Literatura académica sobre el tema "Contact mechanism"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Contact mechanism".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Contact mechanism"
Mankame, Nilesh D. y G. K. Ananthasuresh. "A Novel Compliant Mechanism for Converting Reciprocating Translation Into Enclosing Curved Paths". Journal of Mechanical Design 126, n.º 4 (1 de julio de 2004): 667–72. http://dx.doi.org/10.1115/1.1759360.
Texto completoKO, Young-Joon, Dong Woo LEE y Jonghoon JUNG. "Mechanism of Contact Electrification". Physics and High Technology 30, n.º 1/2 (28 de febrero de 2021): 2–6. http://dx.doi.org/10.3938/phit.30.001.
Texto completoAskerov, Shahlar Gachayogli, M. G. Gasanov y L. KAbdullayeva. "The Influence of the Metal Microstructure on the Breakdown Mechanism of Schottky Diodes". Materials Physics and Chemistry 1, n.º 1 (15 de octubre de 2018): 1. http://dx.doi.org/10.18282/mpc.v1i1.565.
Texto completoQiu, Hao Dong y Hong Wang. "Studies on Quasi-Static Au-to-Au Ohmic Contact for MEMS Switches". Advanced Materials Research 254 (mayo de 2011): 136–39. http://dx.doi.org/10.4028/www.scientific.net/amr.254.136.
Texto completoBecker, Detlef y Jurgen Knop. "Mechanism in allergic contact dermatitis". Experimental Dermatology 2, n.º 2 (abril de 1993): 63–69. http://dx.doi.org/10.1111/j.1600-0625.1993.tb00010.x.
Texto completoShimizu, H., Y. Yokota, M. Mizuno y T. Kurokawa. "Wear mechanism in contact tube". Science and Technology of Welding and Joining 11, n.º 1 (febrero de 2006): 94–105. http://dx.doi.org/10.1179/174329306x77885.
Texto completoKhurramov, Shavkat, Shukhrat Hurramov y Akmal Sultonov. "Contact friction in roller mechanisms". E3S Web of Conferences 548 (2024): 06017. http://dx.doi.org/10.1051/e3sconf/202454806017.
Texto completoHuang, Weiqing, Qunyou Zhong, Dawei An, Chenglong Yang y Yi Zhang. "Mechanism and Experiment Study of Non-Contact Ultrasonic Assisted Grinding". Actuators 10, n.º 9 (14 de septiembre de 2021): 238. http://dx.doi.org/10.3390/act10090238.
Texto completoKuchuk, Andrian V., Krystyna Gołaszewska, Vasyl P. Kladko, M. Guziewicz, Marek Wzorek, Eliana Kamińska y Anna Piotrowska. "The Formation Mechanism of Ni-Based Ohmic Contacts to 4H-n-SiC". Materials Science Forum 717-720 (mayo de 2012): 833–36. http://dx.doi.org/10.4028/www.scientific.net/msf.717-720.833.
Texto completoMAKABE, Chobin, Tateki YAFUSO, Takeshi SUZUKI y Hideo YARA. "Effect of Contact Conditions on Mechanism of Rolling Contact Fatigue." Journal of the Society of Materials Science, Japan 50, n.º 12 (2001): 1311–16. http://dx.doi.org/10.2472/jsms.50.1311.
Texto completoTesis sobre el tema "Contact mechanism"
Dahlberg, Johan. "On the asperity point load mechanism for rolling contact fatigue". Doctoral thesis, Stockholm : Hållfasthetslära, Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4569.
Texto completoCai, Feng. "Evaluation of the mechanism of hypersensitivity to contact lens preseratives". Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61754.
Texto completoAlfredsson, Bo. "A study on contact fatigue mechanisms". Doctoral thesis, Stockholm, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3028.
Texto completoGallagher, Christopher T. "Contact force control for continuous scanning coordinate measuring machines". Thesis, Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/17319.
Texto completoYoshida, Mutsumi. "Mechanism of biomaterial adjuvant effect phenotype of dendritic cells upon biomaterial contact /". Diss., Available online, Georgia Institute of Technology, 2005, 2005. http://etd.gatech.edu/theses/available/etd-07152005-141108/.
Texto completoBabensee, Julia, Committee Chair ; Andres Garcia, Committee Member ; Mary Marovich, Committee Member ; Barbara Boyan, Committee Member ; Elliot Chaikof, Committee Member ; Cheng Zhu, Committee Member.
Torres, James Ph D. Massachusetts Institute of Technology. "Large gain amplification mechanism for piezoelectric actuators utilizing a rolling contact joint". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/74948.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (p. 55-56).
Due to the limited displacement of piezoelectric stack actuators, common practice is to use some form of displacement amplification mechanism. An efficient, heavy-duty displacement amplification mechanism for piezoelectric stack actuators is presented in this thesis. The displacement amplification gain is increased by a factor of more than 100 in a single stage by using a buckling mechanism combined with a novel rolling contact design. Unlike traditional flexure-type monolithic mechanisms, which are accurate but inefficient and fragile, the new mechanism consists of all rolling contact couples, providing high stiffness, durability and energy efficient characteristics. Furthermore, a new design of pre-loading mechanism using shape memory alloy doubles the possible cyclic work output and provides a desirable restoring force for constraining the rolling contact mechanism stably and efficiently. This mechanism is intended to be interfaced with a sinusoidal gear cam that acts as the load. The dynamics of the system are derived and are shown to be fifth order. Due to the significantly nonlinear amplification caused by the buckling phenomenon and the gear, the dynamics are run in simulation to gain insight into the dynamic performance of the actuator. There is shown to be an optimal speed at which to run the actuator to maximize the possible power output. Furthermore, due to the simple binary control significant benefits are achieved by varying the control timing based on the velocity to ensure the force and velocity of the output are in phase. Finally, a prototype was constructed to compare to the static model. The prototype had a peak to peak displacement of 6.8 mm, an amplification of over 150, and produced a peak charged force of 56 Newtons.
by James Torres.
S.M.
Jon, Sundh. "On wear transitions in the wheel-rail contact". Doctoral thesis, KTH, Maskinkonstruktion (Avd.), 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11563.
Texto completoQC 20100721
Samba 6
Amuzuga, Kwassi. "Damage mechanism related to plasticity around heterogeneous inclusions under rolling contact loading in hybrid bearings ceramic/steel". Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI154.
Texto completoThe lifetime of contacting mechanical parts is strongly affected by the presence of heterogeneities in their materials, such as reinforcements (fibers, particles), precipitates, porosities, or cracks. Hard heterogeneities having complex forms can create local overstress that initiating fatigue cracks near the contact surface. The presence of heterogeneities influences the physical and mechanical properties of the material at microscopic and macroscopic scales. A quantitative analysis of the over-stresses generated by heterogeneities is necessary to the comprehension of the damage mechanisms. The present study is applied to rolling bearings which are the critical elements of the aero-engine's mainshaft. The performance required for these bearings, led SKF Aerospace to introduce a new technology of hybrid bearing with ceramic rolling elements on high-strength steels having experienced a double surface treatment (carburizing followed by nitriding). The study aims to precisely determine the pressure field distribution on the effective contact area and to predict the profile and the evolution of the stress/strain fields at each loading cycle on a representative elementary volume that takes into account the gradient of hardness, the presence of carbides and the existence of an initial compressive stress from thermochemical origin. A major part of this study is devoted to develop a heterogeneous elastic-plastic rolling contact solver, by semi-analytical methods ensuring an excellent saving of calculation time and resources. Thereafter, a homogenization algorithm was built to analyze the effective behavior of a heterogeneous elastic-plastic half-space subjected to an indentation loading. Finally, an experimental part is dedicated to the microstructure characterization of the studied steels with intent to determine their properties. A description of the carbides behavior inside the matrix during micro-tensile tests was carried out under SEM in-situ observation. In the scheme of all analyses conducted in the present work, it can be argued that, although the heterogeneities (such as carbides or nitrides) are responsible for the high resistance of the studied materials, some of them (those whose length exceeds tens of micrometer or those which form stringers in a particular direction) become, over fatigue cycles, the main sources of damage, from their local scale up to the macroscopic failure of the structure
Lin, Yun Materials Science & Engineering Faculty of Science UNSW. "Contact deformation mechanism of complex carbon nitride and metal nitride based bi-layer coatings". Awarded by:University of New South Wales. Materials Science & Engineering, 2009. http://handle.unsw.edu.au/1959.4/44544.
Texto completoCain, Jason James. "Collision Analysis of the Reversible Crankshaft Mechanism in a Convertible Refrigeration Compressor". Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/33479.
Texto completoMaster of Science
Libros sobre el tema "Contact mechanism"
United States. Government Accountability Office. Federal contact centers: Mechanism for sharing metrics and oversight practices along with improved data needed. Washington, DC: GAO, 2006.
Buscar texto completoSnow, Edward Ramsey. Advances in grasping and vehicle contact identification: Analysis, design and testing of robust methods for underwater robot manipulation. Cambridge, Mass: Massachusetts Institute of Technology, 1999.
Buscar texto completoRaous, M., M. Jean y J. J. Moreau, eds. Contact Mechanics. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1983-6.
Texto completoMartins, João A. C. y Manuel D. P. Monteiro Marques. Contact Mechanics. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-1154-8.
Texto completoBarber, J. R. Contact Mechanics. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70939-0.
Texto completoJohnson, K. L. Contact mechanics. Cambridge: CUP, 1985.
Buscar texto completoL, Johnson K. Contact mechanics. Cambridge [Cambridgeshire]: Cambridge University Press, 1987.
Buscar texto completoL, Johnson K. Contact mechanics. Cambridge [Cambridgeshire]: Cambridge University Press, 1985.
Buscar texto completoRaous, M. Contact Mechanics. Boston, MA: Springer US, 1995.
Buscar texto completoM, Raous, Jean M, Moreau J. J. 1923- y Contact Mechanics International Symposium (2nd : 1994 : Carry-le-Rouet, France), eds. Contact mechanics. New York: Plenum Press, 1995.
Buscar texto completoCapítulos de libros sobre el tema "Contact mechanism"
Rozas-Muñoz, Eduardo y Esther Serra-Baldrich. "Wheals and Eczema: Pathogenic Mechanism in Immediate Contact Reactions". En Contact Urticaria Syndrome, 65–73. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89764-6_6.
Texto completoLateş, M. T., C. C. Gavrilă y R. Papuc. "Frictional Contact Study of the Chain Link/Polyamide Contact". En New Advances in Mechanism and Machine Science, 497–506. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-79111-1_49.
Texto completoHejnová, M. y J. Ondrášek. "Life Estimation of the Contact Surfaces". En Advances in Mechanism Design II, 43–49. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44087-3_6.
Texto completoŠvígler, J. "Kinematic Analysis of Screw Surface Contact". En New Trends in Mechanism Science, 63–72. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9689-0_8.
Texto completoTrubachev, Evgenii S. "Synthesis of Contact in Loaded Multi-pair Gears with a Big Contact Ratio". En Advances in Mechanism and Machine Science, 75–83. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-45709-8_8.
Texto completoPleguezuelos, M., J. I. Pedrero y M. B. Sánchez. "Load Sharing and Contact Stress Calculation of High Contact Ratio Internal Spur Gears". En New Trends in Mechanism and Machine Science, 771–78. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09411-3_81.
Texto completoOndrášek, Jiří. "Equivalent Contact Length of Load Disks and Specimen". En Advances in Mechanism Design III, 62–69. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83594-1_7.
Texto completoPugliese, Giovanni, Enrico Ciulli y Francesco Fazzolari. "Experimental aspects of a cam-follower contact". En Advances in Mechanism and Machine Science, 3815–24. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20131-9_378.
Texto completoChen, Yangzhi y Xiongdun Xie. "Planar Helix Driving Contact Curve Line Gear Mechanism". En Advances in Mechanical Design, 11–22. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6553-8_2.
Texto completoWang, Mingyang, Shuwen Li y Yuehai Sun. "Tooth Flank Modification of Line Contact Spiral Bevel Gears". En Advances in Mechanism and Machine Science, 35–44. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-45709-8_4.
Texto completoActas de conferencias sobre el tema "Contact mechanism"
Robson, Nina y Aaron Lee. "Spatial Mechanism-Environment Contact Geometric Models". En ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-71380.
Texto completoJones, Matthew H. y Steven A. Velinsky. "Contact Kinematics in the Roller Screw Mechanism". En ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70254.
Texto completoChen, Y. Z., Z. Chen y Y. Zhang. "Contact Ratio of Spatial Helix Gearing Mechanism". En ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86232.
Texto completoHyland, Jennifer E., Mary I. Frecker y George A. Lesieutre. "Optimization of Honeycomb Contact-Aided Compliant Cellular Mechanism for Strain Energy Absorption". En ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71115.
Texto completoJiang, Hongkui, Xianchun Song, Xiangrong Xu, Wencheng Tang, Chunling Zhang y Yuming Han. "Multibody Dynamics Simulation of Balls Impact-Contact Mechanics in Ball Screw Mechanism". En 2010 International Conference on Electrical and Control Engineering (ICECE). IEEE, 2010. http://dx.doi.org/10.1109/icece.2010.328.
Texto completoWada, Shin-ichi y Koichiro Sawa. "Degradation Phenomena of Electrical Contacts Using Hammering Oscillating Mechanism and Micro-Sliding Mechanism- Contact Resistance and Its Model". En 2011 IEEE 57th Holm Conference on Electrical Contacts (Holm 2011). IEEE, 2011. http://dx.doi.org/10.1109/holm.2011.6034821.
Texto completoLin, M. C., B. Ravani y S. A. Velinsky. "Kinematics of the Ball Screw Mechanism". En ASME 1991 Design Technical Conferences. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/detc1991-0141.
Texto completoKang, Young Sup, Ryan D. Evans y Gary L. Doll. "Contact Mechanism of Tribological Coatings With Columnar Microstructure". En STLE/ASME 2008 International Joint Tribology Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ijtc2008-71119.
Texto completoAguirre, Milton E. y Mary Frecker. "Design of a Multi-Contact-Aided Compliant Mechanism". En ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48637.
Texto completoFont, G., J. Soldi, C. Pere y D. Hastings. "Arcing mechanism of wrap-through-contact solar cells". En 33rd Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-597.
Texto completoInformes sobre el tema "Contact mechanism"
Lever, James, Emily Asenath-Smith, Susan Taylor y Austin Lines. Assessing the mechanisms thought to govern ice and snow friction and their interplay with substrate brittle behavior. Engineer Research and Development Center (U.S.), diciembre de 2021. http://dx.doi.org/10.21079/1168142742.
Texto completoLever, James, Susan Taylor, Arnold Song, Zoe Courville, Ross Lieblappen y Jason Weale. The mechanics of snow friction as revealed by micro-scale interface observations. Engineer Research and Development Center (U.S.), diciembre de 2021. http://dx.doi.org/10.21079/11681/42761.
Texto completoMuñoz Fernandez, Cristina y Patricia Henriquez. IDB Environmental and Social Grievance Protocol: 2023 Annual Report. Inter-American Development Bank, septiembre de 2024. http://dx.doi.org/10.18235/0013137.
Texto completoParkins. L51743 Stress Corrosion Cracking of Pipelines in Contact with Near-Neutral pH Solutions. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), julio de 1995. http://dx.doi.org/10.55274/r0010322.
Texto completoIbáñez, Ana María, Sandra Rozo y Maria J. Urbina. Forced Migration and the Spread of Infectious Diseases. Inter-American Development Bank, noviembre de 2020. http://dx.doi.org/10.18235/0002894.
Texto completoGuduru, Pradeep R. Biologically Inspired Nano-Contact Mechanics. Fort Belvoir, VA: Defense Technical Information Center, julio de 2009. http://dx.doi.org/10.21236/ada503356.
Texto completoTaylor, Karen, Emily Moynihan y Information Technology Laboratory (U S. ). Information Science and Knowledge Management Branch. The Forefront : A Review of ERDC Publications, Spring 2021. Engineer Research and Development Center (U.S.), junio de 2020. http://dx.doi.org/10.21079/11681/40902.
Texto completoTupek, Michael y Brandon Talamini. Optimization-based algorithms for nonlinear mechanics and frictional contact. Office of Scientific and Technical Information (OSTI), septiembre de 2021. http://dx.doi.org/10.2172/1820695.
Texto completoBarbir, A., B. Cain, R. Nair y O. Spatscheck. Known Content Network (CN) Request-Routing Mechanisms. RFC Editor, julio de 2003. http://dx.doi.org/10.17487/rfc3568.
Texto completoBurger, E., ed. A Mechanism for Content Indirection in Session Initiation Protocol (SIP) Messages. RFC Editor, mayo de 2006. http://dx.doi.org/10.17487/rfc4483.
Texto completo