Artículos de revistas sobre el tema "Conductance quantization"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Conductance quantization.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Conductance quantization".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Batra, Inder P. "Origin of conductance quantization". Surface Science 395, n.º 1 (enero de 1998): 43–45. http://dx.doi.org/10.1016/s0039-6028(97)00601-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Sorée, Bart, Wim Magnus y Wim Schoenmaker. "Conductance quantization and dissipation". Physics Letters A 310, n.º 4 (abril de 2003): 322–28. http://dx.doi.org/10.1016/s0375-9601(03)00351-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Nöckel, J. U. "Conductance quantization and backscattering". Physical Review B 45, n.º 24 (15 de junio de 1992): 14225–30. http://dx.doi.org/10.1103/physrevb.45.14225.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Cosby, Ronald M., Dustin R. Humm y Yong S. Joe. "Nanoelectronics using conductance quantization". Journal of Applied Physics 83, n.º 7 (abril de 1998): 3914–16. http://dx.doi.org/10.1063/1.366626.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

SARMA, S. DAS y SONG HE. "THEORY OF ELECTRON TRANSPORT THROUGH QUANTUM CONSTRICTIONS IN SEMICONDUCTOR NANOSTRUCTURES". International Journal of Modern Physics B 07, n.º 19 (30 de agosto de 1993): 3375–404. http://dx.doi.org/10.1142/s0217979293003279.

Texto completo
Resumen
Detailed numerical results are presented for the calculated conductance of quantum point contacts, or, narrow constrictions between high mobility two-dimensional electron systems fabricated on semiconductor nanostructures. The conductance is calculated from the two-terminal multichannel transmission matrix formalism using the recursive single-particle Green’s function technique. The Green’s functions are obtained recursively for a tight-binding two-dimensional disordered Anderson lattice model representing the constriction. The conductance is calculated as a function of the shape and the size of the constriction (i.e., its geometry), the temperature, and, the elastic disorder in the system. Our main results, which are consistent with experimental findings, are: (1) increase of elastic scattering destroys the quantization; (2) for a fixed amount of disorder (i.e., for a given value of the elastic mean free path), the conductance quantization is poorer for longer constrictions; (3) in general, the quantization is poorer for higher quantum numbers or subbands; (4) constrictions with sharper geometry have sharper quantization, but may have quantum resonances associated with their sharp corners; (5) the quantum resonances (in sharp constrictions) are suppressed for shorter constriction lengths and at higher temperatures; (6) in general, higher temperatures lower the quantization quality by smoothening out the conductance except for sharp constrictions where at the lowest temperatures the quantum resonances show up, adversely affecting the quantization; (7) in smooth or adiabatic constrictions, the conductance quantization is smooth (but not extremely accurate) but, adiabaticity is not a necessary requirement for conductance quantization; (8) in general, geometry, finite temperature, and finite disorder effects do not allow better than 1% type accuracy in the quantization (compared with integral multiples of 2e2/h) even in the best of circumstances; (9) increase of elastic disorder smoothly takes the system from a conductance quantized regime to the regime of universal conductance fluctuations; and, (10) inelastic scattering, which we treat only in a very crude phenomenological model, behaves similar to thermal effects in broadening and smearing the sharpness of the conductance quantization. We also discuss the effect of an external magnetic field on the conductance quantization phenomenon. Some results are given for the conductance of two constrictions in series.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Takayanagi, Kunio, Yukihito Kondo y Hideo Ohnishi. "Conductance Quantization of Gold Nanowire". Materia Japan 40, n.º 12 (2001): 1000. http://dx.doi.org/10.2320/materia.40.1000.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Bascones, E., G. Gómez-Santos y J. J. Sáenz. "Statistical significance of conductance quantization". Physical Review B 57, n.º 4 (15 de enero de 1998): 2541–44. http://dx.doi.org/10.1103/physrevb.57.2541.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Krompiewski, S. "Conductance quantization in ferromagnetic nanowires". Journal of Physics: Condensed Matter 12, n.º 7 (3 de febrero de 2000): 1323–28. http://dx.doi.org/10.1088/0953-8984/12/7/315.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Kivelson, S. y S. A. Trugman. "Quantization of the Hall conductance from density quantization alone". Physical Review B 33, n.º 6 (15 de marzo de 1986): 3629–35. http://dx.doi.org/10.1103/physrevb.33.3629.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Ooka, Yutaka, Teruo Ono y Hideki Miyajima. "Conductance quantization in ferromagnetic Ni nanowire". Journal of Magnetism and Magnetic Materials 226-230 (mayo de 2001): 1848–49. http://dx.doi.org/10.1016/s0304-8853(00)00881-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Yacoby, A., H. L. Stormer, Ned S. Wingreen, L. N. Pfeiffer, K. W. Baldwin y K. W. West. "Nonuniversal Conductance Quantization in Quantum Wires". Physical Review Letters 77, n.º 22 (25 de noviembre de 1996): 4612–15. http://dx.doi.org/10.1103/physrevlett.77.4612.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Lehmann, H., T. Benter, I. von Ahnen, J. Jacob, T. Matsuyama, U. Merkt, U. Kunze et al. "Spin-resolved conductance quantization in InAs". Semiconductor Science and Technology 29, n.º 7 (12 de mayo de 2014): 075010. http://dx.doi.org/10.1088/0268-1242/29/7/075010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Poncharal, Ph, St Frank, Z. L. Wang y W. A. de Heer. "Conductance quantization in multiwalled carbon nanotubes". European Physical Journal D 9, n.º 1 (diciembre de 1999): 77–79. http://dx.doi.org/10.1007/s100530050402.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Nawrocki, Waldemar. "Electrical and thermal conductance quantization in nanostructures". Journal of Physics: Conference Series 129 (1 de octubre de 2008): 012023. http://dx.doi.org/10.1088/1742-6596/129/1/012023.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Sorée, Bart, Wim Magnus y Wim Schoenmaker. "Nonequilibrium mesoscopic quantum transport and conductance quantization". Semiconductor Science and Technology 19, n.º 4 (8 de marzo de 2004): S235—S237. http://dx.doi.org/10.1088/0268-1242/19/4/079.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Hickmott, T. W. "Fractional Quantization in ac Conductance ofAlxGa1−xAsCapacitors". Physical Review Letters 57, n.º 6 (11 de agosto de 1986): 751–54. http://dx.doi.org/10.1103/physrevlett.57.751.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Kaufman, D., Y. Berk, B. Dwir, A. Rudra, A. Palevski y E. Kapon. "Conductance quantization in V-groove quantum wires". Physical Review B 59, n.º 16 (15 de abril de 1999): R10433—R10436. http://dx.doi.org/10.1103/physrevb.59.r10433.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Shimizu, Masayoshi, Eiji Saitoh, Hideki Miyajima y Yoshichika Otani. "Conductance quantization in ferromagnetic Ni nano-constriction". Journal of Magnetism and Magnetic Materials 239, n.º 1-3 (febrero de 2002): 243–45. http://dx.doi.org/10.1016/s0304-8853(01)00544-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Yosefin, M. y M. Kaveh. "Conductance quantization in a general confining potential". Physical Review B 44, n.º 7 (15 de agosto de 1991): 3355–58. http://dx.doi.org/10.1103/physrevb.44.3355.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Zwolak, Michael, James Wilson y Massimiliano Di Ventra. "Dehydration and ionic conductance quantization in nanopores". Journal of Physics: Condensed Matter 22, n.º 45 (29 de octubre de 2010): 454126. http://dx.doi.org/10.1088/0953-8984/22/45/454126.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Leng, Manhua y Craig S. Lent. "Conductance quantization in a periodically modulated channel". Physical Review B 50, n.º 15 (15 de octubre de 1994): 10823–33. http://dx.doi.org/10.1103/physrevb.50.10823.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Magnus, Wim y Wim Schoenmaker. "Quantized conductance, circuit topology, and flux quantization". Physical Review B 61, n.º 16 (15 de abril de 2000): 10883–89. http://dx.doi.org/10.1103/physrevb.61.10883.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Katsnelson, M. I. "Conductance quantization in graphene nanoribbons: adiabatic approximation". European Physical Journal B 57, n.º 3 (junio de 2007): 225–28. http://dx.doi.org/10.1140/epjb/e2007-00168-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Zwolak, Michael, James Wilson, Johan Lagerqvist y Massimiliano Di Ventra. "Dehydration and Ionic Conductance Quantization in Nanopores". Biophysical Journal 100, n.º 3 (febrero de 2011): 471a. http://dx.doi.org/10.1016/j.bpj.2010.12.2761.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Bachmann, Sven, Alex Bols, Wojciech De Roeck y Martin Fraas. "Quantization of Conductance in Gapped Interacting Systems". Annales Henri Poincaré 19, n.º 3 (20 de febrero de 2018): 695–708. http://dx.doi.org/10.1007/s00023-018-0651-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Bezák, Viktor. "Conductance quantization of an ideal Sharvin contact". Annals of Physics 322, n.º 11 (noviembre de 2007): 2603–17. http://dx.doi.org/10.1016/j.aop.2007.06.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Faist, J., P. Guéret y H. Rothuizen. "Observation of impurity effects on conductance quantization". Superlattices and Microstructures 7, n.º 4 (enero de 1990): 349–51. http://dx.doi.org/10.1016/0749-6036(90)90224-u.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Bracken, Paul. "Topological invariance of the Hall conductance and quantization". Modern Physics Letters B 29, n.º 24 (3 de septiembre de 2015): 1550135. http://dx.doi.org/10.1142/s0217984915501353.

Texto completo
Resumen
It is shown that the Kubo equation for the Hall conductance can be expressed as an integral which implies quantization of the Hall conductance. The integral can be interpreted as the first Chern class of a [Formula: see text] principal fiber bundle on a two-dimensional torus. This accounts for the conductance given as an integer multiple of [Formula: see text]. The formalism can be extended to deduce the fractional conductivity as well.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Srivastav, Saurabh Kumar, Manas Ranjan Sahu, K. Watanabe, T. Taniguchi, Sumilan Banerjee y Anindya Das. "Universal quantized thermal conductance in graphene". Science Advances 5, n.º 7 (julio de 2019): eaaw5798. http://dx.doi.org/10.1126/sciadv.aaw5798.

Texto completo
Resumen
The universal quantization of thermal conductance provides information on a state's topological order. Recent measurements revealed that the observed value of thermal conductance of the 52 state is inconsistent with either Pfaffian or anti-Pfaffian model, motivating several theoretical articles. Analysis has been made complicated by the presence of counter-propagating edge channels arising from edge reconstruction, an inevitable consequence of separating the dopant layer from the GaAs quantum well and the resulting soft confining potential. Here, we measured thermal conductance in graphene with atomically sharp confining potential by using sensitive noise thermometry on hexagonal boron-nitride encapsulated graphene devices, gated by either SiO2/Si or graphite back gate. We find the quantization of thermal conductance within 5% accuracy for ν = 1;43;2 and 6 plateaus, emphasizing the universality of flow of information. These graphene quantum Hall thermal transport measurements will allow new insight into exotic systems like even-denominator quantum Hall fractions in graphene.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Fadaly, Elham M. T., Hao Zhang, Sonia Conesa-Boj, Diana Car, Önder Gül, Sébastien R. Plissard, Roy L. M. Op het Veld, Sebastian Kölling, Leo P. Kouwenhoven y Erik P. A. M. Bakkers. "Observation of Conductance Quantization in InSb Nanowire Networks". Nano Letters 17, n.º 11 (14 de julio de 2017): 6511–15. http://dx.doi.org/10.1021/acs.nanolett.7b00797.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Agraït, N., J. G. Rodrigo y S. Vieira. "Conductance steps and quantization in atomic-size contacts". Physical Review B 47, n.º 18 (1 de mayo de 1993): 12345–48. http://dx.doi.org/10.1103/physrevb.47.12345.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Alekseev, Anton Yu y Vadim V. Cheianov. "Nonuniversal conductance quantization in high-quality quantum wires". Physical Review B 57, n.º 12 (15 de marzo de 1998): R6834—R6837. http://dx.doi.org/10.1103/physrevb.57.r6834.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Elhoussine, F., S. Mátéfi-Tempfli, A. Encinas y L. Piraux. "Conductance quantization in magnetic nanowires electrodeposited in nanopores". Applied Physics Letters 81, n.º 9 (26 de agosto de 2002): 1681–83. http://dx.doi.org/10.1063/1.1503400.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Costa-Krämer, J. L., N. García y H. Olin. "Conductance Quantization in Bismuth Nanowires at 4 K". Physical Review Letters 78, n.º 26 (30 de junio de 1997): 4990–93. http://dx.doi.org/10.1103/physrevlett.78.4990.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Yanson, A. I. y J. M. van Ruitenbeek. "Do Histograms Constitute a Proof for Conductance Quantization?" Physical Review Letters 79, n.º 11 (15 de septiembre de 1997): 2157. http://dx.doi.org/10.1103/physrevlett.79.2157.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Taboryski, R., A. Kristensen, C. B. So/rensen y P. E. Lindelof. "Conductance-quantization broadening mechanisms in quantum point contacts". Physical Review B 51, n.º 4 (15 de enero de 1995): 2282–86. http://dx.doi.org/10.1103/physrevb.51.2282.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Li, C. Z., H. X. He, A. Bogozi, J. S. Bunch y N. J. Tao. "Molecular detection based on conductance quantization of nanowires". Applied Physics Letters 76, n.º 10 (6 de marzo de 2000): 1333–35. http://dx.doi.org/10.1063/1.126025.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Kiesslich, G., A. Wacker y E. Sch�ll. "Geometry Effects at Conductance Quantization in Quantum Wires". physica status solidi (b) 216, n.º 2 (diciembre de 1999): R5—R6. http://dx.doi.org/10.1002/(sici)1521-3951(199912)216:23.0.co;2-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Oshima, Hirotaka y Kenjiro Miyano. "Spin-dependent conductance quantization in nickel point contacts". Applied Physics Letters 73, n.º 15 (12 de octubre de 1998): 2203–5. http://dx.doi.org/10.1063/1.122423.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Younis, Adnan, Dewei Chu y Sean Li. "Voltage sweep modulated conductance quantization in oxide nanocomposites". J. Mater. Chem. C 2, n.º 48 (10 de octubre de 2014): 10291–97. http://dx.doi.org/10.1039/c4tc01984a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Imamura, Hiroshi, Nobuhiko Kobayashi, Saburo Takahashi y Sadamichi Maekawa. "Conductance Quantization and Magnetoresistance in Magnetic Point Contacts". Physical Review Letters 84, n.º 5 (31 de enero de 2000): 1003–6. http://dx.doi.org/10.1103/physrevlett.84.1003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Li, Jingze, Taisuke Kanzaki, Kei Murakoshi y Yoshihiro Nakato. "Metal-dependent conductance quantization of nanocontacts in solution". Applied Physics Letters 81, n.º 1 (julio de 2002): 123–25. http://dx.doi.org/10.1063/1.1491015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Xu, Ying, Xingqiang Shi, Zhi Zeng, Zhao Yang Zeng y Baowen Li. "Conductance oscillation and quantization in monatomic Al wires". Journal of Physics: Condensed Matter 19, n.º 5 (16 de enero de 2007): 056010. http://dx.doi.org/10.1088/0953-8984/19/5/056010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Faist, J., P. Guéret y H. Rothuizen. "Possible observation of impurity effects on conductance quantization". Physical Review B 42, n.º 5 (15 de agosto de 1990): 3217–19. http://dx.doi.org/10.1103/physrevb.42.3217.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Li, C. Z., H. Sha y N. J. Tao. "Adsorbate effect on conductance quantization in metallic nanowires". Physical Review B 58, n.º 11 (15 de septiembre de 1998): 6775–78. http://dx.doi.org/10.1103/physrevb.58.6775.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Koma, Tohru, Toru Morishita y Taro Shuya. "Quantization of Conductance in Quasi-periodic Quantum Wires". Journal of Statistical Physics 174, n.º 5 (16 de enero de 2019): 1137–60. http://dx.doi.org/10.1007/s10955-019-02227-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Krinner, Sebastian, Martin Lebrat, Dominik Husmann, Charles Grenier, Jean-Philippe Brantut y Tilman Esslinger. "Mapping out spin and particle conductances in a quantum point contact". Proceedings of the National Academy of Sciences 113, n.º 29 (29 de junio de 2016): 8144–49. http://dx.doi.org/10.1073/pnas.1601812113.

Texto completo
Resumen
We study particle and spin transport in a single-mode quantum point contact, using a charge neutral, quantum degenerate Fermi gas with tunable, attractive interactions. This yields the spin and particle conductance of the point contact as a function of chemical potential or confinement. The measurements cover a regime from weak attraction, where quantized conductance is observed, to the resonantly interacting superfluid. Spin conductance exhibits a broad maximum when varying the chemical potential at moderate interactions, which signals the emergence of Cooper pairing. In contrast, the particle conductance is unexpectedly enhanced even before the gas is expected to turn into a superfluid, continuously rising from the plateau at 1/h for weak interactions to plateau-like features at nonuniversal values as high as 4/h for intermediate interactions. For strong interactions, the particle conductance plateaus disappear and the spin conductance gets suppressed, confirming the spin-insulating character of a superfluid. Our observations document the breakdown of universal conductance quantization as many-body correlations appear. The observed anomalous quantization challenges a Fermi liquid description of the normal phase, shedding new light on the nature of the strongly attractive Fermi gas.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

LESOVICK, G. B. "THERMOPOWER IN BALLISTIC 2D MICROJUNCTION WITH QUANTIZED RESISTANCE". Modern Physics Letters B 03, n.º 08 (20 de mayo de 1989): 611–13. http://dx.doi.org/10.1142/s0217984989000960.

Texto completo
Resumen
It is shown that thermopower, under condition of good quantization of conductance (in units of e2/h), could be of the order of kB/e. When the temperature difference between opposite sides of a microjunction is finite, thermopower becomes nonlinear. This phenomenon is connected with energy dependence of conductance.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Danneau, R., W. R. Clarke, O. Klochan, A. P. Micolich, A. R. Hamilton, M. Y. Simmons, M. Pepper y D. A. Ritchie. "Conductance quantization and the 0.7×2e2∕h conductance anomaly in one-dimensional hole systems". Applied Physics Letters 88, n.º 1 (2 de enero de 2006): 012107. http://dx.doi.org/10.1063/1.2161814.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Simanullang, Marolop Dapot Krisman, G. Bimananda M. Wisna, Koichi Usami y Shunri Oda. "Synthesis and characterization of Ge-core/a-Si-shell nanowires with conformal shell thickness deposited after gold removal for high-mobility p-channel field-effect transistors". Nanoscale Advances 2, n.º 4 (2020): 1465–72. http://dx.doi.org/10.1039/d0na00023j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía