Barner-Kowollik. "The Use of Novel F-RAFT Agents in High Temperature and High Pressure Ethene Polymerization: Can Control be Achieved?" Australian Journal of Chemistry 60, n.º 10 (2007): 788. http://dx.doi.org/10.1071/ch07200.

Texto completo
Resumen
Simulations are employed to establish the feasibility of achieving controlled/living ethene polymerizations. Such simulations indicate that reversible addition–fragmentation chain transfer (RAFT) agents carrying a fluorine Z group may be suitable to establish control in high-pressure high-temperature ethene polymerizations. Based on these simulations, specific fluorine (F-RAFT) agents have been designed and tested. The initial results are promising and indicate that it may indeed be possible to achieve molecular weight distributions with a polydispersity being significantly lower than that observed in the conventional free radical process. In our initial trials presented here (using the F-RAFT agent isopropylfluorodithioformate), a correlation between the degree of polymerization and conversion can indeed be observed. Both the lowered polydispersity and the linear correlation between molecular weight and conversion indicate that control may in principle be possible.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Price, Mariel J., Katherine O. Puffer, Max Kudisch, Declan Knies y Garret M. Miyake. "Structure–property relationships of core-substituted diaryl dihydrophenazine organic photoredox catalysts and their application in O-ATRP". Polymer Chemistry 12, n.º 42 (2021): 6110–22. http://dx.doi.org/10.1039/d1py01060c.

Texto completo
Resumen
Photoinduced organocatalyzed atom-transfer radical polymerization (O-ATRP) is a controlled radical polymerization technique that can be driven using low-energy, visible light and makes use of organic photocatalysts.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Grimaud, Thomas y Krzysztof Matyjaszewski. "Controlled/“Living” Radical Polymerization of Methyl Methacrylate by Atom Transfer Radical Polymerization". Macromolecules 30, n.º 7 (abril de 1997): 2216–18. http://dx.doi.org/10.1021/ma961796i.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Xia, Jianhui y Krzysztof Matyjaszewski. "Controlled/“Living” Radical Polymerization. Atom Transfer Radical Polymerization Using Multidentate Amine Ligands". Macromolecules 30, n.º 25 (diciembre de 1997): 7697–700. http://dx.doi.org/10.1021/ma971009x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Wang, Hyun Suk y Athina Anastasaki. "Chemical Recycling of Polymethacrylates Synthesized by RAFT Polymerization". CHIMIA 77, n.º 4 (26 de abril de 2023): 217. http://dx.doi.org/10.2533/chimia.2023.217.

Texto completo
Resumen
Reversing controlled radical polymerization and regenerating the monomer has been a long-standing challenge for fundamental research and practical applications. Herein, we report a highly efficient depolymerization method for various polymethacrylates synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization. The depolymerization process, which does not require any catalyst, exhibits near-quantitative conversions of up to 92%. The key aspect of our approach is the utilization of the high end-group fidelity of RAFT polymers to generate chain-end radicals at 120 °C. These radicals trigger a rapid unzipping of the polymethacrylates. The depolymerization product can be utilized to either reconstruct the linear polymer or create an entirely new insoluble gel that can also be subjected to depolymerization. Our depolymerization strategy offers a promising route towards the development of sustainable and efficient recycling methods for complex polymer materials.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Nedeljkovic, Dragutin. "Polystyrene-b-Poly(2-(Methoxyethoxy)ethyl Methacrylate) Polymerization by Different Controlled Polymerization Mechanisms". Polymers 13, n.º 20 (12 de octubre de 2021): 3505. http://dx.doi.org/10.3390/polym13203505.

Texto completo
Resumen
Functional polymers have been an important field of research in recent years. With the development of the controlled polymerization methods, block-copolymers of defined structures and properties could be obtained. In this paper, the possibility of the synthesis of the functional block-copolymer polystyrene-b-poly(2-(methoxyethoxy)ethyl methacrylate) was tested. The target was to prepare the polymer of the number average molecular weight (Mn) of approximately 120 that would contain 20–40% of poly(2-(methoxyethoxy)ethyl methacrylate) by mass and in which the polymer phases would be separated. The polymerization reactions were performed by three different mechanisms for the controlled polymerization—sequential anionic polymerization, atomic transfer radical polymerization and the combination of those two methods. In sequential anionic polymerization and in atomic transfer radical polymerization block-copolymers of the desired composition were obtained but with the Mn significantly lower than desired (up to 30). The polymerization of the block-copolymers of the higher Mn was unsuccessful, and the possible mechanisms for the unwanted side reactions are discussed. It is also concluded that combination of sequential anionic polymerization and atomic transfer radical polymerization is not suitable for this system as polystyrene macroinitiator cannot initiate the polymerization of poly(2-(methoxyethoxy)ethyl methacrylate).
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Bompart, Marc y Karsten Haupt. "Molecularly Imprinted Polymers and Controlled/Living Radical Polymerization". Australian Journal of Chemistry 62, n.º 8 (2009): 751. http://dx.doi.org/10.1071/ch09124.

Texto completo
Resumen
Molecularly imprinted polymers (MIPs) are tailor-made biomimetic receptors that are obtained by polymerization in the presence of molecular templates. They contain binding sites for target molecules with affinities and specificities on a par with those of natural receptors such as antibodies, hormone receptors, or enzymes. A great majority of the literature in the field describes materials based on polymers obtained by free radical polymerization. In order to solve general problems associated with MIPs, in particular their heterogeneity in terms of inner morphology and distribution of binding site affinities, it has been suggested to use modern methods of controlled/living radical polymerization for their synthesis. This also facilitates their generation in the form of nanomaterials, nanocomposites, and thin films, a strong recent trend in the field. The present paper reviews recent advances in the molecular imprinting area, with special emphasis on the use of controlled polymerization methods, their benefits, and current limitations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Higashimura, Hideyuki. "Radical-Controlled Oxidative Polymerization of Phenols". Journal of Synthetic Organic Chemistry, Japan 63, n.º 10 (2005): 970–81. http://dx.doi.org/10.5059/yukigoseikyokaishi.63.970.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

UEDA, Naoki. "Controlled Radical Polymerization with Iodine Compounds". Kobunshi 48, n.º 7 (1999): 513. http://dx.doi.org/10.1295/kobunshi.48.513.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

SHIGA, Akinobu. "“Radical -Controlled”Oxidative Polymerization of Phenols". Kobunshi 49, n.º 4 (2000): 236. http://dx.doi.org/10.1295/kobunshi.49.236.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Matyjaszewski, K. y E. Chernikova. "New trends in controlled radical polymerization". Polymer Science Series C 57, n.º 1 (7 de julio de 2015): 1–2. http://dx.doi.org/10.1134/s1811238215010075.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía