Literatura académica sobre el tema "Conductances"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Conductances".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Conductances"
Pospischil, Martin, Zuzanna Piwkowska, Michelle Rudolph, Thierry Bal y Alain Destexhe. "Calculating Event-Triggered Average Synaptic Conductances From the Membrane Potential". Journal of Neurophysiology 97, n.º 3 (marzo de 2007): 2544–52. http://dx.doi.org/10.1152/jn.01000.2006.
Texto completoFrolov, Roman, Esa-Ville Immonen y Matti Weckström. "Visual ecology and potassium conductances of insect photoreceptors". Journal of Neurophysiology 115, n.º 4 (1 de abril de 2016): 2147–57. http://dx.doi.org/10.1152/jn.00795.2015.
Texto completoApelblat, Alexander y Josef Barthel. "Conductance Studies of Aqueous Succinic Acid". Zeitschrift für Naturforschung A 47, n.º 3 (1 de marzo de 1992): 493–98. http://dx.doi.org/10.1515/zna-1992-0309.
Texto completoMelikyan, G. B., W. D. Niles, V. A. Ratinov, M. Karhanek, J. Zimmerberg y F. S. Cohen. "Comparison of transient and successful fusion pores connecting influenza hemagglutinin expressing cells to planar membranes." Journal of General Physiology 106, n.º 5 (1 de noviembre de 1995): 803–19. http://dx.doi.org/10.1085/jgp.106.5.803.
Texto completoCarter, Gregory A. y Alan H. Teramura. "Nonsummer stomatal conductance for the invasive vines kudzu and Japanese honeysuckle". Canadian Journal of Botany 66, n.º 12 (1 de diciembre de 1988): 2392–95. http://dx.doi.org/10.1139/b88-325.
Texto completoCalkin, Howard W., Arthur C. Gibson y Park S. Nobel. "Xylem water potentials and hydraulic conductances in eight species of ferns". Canadian Journal of Botany 63, n.º 3 (1 de marzo de 1985): 632–37. http://dx.doi.org/10.1139/b85-079.
Texto completoNakahari, T. y Y. Marunaka. "ADH-evoked [Cl-]i-dependent transient in whole cell current of distal nephron cell line A6". American Journal of Physiology-Renal Physiology 268, n.º 1 (1 de enero de 1995): F64—F72. http://dx.doi.org/10.1152/ajprenal.1995.268.1.f64.
Texto completoMoore, L. K., E. C. Beyer y J. M. Burt. "Characterization of gap junction channels in A7r5 vascular smooth muscle cells". American Journal of Physiology-Cell Physiology 260, n.º 5 (1 de mayo de 1991): C975—C981. http://dx.doi.org/10.1152/ajpcell.1991.260.5.c975.
Texto completoSenior, A., M. J. Kosch y F. Honary. "Comparison of methods to determine auroral ionospheric conductances using ground-based optical and riometer data". Annales Geophysicae 26, n.º 12 (2 de diciembre de 2008): 3831–40. http://dx.doi.org/10.5194/angeo-26-3831-2008.
Texto completoAbbott, L. F. y Gwendal LeMasson. "Analysis of Neuron Models with Dynamically Regulated Conductances". Neural Computation 5, n.º 6 (noviembre de 1993): 823–42. http://dx.doi.org/10.1162/neco.1993.5.6.823.
Texto completoTesis sobre el tema "Conductances"
Boukhadra, Omar. "Marches Aléatoires avec Conductances Aléatoires". Phd thesis, Université de Provence - Aix-Marseille I, 2010. http://tel.archives-ouvertes.fr/tel-00523660.
Texto completoMcAlroy, Helen L. "Chloride conductances in pancreatic duct cells". Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307823.
Texto completoStumpff, Friederike [Verfasser]. "Ionic conductances of the ruminal epithelium / Friederike Stumpff". Berlin : Freie Universität Berlin, 2011. http://d-nb.info/1025355377/34.
Texto completoRzigui, Touhami. "Analyse de la réponse d’un mutant mitochondrial de Nicotiana sylvestris au manque d’eau". Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112144/document.
Texto completoTo investigate the role of mitochondria in drought stress, the response to water deprivation was compared between Nicotiana sylvestris wild type (WT) plants and the CMSII respiratory complex I mutant. In CMSII, alternative NAD(P)H-dehydrogenases bypassing complex 1 allow respiration.. The difference of mitochondrial function between WT and CMSII plants affect also photosynthesis. The CMSII has lower photosynthetic actitvity than the WT and lower stomatal (gs) and internal (gm) conductances to CO2. When watering of plants with similar leaf surface and similar shoot/root ratio was stopped the relative water content (RWC) declined faster in WT as compared to CMSII leaves. Furthermore, CMSII and WT leaves had the same osmotic potential at leaf saturation (P0) and at leaf turgor lost pressure (PTLP) and the same stomatal density. The slower decline of RWC in CMSII, compared to WT leaves, was most likely the consequence of the lower stomatal conductance (gs) under well-watered conditions and during the first days after withholding watering, The lower stomatal conductance of well-watered CMSII leaves correlated with a lower hydraulic conductance of leaves. Remarkably, total free amino acid levels declined and total soluble protein content increased in CMSII leaves, while the opposite was observed in WT leaves. This suggests protein synthesis in CMSII but protein degradation in WT leaves during drought stress. We also show that CMSII leaves better acclimate to drought stress than the WT leaves. After several days at 80 % RWC , photosynthesis is higher in the mutant than in WT. As compared to the WT, the mutant shows higher rates of photorespiration before and after acclimation to drought.The strong accumulation of glycine in the WT suggests that photorespiration may be limited at the level of glycine decarboxylase. In addition, after acclimation to drought gm declined markedly in WT but not in CMSII leaves, thus further limiting CO2 supply for photosynthesis in the WT. The resulting lower photosynthesis and photorespiration in WT leaves affect also the primary reaction of photosynthesis by increasing the non-photochemical fluorescence quenching (NPQ) and decreasing linear electron transport
Deroubaix, Édith. "Conductances ioniques modulant le plateau du potentiel d'action cardiaque". Paris 11, 1989. http://www.theses.fr/1989PA112132.
Texto completoResults described in the present work concern different mechanisms which control the amplitude, the duration and the shape of the cardiac action potential plateau. In the first part it is shown that a long-lasting tetrodotoxin-sensitive component of sodium current participates in the Purkinje fiber action potential plateau. The second part concerns the ionic mechanisms responsible for the development of early after depolarizations which are thought to trigger reexcitations and some types of arrhythmias. The role of the sodium "window" current and of a decrease in the background potassium current is stressed. The third part demonstrates the existence of two components of transient outward current in adult human atrial myocytes. These currents are responsible for the fast initial repolarization phase and the low amplitude plateau of the adult human atrial action potential. The last part concerns the ATP-regulated potassium channels and their activation by a new "potassium channel opener". This substance which is able to counteract the inhibition induced by intracellular ATP dramatically shortens the action potential plateau. The role of these different mechanisms in the modulation of cardiac electrical activity is discussed
Spruce, Austen Edwin. "Potassium conductances of skeletal muscle investigated using single channel recording". Thesis, University of Leicester, 1986. http://hdl.handle.net/2381/33614.
Texto completoPilsudski, Richard. "Contribution à l'étude des conductances potassiques de la membrane cardiaque". Lyon 1, 1989. http://www.theses.fr/1989LYO10137.
Texto completoMacKenzie, Georgina Louise. "Control of membrane excitability by potassium and chloride leak conductances". Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/7038.
Texto completoGhamari, Langroudi Masoud. "Analysis of caesium sensitive membrane conductances in neurones of supraoptic nucleus". Thesis, McGill University, 2001. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=37893.
Texto completoMathews, Ceri James. "Ionic conductances in epithelial cells from human vas deferens and epididymis". Thesis, University of Newcastle Upon Tyne, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.331986.
Texto completoLibros sobre el tema "Conductances"
Madhusudana, C. V. Thermal contact conductance. New York: Springer-Verlag, 1996.
Buscar texto completoMadhusudana, C. V. Thermal Contact Conductance. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-3978-9.
Texto completoMadhusudana, Chakravarti V. Thermal Contact Conductance. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-01276-6.
Texto completoSalerno, Louis J. Thermal contact conductance. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1997.
Buscar texto completoSchäffer, Tilman E., ed. Scanning Ion Conductance Microscopy. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14443-1.
Texto completoDell, Emma Jane. Single Molecule Conductance of Oligothiophene Derivatives. [New York, N.Y.?]: [publisher not identified], 2015.
Buscar texto completoKirk, Kevin L. The cystic fibrosis transmembrane conductance regulator. Georgetown, Tex: Landes Bioscience / Eurekah.com, 2003.
Buscar texto completoKirk, Kevin L. The cystic fibrosis transmembrane conductance regulator. Georgetown, TX: Landes Bioscience : Eurekah.com, 2004.
Buscar texto completoKamenetska, Maria. Single Molecule Junction Conductance and Binding Geometry. [New York, N.Y.?]: [publisher not identified], 2012.
Buscar texto completoMoyer, R. G. Reduction of pressure-tube/calandria-tube contact conductance. Pinawa, Man: Whiteshell Laboratories, 1992.
Buscar texto completoCapítulos de libros sobre el tema "Conductances"
Krasznai, Zoltan, Adam F. Weidema, Rezsö Gáspár, György Panyi y Dirk L. Ypey. "Ionic Conductances in Chicken Osteoclasts". En Signal Transduction — Single Cell Techniques, 236–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-80368-0_18.
Texto completoCampbell, Gaylon S. y John M. Norman. "Conductances for Heat and Mass Transfer". En An Introduction to Environmental Biophysics, 87–111. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1626-1_7.
Texto completoAbbott, L. F., M. Siegel y E. Marder. "Activity-Dependent Distributions of Neuronal Conductances". En Computation in Neurons and Neural Systems, 47–52. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2714-5_8.
Texto completoLiu, Zheng, Mike Casey, Eve Marder y L. F. Abbott. "Neurons and Networks with Activity-Dependent Conductances". En Computational Neuroscience, 723–28. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9800-5_112.
Texto completoPichon, Y., Y. Larmet, B. N. Christensen, T. Shimahara y D. Beadle. "Voltage Dependent Conductances in Cultured Cockroach Neurones". En Insect Neurochemistry and Neurophysiology · 1986, 383–86. Totowa, NJ: Humana Press, 1986. http://dx.doi.org/10.1007/978-1-4612-4832-3_57.
Texto completoHolze, Rudolf. "Ionic conductances of acetone nonaqueous electrolyte solution". En Electrochemistry, 2127. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49251-2_1907.
Texto completoHolze, Rudolf. "Ionic conductances of acetonitrile nonaqueous electrolyte solution". En Electrochemistry, 2128–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49251-2_1908.
Texto completoHolze, Rudolf. "Ionic conductances of BrF5 nonaqueous electrolyte solution". En Electrochemistry, 2137. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49251-2_1909.
Texto completoHolze, Rudolf. "Ionic conductances of chloroform nonaqueous electrolyte solution". En Electrochemistry, 2138–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49251-2_1910.
Texto completoHolze, Rudolf. "Ionic conductances of DME:PC nonaqueous electrolyte solution". En Electrochemistry, 2141. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49251-2_1912.
Texto completoActas de conferencias sobre el tema "Conductances"
Joshi, Krishna, Israel Kurtz y Azriel Z. Genack. "Scaling of the Mesoscopic Conductance". En CLEO: Applications and Technology, JTu2A.165. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jtu2a.165.
Texto completoHuang, Zhen, Jayathi Murthy y Timothy S. Fisher. "Thermal Conductance and Constriction Resistance of Single-Layer Graphene Nano Ribbons". En 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-23088.
Texto completoCohen, Morrel H. y Adrianus M. M. Pruisken. "The effect of mesoscopic conductance fluctuations on macroscopic conductances". En Ordering disorder: Prospect and retrospect in condensed matter physics. AIP, 1992. http://dx.doi.org/10.1063/1.44721.
Texto completoCowell, S. R., V. Dragoi, V. Beiu y N. C. Rohatinovici. "Effective conductances of Moore-Shannon hammocks". En 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2018. http://dx.doi.org/10.1109/nano.2018.8626295.
Texto completoSampson, Richard L. "Printed Circuit Board Thermal Modeling Without the Use of an Effective Thermal Conductivity". En ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ipack2005-73013.
Texto completoAl-Futaisi, Ahmed y Tad W. Patzek. "Three-Phase Hydraulic Conductances in Angular Capillaries". En SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers, 2002. http://dx.doi.org/10.2118/75193-ms.
Texto completoHo, Clifford K. "Models of Fracture-Matrix Interactions During Multiphase Heat and Mass Flow in Unsaturated Fractured Porous Media". En ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0798.
Texto completoCostello, Frederick A. y Christopher F. Costello. "Node Geometries and Conductances in Spacecraft Thermal Models". En International Conference on Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/951698.
Texto completoZegarmistrz, Piotr y Zbigniew Galias. "On reconstruction of conductances in resistor grids from boundary measurements". En 2007 European Conference on Circuit Theory and Design (ECCTD 2007). IEEE, 2007. http://dx.doi.org/10.1109/ecctd.2007.4529713.
Texto completoZegarmistrz, Piotr y Zbigniew Galias. "Reconstruction of conductances in resistive grids as an optimization problem". En 2013 European Conference on Circuit Theory and Design (ECCTD). IEEE, 2013. http://dx.doi.org/10.1109/ecctd.2013.6662338.
Texto completoInformes sobre el tema "Conductances"
Henderson, Kevin C. Thermal Contact Conductance Modeling. Office of Scientific and Technical Information (OSTI), abril de 2018. http://dx.doi.org/10.2172/1434448.
Texto completoCohen, Shabtai, Melvin Tyree, Amos Naor, Alan N. Lakso, Terence L. Robinson y Yehezkiel Cohen. Influence of hydraulic properties of rootstocks and the rootstock-scion graft on water use and productivity of apple trees. United States Department of Agriculture, 2001. http://dx.doi.org/10.32747/2001.7587219.bard.
Texto completoKiefner, Maxey y Eiber. L51607 Pipeline Coating Impedance Effect on Powerline Fault Current Coupling. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), enero de 1989. http://dx.doi.org/10.55274/r0010294.
Texto completoSwanson, Randy R. Adapting Conductance Technology for Military Application. Fort Belvoir, VA: Defense Technical Information Center, junio de 2005. http://dx.doi.org/10.21236/ada435425.
Texto completoLeBrun, Thomas y Kyle Brindley. TRUST Contact Thermal Conductance (CTC) Report. Office of Scientific and Technical Information (OSTI), octubre de 2021. http://dx.doi.org/10.2172/1827541.
Texto completoDumont, R., M. Coyle, D. Oneschuk y J. Potvin. Apparent conductance with electromagnetic anomalies, Pamour, Ontario. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2002. http://dx.doi.org/10.4095/213898.
Texto completoLeBrun, Thomas y Kyle Brindley. TRUST-EABM Contact Thermal Conductance (CTC) Report. Office of Scientific and Technical Information (OSTI), enero de 2021. http://dx.doi.org/10.2172/1760545.
Texto completoCahil, David, G. y Paul, V. Braun. Final Report: Thermal Conductance of Solid-Liquid Interfaces. Office of Scientific and Technical Information (OSTI), mayo de 2006. http://dx.doi.org/10.2172/885425.
Texto completoNorris, Pamela M. Modeling Interfacial Thermal Boundary Conductance of Engineered Interfaces. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2014. http://dx.doi.org/10.21236/ada609810.
Texto completoDumont, R., M. Coyle, D. Oneschuk y J. Potvin. Apparent conductance with electromagnetic anomalies, Buskegau River, Ontario. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2002. http://dx.doi.org/10.4095/213889.
Texto completo