Literatura académica sobre el tema "Continuous–wave cavity ring-down spectroscopy"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Continuous–wave cavity ring-down spectroscopy".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Continuous–wave cavity ring-down spectroscopy":

1

Tan Zhongqi, 谭中奇, 龙兴武 Long Xingwu, 黄云 Huang Yun y 吴素勇 Wu Suyong. "Etaloning Effects in Continuous-Wave Cavity Ring down Spectroscopy". Chinese Journal of Lasers 35, n.º 10 (2008): 1563–66. http://dx.doi.org/10.3788/cjl20083510.1563.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Huang, Haifeng y Kevin K. Lehmann. "Sensitivity Limits of Continuous Wave Cavity Ring-Down Spectroscopy". Journal of Physical Chemistry A 117, n.º 50 (23 de septiembre de 2013): 13399–411. http://dx.doi.org/10.1021/jp406691e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Dudek, John B., Peter B. Tarsa, Armando Velasquez, Mark Wladyslawski, Paul Rabinowitz y Kevin K. Lehmann. "Trace Moisture Detection Using Continuous-Wave Cavity Ring-Down Spectroscopy". Analytical Chemistry 75, n.º 17 (septiembre de 2003): 4599–605. http://dx.doi.org/10.1021/ac0343073.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Yan, W. B., Y. Chen, H. Chen, C. Krusen y P. T. Woods. "Development and Applications of Continuous-Wave Cavity Ring-Down Spectroscopy". International Journal of Thermophysics 29, n.º 5 (18 de junio de 2008): 1567–77. http://dx.doi.org/10.1007/s10765-008-0460-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Li Zhe, 李哲, 张志荣 Zhang Zhirong, 夏滑 Xia Hua, 孙鹏帅 Sun Pengshuai, 余润罄 Yu Runqing, 王华东 Wang Huadong y 吴边 Wu Bian. "连续波腔衰荡吸收光谱技术中的模式匹配研究". Chinese Journal of Lasers 49, n.º 4 (2022): 0411001. http://dx.doi.org/10.3788/cjl202249.0411001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Santamaria, Luigi, Valentina Di Sarno, Paolo De Natale, Maurizio De Rosa, Massimo Inguscio, Simona Mosca, Iolanda Ricciardi, Davide Calonico, Filippo Levi y Pasquale Maddaloni. "Comb-assisted cavity ring-down spectroscopy of a buffer-gas-cooled molecular beam". Physical Chemistry Chemical Physics 18, n.º 25 (2016): 16715–20. http://dx.doi.org/10.1039/c6cp02163h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Huang, Haifeng y Kevin K. Lehmann. "Sensitivity Limit of Rapidly Swept Continuous Wave Cavity Ring-Down Spectroscopy". Journal of Physical Chemistry A 115, n.º 34 (septiembre de 2011): 9411–21. http://dx.doi.org/10.1021/jp111177c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Humphries, Gordon S., Iain S. Burns y Michael Lengden. "Application of Continuous-Wave Cavity Ring-Down Spectroscopy to Laminar Flames". IEEE Photonics Journal 8, n.º 1 (febrero de 2016): 1–10. http://dx.doi.org/10.1109/jphot.2016.2517575.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Földes, T., P. Čermák, J. Rakovský, M. Macko, J. Krištof, P. Veis y P. Macko. "Electronic DFB laser switching for continuous wave cavity ring-down spectroscopy". Electronics Letters 46, n.º 7 (2010): 523. http://dx.doi.org/10.1049/el.2010.2360.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Tan Zhongqi, 谭中奇, 冯先旺 Feng Xianwang y 龙兴武 Long Xingwu. "Electrocircuit design and application in continuous-wave cavity ring-down spectroscopy system". High Power Laser and Particle Beams 23, n.º 6 (2011): 1483–86. http://dx.doi.org/10.3788/hplpb20112306.1483.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Continuous–wave cavity ring-down spectroscopy":

1

Castillo, Genevieve Montero. "Biosensor using evanescent wave cavity ring-down spectroscopy (EWCRDS)". abstract and full text PDF (free order & download UNR users only), 2007. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1447616.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Assali, Mohamed. "Réactivité des radicaux peroxyles étudiée par photolyse laser couplée aux techniques cw-CRDS et LIF". Electronic Thesis or Diss., Université de Lille (2018-2021), 2021. http://www.theses.fr/2021LILUR046.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
La dégradation des polluants organiques volatils, tels que les Composés Organiques Volatils (VOCs) dans les conditions troposphériques est généralement initiée par le principal oxydant qui est le radical OH, suivie par la formation des radicaux hydroproxyles HO2 et alkylperoxyles RO2 par réaction des produits de réaction avec l’oxygène. Le devenir de ces radicaux joue un rôle important dans la chimie de la troposphère. Ils sont étroitement liés au cycle qui contrôle la capacité oxydante de l’atmosphère et la formation d’ozone troposphérique. Dans un environnement pollué, la chimie des radicaux peroxyles est bien connue et de nombreux résultats expérimentaux sont disponibles dans la littérature. Dans un environnement propre (où la concentration en oxyde d’azote NOx (x=1,2) est faible) la réactivité entre HOx (x=1,2) et RO2 contrôle la chimie de la troposphère. Cependant, cette chimie n’est pas encore bien connue. Dans le cadre de cette thèse, des études cinétiques expérimentales ont été effectué afin de mieux comprendre les mécanismes d’oxydation de ces espèces. Un dispositif expérimental de photolyse laser couplée à des techniques spectroscopiques de détection résolues dans le temps : Spectroscopie à temps de déclin d’une cavité optique (cw-CRDS : continuous wave Cavity Ring-Down Spectroscopy) permettant la détection des radicaux HO2 et RO2 et Fluorescence induite par Laser (FIL) pour la détection des radicaux OH a été utilisé.Différents systèmes de réaction ont été étudié en utilisant la technique expérimentale mentionnée ci-dessus :1) la réaction de CH3C(O)O2 + CH3C(O)O2, et CH3C(O)O2 + CH3O2, 2) CH3C(O)CH2O2 + CH3C(O)CH2O2 et pour la première fois la réaction Cl + CH3C(O)CH2O2, 3) DO2 + DO2 et pour la première fois la réaction HO2 + DO2. Les constantes de vitesse ont été déterminé pour ces six réactions à température ambiante. Pour les quatre premières réactions différentes voies réactionnelles sont possible, et nous avons également déterminé le rapport de branchement de la voie menant à la formation des radicaux pour ces réactions
Degradation of volatile organic pollutants, such as Volatils Organic Compounds (VOCs), under tropospheric conditions is usually initiated by the main oxidant which is the OH radical, followed by the formation of hydroproxy radicals HO2 and alkylperoxy radicals RO2 by reaction of products with oxygen. The fate of these radicals plays an important role in tropospheric chemistry. They are closely linked to the cycle that controls the oxidative capacity of the atmosphere and the formation of tropospheric ozone. In a polluted environment, the influence of peroxy radicals is well known and many experimental results are available in the literature. In a clean environment (with low nitrogen oxides NOx (x=1,2) concentration) the reactivity between HOx (x=1,2) and RO2 controls tropospheric chemistry. However, this chemistry is not yet well known. In the frame of this thesis, experimental kinetic studies have been carried out to better understand the oxidation mechanisms of these species. An experimental laser photolysis device coupled with time-resolved spectroscopic detection techniques: continuous wave Cavity Ring-Down Spectroscopy (cw-CRDS) allowing the detection of HO2 and RO2 radicals and Laser Induced Fluorescence (LIF) for the detection of OH radicals was used.Different reaction systems were studied using the experimental technique mentioned above:1) the reaction of CH3C(O)O2 + CH3C(O)O2, and CH3C(O)O2 + CH3O2, 2) CH3C(O)CH2O2 + CH3C(O)CH2O2 and for the first time the reaction Cl + CH3C(O)CH2O2, 3) DO2 + DO2 and for the first time the reaction HO2 + DO2. The rate constants were determined for these six reactions at ambient temperature. For the first four different reaction pathways are possible, and we have also determined the branching ratio of the pathway leading to the formation of radicals for these reactions
3

Powell, Hayley Victoria. "Development and application of evanescent wave cavity ring-down spectroscopy as a probe of biologically relevant interfaces". Thesis, University of Warwick, 2009. http://wrap.warwick.ac.uk/3186/.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
The application of a hybrid instrument combining Evanescent Wave Cavity Ring-Down Spectroscopy (EW-CRDS) with electrochemical and fluidic methods is described. The electrochemical/fluidic methods were used to induce a surface process, the effects of which were subsequently monitored in situ and in real time with exquisite spectral sensitivity and excellent temporal resolution by EW-CRDS. The well-defined manner in which the surface processes were initiated allowed the extraction of kinetic rate constants by fitting the EW-CRDS data to mathematical models of the surface process coupled to convection-diffusion. The investigations described include: the study of the thermodynamics and kinetics of the adsorption of tris(bipyridine)ruthenium(II) ([Ru(bpy)3]2+) to polypeptide films using EW-CRDS with chronoamperometry; the real-time electrochemistry of cytochrome c immobilised on silica by EW-CRDS with chronoamperometry; the kinetics of adsorption and DNA-assisted desorption of 5,10,15,20-tetra(N-methylpyridinium-4-yl)porphyrin at the silica-water interface using EW-CRDS with an impinging jet flow cell; and the monitoring the adsorption of cationic phospholipid vesicles at the silica-aqueous interface and the interaction of 5,10,15,20-Tetraphenyl-21H, 23H-porphine-p,p′,p″,p′′′-tetrasulfonic acid tetrasodium hydrate with the resulting bilayer also using EW-CRDS with an impinging jet flow cell. The work described in this thesis provides a platform on which EW-CRDS can be used to study dynamics at biointerfaces, such as the association of ions, peptides, proteins and drugs with phospholipid bilayers, the electron transfer between redox enzymes in a biomimetic environment, and the lateral diffusion of protons, ions and proteins at biomembranes. Such studies are essential to the understanding of many important cellular processes in addition to the development and optimisation of a number of bio-inspired technologies.
4

Schnippering, Mathias. "Development and application of evanescent wave cavity ring-down spectroscopy for studies of electrochemical and interfacial processes". Thesis, University of Warwick, 2009. http://wrap.warwick.ac.uk/3787/.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
This thesis is concerned with the application of evanescent wave cavity ring-down spectroscopy (EW-CRDS) and evanescent wave broadband cavity enhanced absorption spectroscopy (EW-BB-CEAS) for studies of electrochemical and interfacial processes. These include nanoparticle adsorption/dissolution, polymer nanoparticle formation and surface-bound electrochemical redox reactions. Different experimental setups have been designed to investigate these systems. EW-CRDS is a surface sensitive technique, which allows absorption measurements at solid/liquid and solid/air interfaces. Surface reactions can easily be monitored in real time. A pulsed or modulated laser beam is coupled into an optical cavity which consists of at least one optical element, in which the beam is total internal reflected. At the position of total internal reflection (TIR), an evanescent field is established with the amplitude decaying exponentially with distance from the boundary. The evanescent field can be exploited to investigate the absorbance properties of the liquid phase in the first few hundred nanometres of the solution above the silica surface. These types of instruments have high temporal resolution (up to 2 kHz repetition rate), coupled with high sensitivity (minimum detectable interfacial absorbance per pass: ~80 ppm) which enables the investigation of a variety of processes relating to fundamental questions in the field of physical chemistry and materials science. The aforementioned sensitivity and resolution make EW-CRDS an ideal tool for those investigations, especially if combined with other techniques such as electrochemistry or microfluidic and hydrodynamic techniques. In this thesis, different instrumentational setups will be discussed. EW-BB-CEAS is another example for a TIR based absorption spectroscopic technique and can give additional spectral information about the investigated surface processes by employing broadband light such as supercontinuum radiation. In this case, the amplified light intensity within the optical cavity is measured rather than the light decay. By employing complementary techniques, such as electrochemistry and atomic force microscopy and by fitting experimental data using finite-element modelling, surface processes can not only be described accurately but also kinetic information such as rate constants for the aforementioned systems can be calculated.
5

Neil, Simon R. T. "Condensed-phase applications of cavity-based spectroscopic techniques". Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:4431e46e-1226-4950-aa5d-ce22e0309ba9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
This thesis describes the development and application of condensed-phase cavity-based spectroscopic techniques - namely cavity ring-down spectroscopy (CRDS); cavity enhanced absorption spectroscopy (CEAS); broadband cavity enhanced absorption spectroscopy (BBCEAS) and evanescent wave (EW) variants of all three. The recently-developed cavity technique of EW-broadband cavity enhanced absorption spectroscopy (EW-BBCEAS) has been used—in combination with a supercontinuum source (SC) and a sensitive, fast readout CCD detector—to record of the full visible spectrum (400–700 nm) of a silica-liquid interfacial layer (with an effective thickness ca. 1 µm), at rapid acquisition rates (> 600 Hz) that are sufficient to follow fast kinetics in the condensed phase, in real time. The sensitivity achieved (Amin= 3.9 x 10-5) is comparable with previous EW-CRDS and EW-CEAS studies, but the spectral region accessed in this broadband variant is much larger. The study of liquid|air interfaces using EW cavity-based techniques is also illustrated for the first time. The first application of BBCEAS to the analysis of microfluidic samples, flowing through a microfluidic chip, is illustrated. Proof-of-principle experiments are presented, demonstrating the technique’s ability to provide full visible broadband spectral measurements of flowing microfluidic droplets, with both high detection sensitivity (αmin < 10-2 cm-1) and excellent spatial and temporal resolution: an SC light source and sensitive, fast readout CCD allowed measurement repetition rates of 273 Hz, whilst probing a very small sample volume (ca. 90 nL). A significant portion of this thesis is devoted to demonstrating the powerful capabilities of CEAS, CRDS and BBCEAS in monitoring radical recombination reactions and associated magnetic field effects (MFEs) in solution. The efficacy of CEAS as a high-sensitivity MFE detection method has been established in a proof-of-principle study, using narrow band CEAS in combination with phase-sensitive detection: MFE-induced absorbance changes of ca. 10-6 could be detected using the modulated CEAS technique and the data are shown to be superior to those obtained using conventional transient absorption (TA) methods typically employed for MFE measurements. The powerful capabilities of CRDS in monitoring radical recombination reactions and associated MFEs are also demonstrated. In particular, a pump-probe CRDS variant allows not only high sensitivity (Amin on the order 10-6), but also sub-microsecond time-resolution. Combined, these features represent significant advantages over TA. Finally, SC-BBCEAS is used to measure full visible spectra of photoinduced reactions and their MFEs. The applicability of this approach to in vitro MFE studies of Drosophila cryptochrome is demonstrated—the results mark the first in vitro observation of a magnetic field response in an animal cryptochrome, a key result supporting the hypothesis that cryptochromes are involved in the magnetic sense in animals.
6

Li, Jing. "Applications of optical-cavity-based spectroscopic techniques in the condensed phase". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:d6a0c476-e67f-4390-a63a-e3cb9e60bf2c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Cavity ring-down spectroscopy (CRDS) and cavity enhanced absorption spectroscopy (CEAS) are two well-established absorption spectroscopic techniques originally developed for gas-phase samples. Condensed-phase applications of these techniques still remain rare, complicated as they are by additional background losses induced by condensed-phase samples as well as the intracavity components in which the sample is constrained. This thesis is concerned with the development and application of optical-cavity-based techniques in the condensed phase. Polarization-dependent evanescent wave CRDS (EW-CRDS) has been used to study the molecular orientation at the solid/air and solid/liquid interfaces. An increase in average orientation angle with respect to the surface normal has been observed for both methylene blue and coumarin molecules as a function of coverage at the fused silica/air interface. An orientation-angle-dependent photobleaching of pyridin molecules at the fused silica/methanol interface have also been observed. EW-CRDS has also been used to monitor slow in situ photobleaching of thin dye films deposited on the prism surface. The photobleaching dynamics is interpreted as a combination of first- and second-order processes. A significant fraction of this thesis has been devoted to studying magnetic field effects (MFEs) on the kinetics of the radical pair (RP) reactions in solution, in an effort to understand the ability of animals to sense the geomagnetic field. Two novel optical-cavity-based techniques – broadband CEAS (BBCEAS) and CRDS have been developed for this purpose. BBCEAS uses a supercontinuum (SC) source as the cavity light source and a CCD camera as photodetector, enabling simultaneous acquisition of absorption spectrum across the whole visible region (400 – 800 nm). In CRDS, a tunable optical parametric oscillator has been used as the cavity light source. Combined with the switching of external magnetic field (SEMF) method, this technique allows the decay kinetics of the geminate RPs to be monitored, with nanosecond resolution. Both BBCEAS and CRDS provide sensitivity superior to single-pass transient absorption (TA), a technique traditionally used in the MFE studies. A series of photochemical systems have been studied by BBCEAS and CRDS, respectively, among which, the MFEs of drosophila melanogaster cryptochrome has been observed. Importantly, this is the first time an MFE has been observed in an animal cryptochrome, and provides key supporting evidence for the cryptochrome hypothesis of magnetoreception in animals. Besides the optical-cavity-based techniques, a novel fluorescence detection method of MFEs has also been demonstrated. This technique proved ultrahigh sensitivity when applicable.
7

Yao, Yi-Ju y 姚奕如. "Study of DNA Interaction by Evanescent Wave Cavity Ring-Down Absorption Spectroscopy via Functionalized Gold Nanoparticles". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/86581380973834419624.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
碩士
國立臺灣大學
化學研究所
101
Evanescent wave cavity ring-down absorption spectroscopy (EW-CRDS) is employed to study the interaction between deoxyribonucleic acids (DNA) by functionalized gold nanoparticles (Au NPs). EW-CRDS is a surface sensitive technique based on the measurement of the decay rate of a pulsed laser light trapped in an optical cavity. The light undergoes total internal reflection (TIR) at an interface of a prism within the cavity and creates an evanescent field at the surface that is sensitive to small absorption changes and is particularly useful for investigating interfacial processes. EW-CRDS offers a significantly higher sensitivity than conventional absorption spectroscopy with a rather simple and straightforward experimental set-up. The high sensitivity results mainly from its independence of fluctuations of the light source and the extremely long effective path length realized in optical cavities. By applying this ultra-sensitive EW-CRDS to the observation of DNA, we were able to study the binding kinetics of DNA and obtain the association equilibrium constants (Ka) and the free energies (ΔG). Binding conditions such as changes in the salt concentration, buffer pH and temperature are systematically examined. This basic study gives further insight in the design of DNA detection for DNA mutation diseases.
8

Lin, Meng-Chen y 林孟蓁. "Study of Interaction between Crystal Violet and Sodium Dodecyl Sulfate on Silica/liquid Interface Using Evanescent-wave Cavity-ring Down Absorption Spectroscopy". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/06122943974013459887.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
碩士
國立臺灣大學
化學研究所
99
Abstract SDS (Sodium dodecyl sulfate, SDS) is an anionic surfactant that commonly used in many cleaners and hygiene products. At low surfactant concentration in aqueous solution, surfactant molecules exist the form of monomers. At surfactant concentrations above the critical micelle concentration(CMC), surfactant molecules in solution will spontaneously come together to form micelles (micelle), the formation of the micelle is usually detected by the changes in the physical properties of the solution, such as surface tension, conductivity or turbidity. Evanescent wave cavity ring-down spectroscopy (EW-CRDS) is based on the measurement of the decay rate of the light which goes back and forth (ring-down) in an optical cavity formed by two mirrors with extremely high reflectivity. There are two types of silanol groups at the silica/water interface with different pKa values, 4.9 and 8.5. With pKa = 4.9, the proton of the silanol group can easily dissociate, thus causing the interface to be negative. In our experiment, we choose crystal violet as molecular probes to determine surface critical micelle concentration (SCMC) of SDS. Similar, by the addition of NaCl electrolytes and changing the length of the chain of a hydrocarbon surfactant, we can obtain different surface CMC from the pure water.

Actas de conferencias sobre el tema "Continuous–wave cavity ring-down spectroscopy":

1

Leggett, Graham. "Continuous Wave Cavity Ring-Down Spectroscopy for Environmental Applications". En Optical Instrumentation for Energy and Environmental Applications. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/e2.2012.em4c.6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Thawoos, Shameemah, Arthur Suits y Nicolas Suas-David. "CONTINUOUS-WAVE CAVITY RING-DOWN SPECTROSCOPY IN A PULSED UNIFORM SUPERSONIC FLOW". En 72nd International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2017. http://dx.doi.org/10.15278/isms.2017.mk05.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Yalin, Azer, Lei Tao, Ryan Sullenberger, Masashi Oya, Naoji Yamamoto, Alec Gallimore, Timothy Smith y Timothy Smith. "High-Sensitivity Boron Nitride Sputter Erosion Measurements by Continuous-Wave Cavity Ring-Down Spectroscopy". En 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-5091.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Hahn, Jae y Jae Wan Kim. "Cavity ring-down spectroscopy with a continuous wave laser and analysis of the uncertainty in concentration measurement". En Laser Applications to Chemical and Environmental Analysis. Washington, D.C.: OSA, 2001. http://dx.doi.org/10.1364/lacea.2000.fd1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Ray, James M., Berley L. Rister y George M. Brooke. "Measurement of the Oxygen (1-0) band at 690 nm using Continuous-Wave Cavity Ring-down Spectroscopy". En Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.jwa65.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Pipino, A. C. R., I. M. P. Aarts, J. P. M. Hoefnagels, W. M. M. Kessels y M. C. M. van de Sanden. "Recent advances in evanescent-wave cavity ring-down spectroscopy". En 2005 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2005. http://dx.doi.org/10.1109/cleo.2005.202025.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Földes, Tomáš, K. Végsö, P. Čermák, P. Veis y P. Macko. "Cavity ring-down spectroscopy using telecom diode lasers". En 16th Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics. SPIE, 2008. http://dx.doi.org/10.1117/12.822352.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Pipino, Andrew C. R. y Joseph T. Hodges. "Evanescent-wave cavity ring-down spectroscopy for trace water detection". En Environmental and Industrial Sensing, editado por Tuan Vo-Dinh y Stephanus Buettgenbach. SPIE, 2001. http://dx.doi.org/10.1117/12.417432.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Pipino, Andrew C. R. "Evanescent wave cavity ring-down spectroscopy for ultrasensitive chemical detection". En Photonics East (ISAM, VVDC, IEMB), editado por Wim A. de Groot. SPIE, 1999. http://dx.doi.org/10.1117/12.337483.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Yang, Qiuxia, Zhiquan Li, Jubing Yan y Wei Liu. "New method of gas concentration measurement based on continuous wave cavity ring-down". En 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies, editado por Yudong Zhang, José Sasián, Libin Xiang y Sandy To. SPIE, 2010. http://dx.doi.org/10.1117/12.863841.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Continuous–wave cavity ring-down spectroscopy":

1

Christopher C. Carter. A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR. Office of Scientific and Technical Information (OSTI), septiembre de 2003. http://dx.doi.org/10.2172/823019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Christopher C. Carter. A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR. Office of Scientific and Technical Information (OSTI), marzo de 2004. http://dx.doi.org/10.2172/823949.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Christopher C. Carter. A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR. Office of Scientific and Technical Information (OSTI), diciembre de 2002. http://dx.doi.org/10.2172/828654.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Christopher C. Carter. A Cavity Ring-Down Spectroscopy Mercury Continuous Emission Monitor. Office of Scientific and Technical Information (OSTI), diciembre de 2004. http://dx.doi.org/10.2172/850501.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Christopher C. Carter, Ph D. A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR. Office of Scientific and Technical Information (OSTI), abril de 2003. http://dx.doi.org/10.2172/820567.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Christopher C. Carter, Ph D. A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR. Office of Scientific and Technical Information (OSTI), junio de 2003. http://dx.doi.org/10.2172/821847.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Williams, Richard M., Warren W. Harper, Pam M. Aker, Jason S. Thompson y Timothy L. Stewart. Chemical Sensing Using Infrared Cavity Enhanced Spectroscopy: Short Wave Infrared Cavity Ring Down Spectroscopy (SWIR CRDS) Sensor. Office of Scientific and Technical Information (OSTI), octubre de 2003. http://dx.doi.org/10.2172/15010546.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Pipino, Andrew C. R. Miniature Chemical Sensor Combining Molecular Recognition with Evanescent Wave Cavity Ring-Down Spectroscopy. Office of Scientific and Technical Information (OSTI), junio de 2001. http://dx.doi.org/10.2172/834660.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Pipino, Andrew C. R. y Curtis W. Meuse. Miniature Chemical Sensor Combining Molecular Recognition with Evanescent Wave Cavity Ring-Down Spectroscopy. Office of Scientific and Technical Information (OSTI), junio de 2002. http://dx.doi.org/10.2172/834661.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Pipino, Andrew C. R. y Curtis W. Meuse. Miniature Chemical Sensor combining Molecular Recognition with Evanescent Wave Cavity Ring-Down Spectroscopy. Office of Scientific and Technical Information (OSTI), junio de 2003. http://dx.doi.org/10.2172/834664.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Pasar a la bibliografía