Literatura académica sobre el tema "Concept Drift Detection"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Concept Drift Detection".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Concept Drift Detection"
Zhu, Jiaqi, Shaofeng Cai, Fang Deng, Beng Chin Ooi, and Wenqiao Zhang. "METER: A Dynamic Concept Adaptation Framework for Online Anomaly Detection." Proceedings of the VLDB Endowment 17, no. 4 (2023): 794–807. http://dx.doi.org/10.14778/3636218.3636233.
Texto completoSakurai, Guilherme Yukio, Jessica Fernandes Lopes, Bruno Bogaz Zarpelão, and Sylvio Barbon Junior. "Benchmarking Change Detector Algorithms from Different Concept Drift Perspectives." Future Internet 15, no. 5 (2023): 169. http://dx.doi.org/10.3390/fi15050169.
Texto completoToor, Affan Ahmed, Muhammad Usman, Farah Younas, Alvis Cheuk M. Fong, Sajid Ali Khan, and Simon Fong. "Mining Massive E-Health Data Streams for IoMT Enabled Healthcare Systems." Sensors 20, no. 7 (2020): 2131. http://dx.doi.org/10.3390/s20072131.
Texto completoKumar, Sanjeev, Ravendra Singh, Mohammad Zubair Khan, and Abdulfattah Noorwali. "Design of adaptive ensemble classifier for online sentiment analysis and opinion mining." PeerJ Computer Science 7 (August 5, 2021): e660. http://dx.doi.org/10.7717/peerj-cs.660.
Texto completoM, Thangam, Bhuvaneswari A, and Sangeetha J. "A Framework to Detect and Classify Time-based Concept Drift." Indian Journal of Science and Technology 16, no. 48 (2023): 4631–37. https://doi.org/10.17485/IJST/v16i48.583.
Texto completoDries, Anton, and Ulrich Rückert. "Adaptive concept drift detection." Statistical Analysis and Data Mining: The ASA Data Science Journal 2, no. 5-6 (2009): 311–27. http://dx.doi.org/10.1002/sam.10054.
Texto completoLu, Pengqian, Jie Lu, Anjin Liu, and Guangquan Zhang. "Early Concept Drift Detection via Prediction Uncertainty." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 18 (2025): 19124–32. https://doi.org/10.1609/aaai.v39i18.34105.
Texto completoPalli, Abdul Sattar, Jafreezal Jaafar, Heitor Murilo Gomes, Manzoor Ahmed Hashmani, and Abdul Rehman Gilal. "An Experimental Analysis of Drift Detection Methods on Multi-Class Imbalanced Data Streams." Applied Sciences 12, no. 22 (2022): 11688. http://dx.doi.org/10.3390/app122211688.
Texto completoHu, Hanqing, and Mehmed Kantardzic. "Heuristic ensemble for unsupervised detection of multiple types of concept drift in data stream classification." Intelligent Decision Technologies 15, no. 4 (2022): 609–22. http://dx.doi.org/10.3233/idt-210115.
Texto completoSobolewski, Piotr. "Concept Drift Detection and Model Selection with Simulated Recurrence and Ensembles of Statistical Detectors." JUCS - Journal of Universal Computer Science 19, no. (4) (2013): 462–83. https://doi.org/10.3217/jucs-019-04-0462.
Texto completoTesis sobre el tema "Concept Drift Detection"
Ostovar, Alireza. "Business process drift: Detection and characterization." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/127157/1/Alireza_Ostovar_Thesis.pdf.
Texto completoESCOVEDO, TATIANA. "NEUROEVOLUTIVE LEARNING AND CONCEPT DRIFT DETECTION IN NON-STATIONARY ENVIRONMENTS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=26748@1.
Texto completoRoded, Keren. "The concept of drift and operationalization of its detection in simulated data." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/63135.
Texto completoD'Ettorre, Sarah. "Fine-Grained, Unsupervised, Context-based Change Detection and Adaptation for Evolving Categorical Data." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35518.
Texto completoPesaranghader, Ali. "A Reservoir of Adaptive Algorithms for Online Learning from Evolving Data Streams." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38190.
Texto completoHenke, Márcia. "Deteção de Spam baseada na evolução das características com presença de Concept Drift." Universidade Federal do Amazonas, 2015. http://tede.ufam.edu.br/handle/tede/4708.
Texto completoSANTOS, Silas Garrido Teixeira de Carvalho. "Avaliação criteriosa dos algoritmos de detecção de concept drifts." Universidade Federal de Pernambuco, 2015. https://repositorio.ufpe.br/handle/123456789/17310.
Texto completoDal, Pozzolo Andrea. "Adaptive Machine Learning for Credit Card Fraud Detection." Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/221654.
Texto completoDong, Yue. "Higher Order Neural Networks and Neural Networks for Stream Learning." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/35731.
Texto completoTogbe, Maurras Ulbricht. "Détection distribuée d'anomalies dans les flux de données." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS400.
Texto completoCapítulos de libros sobre el tema "Concept Drift Detection"
Putatunda, Sayan. "Concept Drift Detection in Data Streams." In Practical Machine Learning for Streaming Data with Python. Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6867-4_2.
Texto completoOgasawara, Eduardo, Rebecca Salles, Fabio Porto, and Esther Pacitti. "Change Points and Concept Drift Detection." In Synthesis Lectures on Data Management. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-75941-3_4.
Texto completoZenisek, Jan, Gabriel Kronberger, Josef Wolfartsberger, Norbert Wild, and Michael Affenzeller. "Concept Drift Detection with Variable Interaction Networks." In Computer Aided Systems Theory – EUROCAST 2019. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45093-9_36.
Texto completoLiu, Anjin, Guangquan Zhang, and Jie Lu. "Concept Drift Detection Based on Anomaly Analysis." In Neural Information Processing. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12637-1_33.
Texto completoYu, Shujian, and Zubin Abraham. "Concept Drift Detection with Hierarchical Hypothesis Testing." In Proceedings of the 2017 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2017. http://dx.doi.org/10.1137/1.9781611974973.86.
Texto completoAbirami, M. G., and Gilad Gressel. "Concept Drift Detection Using Minimum Prediction Deviation." In Advances in Intelligent Systems and Computing. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1249-7_24.
Texto completoMenon, Aditya Gopal, and Gilad Gressel. "Concept Drift Detection in Phishing Using Autoencoders." In Communications in Computer and Information Science. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0419-5_17.
Texto completoSobolewski, Piotr, and Michał Woźniak. "Enhancing Concept Drift Detection with Simulated Recurrence." In Advances in Intelligent Systems and Computing. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32518-2_15.
Texto completoTakano, Taisei, and Hisashi Koga. "Fast Concept Drift Detection Exploiting Product Quantization." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-68312-1_20.
Texto completoFriedrich, Björn. "Unsupervised Statistical Concept Drift Detection for Behaviour Abnormality Detection." In Empowering Independent Living using the ICF. Springer Fachmedien Wiesbaden, 2024. http://dx.doi.org/10.1007/978-3-658-44688-8_5.
Texto completoActas de conferencias sobre el tema "Concept Drift Detection"
Li, Jin, Kleanthis Malialis, Stelios G. Vrachimis, and Marios M. Polycarpou. "Online Detection of Water Contamination Under Concept Drift." In 2025 IEEE Symposia on Computational Intelligence for Energy, Transport and Environmental Sustainability (CIETES Companion). IEEE, 2025. https://doi.org/10.1109/cietescompanion65203.2025.11003354.
Texto completoIlic, Aleksandra Stojnev, and Dragan Stojanovic. "Visual Analytics of Streaming Data in Concept Drift Detection." In 2024 11th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN). IEEE, 2024. http://dx.doi.org/10.1109/icetran62308.2024.10645138.
Texto completoYu, Jiangbin, Han Liu, Qing Guo, Xia Chen, and Meng Xue. "A Concept Drift Detection Algorithm for Power Data Stream." In 2024 6th International Conference on Energy Systems and Electrical Power (ICESEP). IEEE, 2024. http://dx.doi.org/10.1109/icesep62218.2024.10651984.
Texto completoLi, Mengyuan. "An Online Anomaly Detection Algorithm with Adaptive Concept Drift." In 2024 6th International Conference on Communications, Information System and Computer Engineering (CISCE). IEEE, 2024. http://dx.doi.org/10.1109/cisce62493.2024.10653010.
Texto completoRahimli, Leyla, Feras M. Awaysheh, Sawsan Al Zubi, and Sadi Alawadi. "Federated Learning Drift Detection: An Empirical Study on the Impact of Concept and Data Drift." In 2024 2nd International Conference on Federated Learning Technologies and Applications (FLTA). IEEE, 2024. https://doi.org/10.1109/flta63145.2024.10839814.
Texto completoChen, Yijie, and Wei Guo. "Concept drift data stream regression model based on adaptive drift detection and incremental broad learning." In International Conference on Computer Graphics, Artificial Intelligence, and Data Processing (ICCAID 2024), edited by Xin Xu and Azlan bin Mohd Zain. SPIE, 2025. https://doi.org/10.1117/12.3061638.
Texto completoYang, Liusha, Zhongwen Peng, and Haosheng Yu. "Unsupervised Concept Drift Detection and Adaptation Based on Random Forest." In 2025 8th International Conference on Advanced Algorithms and Control Engineering (ICAACE). IEEE, 2025. https://doi.org/10.1109/icaace65325.2025.11019964.
Texto completoYu, Xiangyu, Carlos Natalino, Paolo Monti, et al. "Enhancing Operational Security of Human-to-Machine Applications through Concept Drift Detection." In Optical Fiber Communication Conference. Optica Publishing Group, 2025. https://doi.org/10.1364/ofc.2025.w3j.5.
Texto completoDries, Anton, and Ulrich Rückert. "Adaptive Concept Drift Detection." In Proceedings of the 2009 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2009. http://dx.doi.org/10.1137/1.9781611972795.21.
Texto completoPedro Mauad Nogueira, João, and Gilberto Reynoso Meza. "OPTIMIZED ENSEMBLED CONCEPT DRIFT DETECTION." In ANAIS DO LVI SIMPóSIO BRASILEIRO DE PESQUISA OPERACIONAL. Galoa, 2024. https://doi.org/10.59254/sbpo-2024-193497.
Texto completo