Literatura académica sobre el tema "Contraction perfect graphs"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Contraction perfect graphs".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Contraction perfect graphs"

1

Diner, Öznur Yaşar, Daniël Paulusma, Christophe Picouleau, and Bernard Ries. "Contraction and deletion blockers for perfect graphs and H-free graphs." Theoretical Computer Science 746 (October 2018): 49–72. http://dx.doi.org/10.1016/j.tcs.2018.06.023.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Bertschi, Marc E. "Perfectly contractile graphs." Journal of Combinatorial Theory, Series B 50, no. 2 (1990): 222–30. http://dx.doi.org/10.1016/0095-8956(90)90077-d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Maffray, Frédéric, and Nicolas Trotignon. "Algorithms for Perfectly Contractile Graphs." SIAM Journal on Discrete Mathematics 19, no. 3 (2005): 553–74. http://dx.doi.org/10.1137/s0895480104442522.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Sales, Cláudia Linhares, Frédéric Maffray, and Bruce Reed. "On Planar Perfectly Contractile Graphs." Graphs and Combinatorics 13, no. 2 (1997): 167–87. http://dx.doi.org/10.1007/bf03352994.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Rusu, Irena. "Perfectly contractile diamond-free graphs." Journal of Graph Theory 32, no. 4 (1999): 359–89. http://dx.doi.org/10.1002/(sici)1097-0118(199912)32:4<359::aid-jgt5>3.0.co;2-u.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Sales, Cláudia Linhares, and Frédéric Maffray. "On dart-free perfectly contractile graphs." Theoretical Computer Science 321, no. 2-3 (2004): 171–94. http://dx.doi.org/10.1016/j.tcs.2003.11.026.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Lévêque, Benjamin, and Frédéric Maffray. "Coloring Bull-Free Perfectly Contractile Graphs." SIAM Journal on Discrete Mathematics 21, no. 4 (2008): 999–1018. http://dx.doi.org/10.1137/06065948x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Maffray, Frédéric, and Nicolas Trotignon. "A class of perfectly contractile graphs." Journal of Combinatorial Theory, Series B 96, no. 1 (2006): 1–19. http://dx.doi.org/10.1016/j.jctb.2005.06.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

PANDA, SWARUP. "Inverses of bicyclic graphs." Electronic Journal of Linear Algebra 32 (February 6, 2017): 217–31. http://dx.doi.org/10.13001/1081-3810.3322.

Texto completo
Resumen
A graph G is said to be nonsingular (resp., singular) if its adjacency matrix A(G) is nonsingular (resp., singular). The inverse of a nonsingular graph G is the unique weighted graph whose adjacency matrix is similar to the inverse of the adjacency matrix A(G) via a diagonal matrix of ±1s. Consider connected bipartite graphs with unique perfect matchings such that the graph obtained by contracting all matching edges is also bipartite. In [C.D. Godsil. Inverses of trees. Combinatorica, 5(1):33–39, 1985.], Godsil proved that such graphs are invertible. He posed the question of characterizing the bipartite graphs with unique perfect matchings possessing inverses. In this article, Godsil’s question for the class of bicyclic graphs is answered.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Fischer, Ilse, and C. H. C. Little. "Even Circuits of Prescribed Clockwise Parity." Electronic Journal of Combinatorics 10, no. 1 (2003). http://dx.doi.org/10.37236/1738.

Texto completo
Resumen
We show that a graph has an orientation under which every circuit of even length is clockwise odd if and only if the graph contains no subgraph which is, after the contraction of at most one circuit of odd length, an even subdivision of $K_{2,3}$. In fact we give a more general characterisation of graphs that have an orientation under which every even circuit has a prescribed clockwise parity. Moreover we show that this characterisation has an equivalent analogue for signed graphs. We were motivated to study the original problem by our work on Pfaffian graphs, which are the graphs that have an orientation under which every alternating circuit is clockwise odd. Their significance is that they are precisely the graphs to which Kasteleyn's powerful method for enumerating perfect matchings may be applied.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía