Literatura académica sobre el tema "Contact interface"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Contact interface".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Contact interface"
Kim, Youngbeom, Sungho Choi, Kyung-Young Jhang y Taehyeon Kim. "Experimental Verification of Contact Acoustic Nonlinearity at Rough Contact Interfaces". Materials 14, n.º 11 (31 de mayo de 2021): 2988. http://dx.doi.org/10.3390/ma14112988.
Texto completoVANDAMME, L. K. J. "CHARACTERIZATION OF CONTACT INTERFACE, FILM SHEET RESISTANCE AND 1/f NOISE WITH CIRCULAR CONTACTS". Fluctuation and Noise Letters 10, n.º 04 (diciembre de 2011): 467–84. http://dx.doi.org/10.1142/s0219477511000740.
Texto completoNimmala, Seshu, S. Aria Hosseini, Jackson Harter, Todd Palmer, Eric Lenz y P. Alex Greaney. "Characterizing Macroscopic Thermal Resistance Across Contacting Interfaces Through Local Understanding of Thermal Transport". MRS Advances 3, n.º 44 (2018): 2735–41. http://dx.doi.org/10.1557/adv.2018.485.
Texto completoYang, Ai Mei, Gui Zhong Li, Shao Ying Zhen y Lai Jun Liu. "Electrode Interface Polarization in BaTiO3-Based PTC Ceramics". Key Engineering Materials 697 (julio de 2016): 248–52. http://dx.doi.org/10.4028/www.scientific.net/kem.697.248.
Texto completoShi, Linquan y Qiang Li. "Numerical simulation and experimental study of contact thermal resistance under high temperature conditions". Thermal Science and Engineering 5, n.º 1 (27 de febrero de 2022): 1. http://dx.doi.org/10.24294/tse.v5i1.1523.
Texto completoBanerjee, Sneha y Peng Zhang. "Review of recent studies on nanoscale electrical junctions and contacts: Quantum tunneling, current crowding, and interface engineering". Journal of Vacuum Science & Technology A 40, n.º 3 (mayo de 2022): 030802. http://dx.doi.org/10.1116/6.0001724.
Texto completoKartal, Mehmet E., Daniel M. Mulvihill, David Nowell y Dawid A. Hills. "Measurement of Tangential Contact Stiffness in Frictional Contacts: The Effect of Normal Pressure". Applied Mechanics and Materials 70 (agosto de 2011): 321–26. http://dx.doi.org/10.4028/www.scientific.net/amm.70.321.
Texto completoLiu, Yuwei, Yameng Ji, Fuhao Ye, Weizheng Zhang y Shujun Zhou. "Effects of contact pressure and interface temperature on thermal contact resistance between 2Cr12NiMoWV/BH137 and γ-TiAl/2Cr12NiMoWV interfaces". Thermal Science 24, n.º 1 Part A (2020): 313–24. http://dx.doi.org/10.2298/tsci191018470l.
Texto completoNouira, Dorra, Davide Tonazzi, Anissa Meziane, Laurent Baillet y Francesco Massi. "Numerical and Experimental Analysis of Nonlinear Vibrational Response due to Pressure-Dependent Interface Stiffness". Lubricants 8, n.º 7 (10 de julio de 2020): 73. http://dx.doi.org/10.3390/lubricants8070073.
Texto completoHuang, Lingqin, Sumin Pan, Xuliang Deng y Wenwen Cui. "4H-SiC Ohmic contacts formation by MoS2 layer intercalation: A first-principles study". Journal of Applied Physics 132, n.º 24 (28 de diciembre de 2022): 245702. http://dx.doi.org/10.1063/5.0122722.
Texto completoTesis sobre el tema "Contact interface"
Bonari, Jacopo. "Novel interface discretisation methods for contact mechanics". Thesis, IMT Alti Studi Lucca, 2021. http://e-theses.imtlucca.it/326/1/Bonari_phdthesis.pdf.
Texto completoQuinn, Amy May. "The study of contact phenomena using ultrasound". Thesis, University of Bristol, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271847.
Texto completoJason, Bronwin Anastasia. "An adaptive user interface model for contact centres". Thesis, Nelson Mandela Metropolitan University, 2008. http://hdl.handle.net/10948/989.
Texto completoChevallier, Eddy. "Définition d'indices de qualité du contact glissant métallique : signature électrique de l'état de surface". Amiens, 2014. http://www.theses.fr/2014AMIE0119.
Texto completoThe thesis is about the construction of a phenomenology of the slippery contact based on a multi- physical approach of the contact. Pressing us on an experimental characterization very rich in the slippery electric contact, we built a theoretical model (of probability nature) and digital technology resulting among others in the evaluation of the quality of the contact through diverse quality index combining the relevant sizes of the contact, quite accessible to the measure. The model takes into account, besides the mechanics of the contact, the determinist and random components (profiles of roughness) of the geometry of surfaces involvements. The development of the digital model can be made according to two very different strategies. The first one joins characteristics of previous reference models (Greenwood-Williamson). The second offer the additional benefit of a study of the performances of the contact according to the nature of materials. Of our statistical model emerges a new concept, the entropy of contact, so called because of its big similarity with the usual entropy. Appearing as a functional of the state of surface (geometry, chemical unhomogeneity), this size presents a big sensibility in the conditions of contact such as the speed of sliding and the strength of tackle of the contact, influencing directly the transfer of electric signals through the contact. It so opens the double perspective of a thermodynamics of the slippery contact and the optimization
Singh, Akash. "An intelligent user interface model for contact centre operations". Thesis, Nelson Mandela Metropolitan University, 2007. http://hdl.handle.net/10948/d1011399.
Texto completoNouira, Dorra. "Non-linear interactions between US waves and contact interface". Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0262.
Texto completoThe past decades have been marked by a significant increase in research interest in nonlinearities in cracked solids. As a result a number of different nonlinear methods have been developed for damage detection. However, there still limited understanding of physical mechanisms related to the various nonlinearities due to contacts. This thesis is addressed to study the nonlinear interaction between a wave and an interface while taking into account adhesion, in order to, eventually, propose an efficient NDT method for characterization of contact interfaces. The study of the second-harmonic evolution to characterize the damage will be the focus of this work. The nonlinear interaction between a longitudinal wave and a contact interface is considered in one-dimensional medium by using the Finite Elements method.Numerically, the contact interface is modelled by combining two approaches. One is based on acoustic methods and used in traction, while the other one is based on vibration methods and used in compression. The first one, consists in modelling the contact with an RCCM law. The study propose a detailed analysis on the interface behaviour in traction while taking into account the adhesion. It allows identifying the key parameters that govern the nonlinear signature of the RCCM contact law and so better understanding the interaction between a compression wave and a contact interface that exhibits adhesion in traction. The second one, used in compression, is based on a nonlinear interface stiffness model where the stiffness property of the contact interface is described as a function of the nominal contact pressure. The study consists in a complementary numerical and experimental analysis of nonlinear vibrational response due to the contact interface. It shows that the stiffness-pressure trend at lower pressures has a major effect on the nonlinear response of systems with contact interfaces.Finally, in order to exploit the proposed contact law defined in compression and traction, a strategy to identify the interface parameters during the interaction between a wave and an interface is proposed. The numerical results are promising in view of the characterization of contact interfaces
MOISELLO, ELISABETTA. "Integrated Interface Circuits for MEMS Contact-less Temperature Sensors". Doctoral thesis, Università degli studi di Pavia, 2020. http://hdl.handle.net/11571/1370177.
Texto completoThermal sensors, exploiting the relation between the thermal radiation emitted by an object and its temperature, as expressed by the Stefan-Boltzmann law, allow realizing contact-less temperature measurements, required in a wide range of applications, ranging from fever measurements to presence detection for security and climate control systems. With the advent of smart homes and Internet of Things (IoT) and the wide spreading of mobile and wearable devices, the need for low-cost low-power thermal sensors has arisen, therefore moving the focus of the research away from standard bolometers and pyroelectric detectors and towards uncooled infrared (IR) sensors solutions that can be easily integrated. Bolometers and pyroelectric detectors, which are the main types of thermal sensors found nowadays on the market, in fact, do not comply with the low-cost and easy integration specifications. Integration of thermal sensors is possible through Micro-Electro Mechanical Systems (MEMS) technology, which allows combining on the same substrate or chip both electrical and mechanical structures with dimensions in the micro-meter range, thus providing structures with high thermal isolation and low thermal mass. The micromachining processes that are required to thermally isolate the sensing element from the substrate are versatile and include anisotropic wet etching, dry and wet etching, electrochemical etch stop, or the use of silicon-on-insulator (SOI). In this scenario, STMicroelectronics has fabricated two different novel thermal sensors, which fulfill the low-cost low-power specifications for smart homes, IoT and mobile and wearable devices, while also being compatible with CMOS processes and thus easily integrated: a polysilicon thermopile and a micromachined CMOS transistor, from now on referred to as TMOS. During my Ph.D. activity I was involved in a cooperation between the STMicroelectronics Analog MEMS and Sensors R&D group and the University of Pavia, that led to the design of two readout circuits specifically tailored on the sensors characteristics, one for the thermopile sensor and one for the TMOS (developed by the Technion-Israel Institute of Technology), which were integrated in two test-chip prototypes and thoroughly characterized through measurements as stand-alone devices and as a system with the sensor they were designed for.
Sankar, Gopal Ravi. "An investigation into a natural language interface for contact centers". Thesis, Nelson Mandela Metropolitan University, 2009. http://hdl.handle.net/10948/890.
Texto completoRai, Yugal. "In-situ interface chemical characterisation of a boundary lubricated contact". Thesis, University of Leeds, 2015. http://etheses.whiterose.ac.uk/12191/.
Texto completoGonzalez, Franck. "Contributions au développement d'une interface haptique à contacts intermittents". Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066068/document.
Texto completoHaptic interfaces allow an operator to interact with a virtual environment through the sense of touch. Nowadays, most existing interfaces are mechanically connected to the user's hand throughout the simulation. Therefore he or she interacts with the virtual environment by means of a handle. Thus the interaction is neither natural nor intuitive, and the permanent connection between the robot and the operator is the source of perturbations which prevent the interaction from being perfectly transparent and realistic. The goal of this study is to increase transparency as much as possible by disconnecting the robot from the user when s/he is not in contact with the virtual environment, through the design of a dexterous haptic interface allowing for a more natural interaction than with a classical interface taking into account only one contact point. A state-of-the-art of dexterous haptic interfaces and another for intermittent contact devices are first gathered, and the human performances that should be taken into account for the design of a dexterous haptic interface are analysed. A bidirectional end-effector for intermittent contact is then devised. It is set up at the tip of a haptic interface and several solutions are tested for its control. The performances of six users are compared on the context of a contact detection task, first using the intermittent contact end-effector, then using a classical haptic device. A methodology for the choice of the hand contact areas that should be taken into account in the design of a dexterous haptic interface to enhance the naturalness of the interaction is proposed. Finally, some perspectives are given as for the extension of this study for the design of a dexterous encounter-type haptic interface
Libros sobre el tema "Contact interface"
Kikuchi, Masato. A non-contact computer interface. Manchester: UMIST, 1994.
Buscar texto completo(Firm), Knovel, ed. Wheel-rail interface handbook. Boca Raton, FL: CRC Press, 2009.
Buscar texto completoVladimír, Kolář. Contact stress and settlement in the structure-soil interface. Prague: Academia, 1991.
Buscar texto completoAssociation, International Heavy Haul. Guidelines to best practices for heavy haul railway operations: Wheel and rail interface issues. Virginia Beach, Va: International Heavy Haul Association, 2001.
Buscar texto completoMcKay, Iain. The strategic desktop: Usability engineering for the contact centre workstation. Edinburgh: Spotlight, 2003.
Buscar texto completoPortuguese-Spanish interfaces: Diachrony, synchrony, and contact. Amsterdam: John Benjamins Publishing Company, 2014.
Buscar texto completoJim, McKim, ed. Design by contract, by example. Boston, Mass: Addison Wesley, 2002.
Buscar texto completoDavid, Riha, Southwest Research Institute y United States. National Aeronautics and Space Administration., eds. NESSUS/NASTRAN interface: Final report, NASA contract NAS8-39797, SwRI project 06-7212. [Washington, DC: National Aeronautics and Space Administration, 1996.
Buscar texto completoKhatamian, D. Hydrogen traps in the oxide/alloy interface region of Zr-Nb alloys. Chalk River, Ont: Reactor Materials Research Branch, Chalk River Laboratories, 1995.
Buscar texto completoGregory, Jerkiewicz, Feliu Juan M, Popov Branko N, Electrochemical Society Meeting, Electrochemical Society. Physical Electrochemistry Division. y International Symposium on Hydrogen Surfaces and Interfaces (2000 : Toronto, Ont.), eds. Hydrogen at surface and interfaces: Proceedings of the international symposium. Pennington, NJ: Electrochemical Society, Inc., 2000.
Buscar texto completoCapítulos de libros sobre el tema "Contact interface"
Tadros, Tharwat. "Contact Angle". En Encyclopedia of Colloid and Interface Science, 147. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-20665-8_55.
Texto completoCollins, W. D., M. S. Khalil, S. Quegan, D. Smith y D. A. W. Taylor. "Interface Pressures in Contact Zones". En European Consortium for Mathematics in Industry, 121–24. Wiesbaden: Vieweg+Teubner Verlag, 1992. http://dx.doi.org/10.1007/978-3-663-09834-8_20.
Texto completoWang, Yansong. "Friction in Conformal Contact Interface". En Encyclopedia of Tribology, 1311–15. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_31.
Texto completoLangbein, Dieter. "Interface Tension and Contact Angle". En Springer Tracts in Modern Physics, 21–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45267-2_2.
Texto completoFitzgerald, R. H. "Calcar/Collar Contact in Cemented Total Hip Arthroplasty". En Implant Bone Interface, 147–48. London: Springer London, 1990. http://dx.doi.org/10.1007/978-1-4471-1811-4_20.
Texto completoLaursen, Tod A. "Tribological Complexity in Interface Constitutive Models". En Computational Contact and Impact Mechanics, 211–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-04864-1_6.
Texto completoSessarego, Sandro. "Contact-driven restructuring at the interface". En Interface-Driven Phenomena in Spanish, 192–220. 1. | New York : Routledge, 2020. | Series: Routledge studies in Hispanic and Lusophone linguistics: Routledge, 2020. http://dx.doi.org/10.4324/9781003006855-10.
Texto completoPastor, Elsa. "Direct Flame Contact". En Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires, 1–7. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-51727-8_64-1.
Texto completoPastor, Elsa. "Direct Flame Contact". En Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires, 221–26. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-52090-2_64.
Texto completoWang, Q. Jane y Shangwu Xiong. "Elasticity for Closely Conformal Contact Interface". En Encyclopedia of Tribology, 859–66. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_25.
Texto completoActas de conferencias sobre el tema "Contact interface"
Mootheri, Vivek, Albert Minj, Goutham Arutchelvan, Alessandra Leonhardt, Inge Asselberghs, Marc Heyns, Iuliana Radu y Dennis Lin. "Contact Interface Characterization of Graphene contacted MoS2 FETs". En 2021 IEEE International Interconnect Technology Conference (IITC). IEEE, 2021. http://dx.doi.org/10.1109/iitc51362.2021.9537337.
Texto completoCaven, R. W. y J. Jalali. "Predicting the contact resistance distribution of electrical contacts by modeling the contact interface". En Electrical Contacts - 1991 Proceedings of the Thirty-Seventh IEEE HOLM Conference on Electrical Contacts. IEEE, 1991. http://dx.doi.org/10.1109/holm.1991.170807.
Texto completoMax Kiessling, Jonathan, Thomas Maier, Simon Wiesenfarth y Stephan Mayer. "User-centered design of an adaptively morphing human-machine interface". En 14th International Conference on Applied Human Factors and Ergonomics (AHFE 2023). AHFE International, 2023. http://dx.doi.org/10.54941/ahfe1003182.
Texto completoTong, Tao, Yang Zhao, Lance Delzeit, Ali Kashani y Arun Majumdar. "Multiwalled Carbon Nanotube/Nanofiber Arrays as Conductive and Dry Adhesive Interface Materials". En ASME 2004 3rd Integrated Nanosystems Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/nano2004-46013.
Texto completoSchwingshackl, C. W., E. P. Petrov y D. J. Ewins. "Validation of Test Rig Measurements and Prediction Tools for Friction Interface Modelling". En ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-23274.
Texto completoMalucci, Robert D. "Current Redistribution across an Aging Contact Interface". En 2012 IEEE 58th Holm Conference on Electrical Contacts (Holm 2012). IEEE, 2012. http://dx.doi.org/10.1109/holm.2012.6336578.
Texto completoSmith, P. W. "Head/media interface design for contact recording". En IEEE International Magnetics Conference. IEEE, 1999. http://dx.doi.org/10.1109/intmag.1999.837390.
Texto completoMyers, M., M. Leidner y H. Schmidt. "Effect of Contact Parameters on Current Density Distribution in a Contact Interface". En 2011 IEEE 57th Holm Conference on Electrical Contacts (Holm 2011). IEEE, 2011. http://dx.doi.org/10.1109/holm.2011.6034783.
Texto completoHuang, Qiu-Hong, Yu-Bo Liu, Li-Ling Feng, Min Zhao y Zong-Ming Qiu. "Ultrasonic Detecting Method of Mechanical Interface Contact Distribution". En 2016 Sixth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC). IEEE, 2016. http://dx.doi.org/10.1109/imccc.2016.94.
Texto completoWise, Robert A. y Paul M. McElroy. "Interface Contact Coefficients Used in Thermal Engineering Analyses". En International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. http://dx.doi.org/10.4271/972383.
Texto completoInformes sobre el tema "Contact interface"
McMichael, L. Contact Interface Verification for DYNA3D Scenario 1: Basic Contact. Office of Scientific and Technical Information (OSTI), mayo de 2006. http://dx.doi.org/10.2172/898003.
Texto completoMcMichael, L. Contact Interface Verification for DYNA3D Scenario 2: Multi-Surface Contact. Office of Scientific and Technical Information (OSTI), mayo de 2006. http://dx.doi.org/10.2172/898011.
Texto completoKhounsary, A. M., D. Chojnowski, L. Assoufid y W. M. Worek. Thermal contact resistance across a copper-silicon interface. Office of Scientific and Technical Information (OSTI), octubre de 1997. http://dx.doi.org/10.2172/554855.
Texto completoPhelan, P. E., R. C. Niemann y T. H. Nicol. Thermal contact resistance for a CU/G-10CR interface in a cylindrical geometry. Office of Scientific and Technical Information (OSTI), julio de 1996. http://dx.doi.org/10.2172/285441.
Texto completoLever, James, Susan Taylor, Arnold Song, Zoe Courville, Ross Lieblappen y Jason Weale. The mechanics of snow friction as revealed by micro-scale interface observations. Engineer Research and Development Center (U.S.), diciembre de 2021. http://dx.doi.org/10.21079/11681/42761.
Texto completoLever, James, Susan Taylor, Garrett Hoch y Charles Daghlian. Evidence that abrasion can govern snow kinetic friction. Engineer Research and Development Center (U.S.), diciembre de 2021. http://dx.doi.org/10.21079/11681/42646.
Texto completoMozley, Peter, James Evans y Thomas Dewers. Area of Interest 1, CO2 at the Interface: Nature and Dynamics of the Reservoir/Caprock Contact and Implications for Carbon Storage Performance. Office of Scientific and Technical Information (OSTI), octubre de 2014. http://dx.doi.org/10.2172/1177773.
Texto completoBlum, L. Contact Theorems for Rough Interfaces. Fort Belvoir, VA: Defense Technical Information Center, abril de 1994. http://dx.doi.org/10.21236/ada282988.
Texto completoLever, James, Emily Asenath-Smith, Susan Taylor y Austin Lines. Assessing the mechanisms thought to govern ice and snow friction and their interplay with substrate brittle behavior. Engineer Research and Development Center (U.S.), diciembre de 2021. http://dx.doi.org/10.21079/1168142742.
Texto completoDahlgren, Tamara Lynn. Performance-Driven Interface Contract Enforcement for Scientific Components. Office of Scientific and Technical Information (OSTI), enero de 2008. http://dx.doi.org/10.2172/932393.
Texto completo