Literatura académica sobre el tema "Computational inference method"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Computational inference method".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Computational inference method"
Jha, Kunal, Tuan Anh Le, Chuanyang Jin, Yen-Ling Kuo, Joshua B. Tenenbaum y Tianmin Shu. "Neural Amortized Inference for Nested Multi-Agent Reasoning". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 1 (24 de marzo de 2024): 530–37. http://dx.doi.org/10.1609/aaai.v38i1.27808.
Texto completoMartina Perez, Simon, Heba Sailem y Ruth E. Baker. "Efficient Bayesian inference for mechanistic modelling with high-throughput data". PLOS Computational Biology 18, n.º 6 (21 de junio de 2022): e1010191. http://dx.doi.org/10.1371/journal.pcbi.1010191.
Texto completoZhang, Chendong y Ting Chen. "Bayesian slip inversion with automatic differentiation variational inference". Geophysical Journal International 229, n.º 1 (29 de octubre de 2021): 546–65. http://dx.doi.org/10.1093/gji/ggab438.
Texto completoKoblents, Eugenia, Inés P. Mariño y Joaquín Míguez. "Bayesian Computation Methods for Inference in Stochastic Kinetic Models". Complexity 2019 (20 de enero de 2019): 1–15. http://dx.doi.org/10.1155/2019/7160934.
Texto completoBeaumont, Mark A., Wenyang Zhang y David J. Balding. "Approximate Bayesian Computation in Population Genetics". Genetics 162, n.º 4 (1 de diciembre de 2002): 2025–35. http://dx.doi.org/10.1093/genetics/162.4.2025.
Texto completoLi, Ziyue, Kan Ren, Yifan Yang, Xinyang Jiang, Yuqing Yang y Dongsheng Li. "Towards Inference Efficient Deep Ensemble Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 7 (26 de junio de 2023): 8711–19. http://dx.doi.org/10.1609/aaai.v37i7.26048.
Texto completoLi, Benchong, Shoufeng Cai y Jianhua Guo. "A computational algebraic-geometry method for conditional-independence inference". Frontiers of Mathematics in China 8, n.º 3 (25 de marzo de 2013): 567–82. http://dx.doi.org/10.1007/s11464-013-0295-9.
Texto completoSpringer, Sebastian, Heikki Haario, Jouni Susiluoto, Aleksandr Bibov, Andrew Davis y Youssef Marzouk. "Efficient Bayesian inference for large chaotic dynamical systems". Geoscientific Model Development 14, n.º 7 (9 de julio de 2021): 4319–33. http://dx.doi.org/10.5194/gmd-14-4319-2021.
Texto completoZhang, Xinfang, Miao Li, Bomin Wang y Zexian Li. "A Parameter Correction method of CFD based on the Approximate Bayesian Computation technique". Journal of Physics: Conference Series 2569, n.º 1 (1 de agosto de 2023): 012076. http://dx.doi.org/10.1088/1742-6596/2569/1/012076.
Texto completoZhang, Chi, Yilun Wang, Lili Zhang y Huicheng Zhou. "A fuzzy inference method based on association rule analysis with application to river flood forecasting". Water Science and Technology 66, n.º 10 (1 de noviembre de 2012): 2090–98. http://dx.doi.org/10.2166/wst.2012.420.
Texto completoTesis sobre el tema "Computational inference method"
Bergmair, Richard. "Monte Carlo semantics : robust inference and logical pattern processing with natural language text". Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609713.
Texto completoGuo, Wenbin. "Computational analysis and method development for high throughput transcriptomics and transcriptional regulatory inference in plants". Thesis, University of Dundee, 2018. https://discovery.dundee.ac.uk/en/studentTheses/3f14dd8e-0c6c-4b46-adb0-bbb10b0cbe19.
Texto completoStrid, Ingvar. "Computational methods for Bayesian inference in macroeconomic models". Doctoral thesis, Handelshögskolan i Stockholm, Ekonomisk Statistik (ES), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hhs:diva-1118.
Texto completoWarne, David James. "Computational inference in mathematical biology: Methodological developments and applications". Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/202835/1/David_Warne_Thesis.pdf.
Texto completoDahlin, Johan. "Accelerating Monte Carlo methods for Bayesian inference in dynamical models". Doctoral thesis, Linköpings universitet, Reglerteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-125992.
Texto completoBorde Riksbanken höja eller sänka reporäntan vid sitt nästa möte för att nå inflationsmålet? Vilka gener är förknippade med en viss sjukdom? Hur kan Netflix och Spotify veta vilka filmer och vilken musik som jag vill lyssna på härnäst? Dessa tre problem är exempel på frågor där statistiska modeller kan vara användbara för att ge hjälp och underlag för beslut. Statistiska modeller kombinerar teoretisk kunskap om exempelvis det svenska ekonomiska systemet med historisk data för att ge prognoser av framtida skeenden. Dessa prognoser kan sedan användas för att utvärdera exempelvis vad som skulle hända med inflationen i Sverige om arbetslösheten sjunker eller hur värdet på mitt pensionssparande förändras när Stockholmsbörsen rasar. Tillämpningar som dessa och många andra gör statistiska modeller viktiga för många delar av samhället. Ett sätt att ta fram statistiska modeller bygger på att kontinuerligt uppdatera en modell allteftersom mer information samlas in. Detta angreppssätt kallas för Bayesiansk statistik och är särskilt användbart när man sedan tidigare har bra insikter i modellen eller tillgång till endast lite historisk data för att bygga modellen. En nackdel med Bayesiansk statistik är att de beräkningar som krävs för att uppdatera modellen med den nya informationen ofta är mycket komplicerade. I sådana situationer kan man istället simulera utfallet från miljontals varianter av modellen och sedan jämföra dessa mot de historiska observationerna som finns till hands. Man kan sedan medelvärdesbilda över de varianter som gav bäst resultat för att på så sätt ta fram en slutlig modell. Det kan därför ibland ta dagar eller veckor för att ta fram en modell. Problemet blir särskilt stort när man använder mer avancerade modeller som skulle kunna ge bättre prognoser men som tar för lång tid för att bygga. I denna avhandling använder vi ett antal olika strategier för att underlätta eller förbättra dessa simuleringar. Vi föreslår exempelvis att ta hänsyn till fler insikter om systemet och därmed minska antalet varianter av modellen som behöver undersökas. Vi kan således redan utesluta vissa modeller eftersom vi har en bra uppfattning om ungefär hur en bra modell ska se ut. Vi kan också förändra simuleringen så att den enklare rör sig mellan olika typer av modeller. På detta sätt utforskas rymden av alla möjliga modeller på ett mer effektivt sätt. Vi föreslår ett antal olika kombinationer och förändringar av befintliga metoder för att snabba upp anpassningen av modellen till observationerna. Vi visar att beräkningstiden i vissa fall kan minska ifrån några dagar till någon timme. Förhoppningsvis kommer detta i framtiden leda till att man i praktiken kan använda mer avancerade modeller som i sin tur resulterar i bättre prognoser och beslut.
Lienart, Thibaut. "Inference on Markov random fields : methods and applications". Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:3095b14c-98fb-4bda-affc-a1fa1708f628.
Texto completoWang, Tengyao. "Spectral methods and computational trade-offs in high-dimensional statistical inference". Thesis, University of Cambridge, 2016. https://www.repository.cam.ac.uk/handle/1810/260825.
Texto completoPardo, Jérémie. "Méthodes d'inférence de cibles thérapeutiques et de séquences de traitement". Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG011.
Texto completoNetwork controllability is a major challenge in network medicine. It consists in finding a way to rewire molecular networks to reprogram the cell fate. The reprogramming action is typically represented as the action of a control. In this thesis, we extended the single control action method by investigating the sequential control of Boolean networks. We present a theoretical framework for the formal study of control sequences.We consider freeze controls, under which the variables can only be frozen to 0, 1 or unfrozen. We define a model of controlled dynamics where the modification of the control only occurs at a stable state in the synchronous update mode. We refer to the inference problem of finding a control sequence modifying the dynamics to evolve towards a desired state or property as CoFaSe. Under this problem, a set of variables are uncontrollable. We prove that this problem is PSPACE-hard. We know from the complexity of CoFaSe that finding a minimal sequence of control by exhaustively exploring all possible control sequences is not practically tractable. By studying the dynamical properties of the CoFaSe problem, we found that the dynamical properties that imply the necessity of a sequence of control emerge from the update functions of uncontrollable variables. We found that the length of a minimal control sequence cannot be larger than twice the number of profiles of uncontrollable variables. From this result, we built two algorithms inferring minimal control sequences under synchronous dynamics. Finally, the study of the interdependencies between sequential control and the topology of the interaction graph of the Boolean network allowed us to investigate the causal relationships that exist between structure and control. Furthermore, accounting for the topological properties of the network gives additional tools for tightening the upper bounds on sequence length. This work sheds light on the key importance of non-negative cycles in the interaction graph for the emergence of minimal sequences of control of size greater than or equal to two
Angulo, Rafael Villa. "Computational methods for haplotype inference with application to haplotype block characterization in cattle". Fairfax, VA : George Mason University, 2009. http://hdl.handle.net/1920/4558.
Texto completoVita: p. 123. Thesis director: John J. Grefenstette. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Bioinformatics and Computational Biology. Title from PDF t.p. (viewed Sept. 8, 2009). Includes bibliographical references (p. 114-122). Also issued in print.
Ruli, Erlis. "Recent Advances in Approximate Bayesian Computation Methods". Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423529.
Texto completoL'approccio bayesiano all'inferenza statistica è fondamentalmente probabilistico. Attraverso il calcolo delle probabilità, la distribuzione a posteriori estrae l'informazione rilevante offerta dai dati e produce una descrizione completa e coerente dell'incertezza condizionatamente ai dati osservati. Tuttavia, la descrizione della distribuzione a posteriori spesso richiede il computo di integrali multivariati e complicati. Un'ulteriore difficoltà dell'approccio bayesiano è legata alla funzione di verosimiglianza e nasce quando quest'ultima è matematicamento o computazionalmente intrattabile. In questa direzione, notevoli sviluppi sono stati compiuti dalla cosiddetta teaoria di Approximate Bayesian Computations (ABC). Questa tesi si focalizza su metodi computazionali per l'approssimazione della distribuzione a posteriori e propone sei contributi originali. Il primo contributo concerne l'approssimazione della distributione a posteriori marginale per un parametro scalare. Combinando l'approssimazione di ordine superiore per tail-area con il metodo della simulazione per inversione, si ottiene l'algorimo denominato HOTA, il quale può essere usato per simulare in modo indipendente da un'approssimazione della distribuzione a posteriori. Il secondo contributo si propone di estendere l'uso dell'algoritmo HOTA in contesti di distributioni pseudo-posterior, ovvero una distribuzione a posteriori ottenuta attraverso la combinazione di una pseudo-verosimiglianza con una prior, tramite il teorema di Bayes. Il terzo contributo estende l'uso dell'approssimazione di tail-area in contesti con parametri multidimensionali e propone un metodo per calcolare delle regioni di credibilità le quali presentano buone proprietà di copertura frequentista. Il quarto contributo presenta un'approssimazione di Laplace di terzo ordine per il calcolo della verosimiglianza marginale. Il quinto contributo si focalizza sulla scelta delle statistiche descrittive per ABC e propone un metodo parametrico, basato sulla funzione di score composita, per la scelta di tali statistiche. Infine, l'ultimo contributo si focalizza sulla scelta di una distribuzione di proposta da defalut per algoritmi ABC, dove la procedura di derivazione di tale distributzione è basata sulla nozione della quasi-verosimiglianza.
Libros sobre el tema "Computational inference method"
Istrail, Sorin, Michael Waterman y Andrew Clark, eds. Computational Methods for SNPs and Haplotype Inference. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b96286.
Texto completoLearning and inference in computational systems biology. Cambridge, Mass: MIT Press, 2010.
Buscar texto completoNeil, Lawrence, ed. Learning and inference in computational systems biology. Cambridge, MA: MIT Press, 2010.
Buscar texto completoHeard, Nick. An Introduction to Bayesian Inference, Methods and Computation. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82808-0.
Texto completoLo, Andrew W. Foundations of technical analysis: Computational algorithms, statistical inference, and empirical implementation. Cambridge, MA: National Bureau of Economic Research, 2000.
Buscar texto completoWorkshop for Dialogue on Reverse Engineering Assessment and Methods (2006 New York, N.Y.). Reverse engineering biological networks: Opportunities and challenges in computational methods for pathway inference. Boston, Mass: Published by Blackwell Publishing on behalf of the New York Academy of Sciences, 2007.
Buscar texto completoSorin, Istrail, Waterman Michael S y Clark Andrew G. 1954-, eds. Computational methods for SNPs and Haplotype inference: DIMACS/RECOMB satellite workshop, Piscataway, NJ, USA, November 21-22, 2002 : revised papers. Berlin: Springer-Verlag, 2004.
Buscar texto completoDiagrams 2010 (2010 Portland, Or.). Diagrammatic representation and inference: 6th international conference, Diagrams 2010, Portland, OR, USA, August 9-11, 2010 : proceedings. Berlin: Springer, 2010.
Buscar texto completoVarlamov, Oleg. Mivar databases and rules. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1508665.
Texto completoDesmarais, Bruce A. y Skyler J. Cranmer. Statistical Inference in Political Networks Research. Editado por Jennifer Nicoll Victor, Alexander H. Montgomery y Mark Lubell. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780190228217.013.8.
Texto completoCapítulos de libros sobre el tema "Computational inference method"
Revell, Jeremy y Paolo Zuliani. "Stochastic Rate Parameter Inference Using the Cross-Entropy Method". En Computational Methods in Systems Biology, 146–64. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99429-1_9.
Texto completoLilik, Ferenc y László T. Kóczy. "The Determination of the Bitrate on Twisted Pairs by Mamdani Inference Method". En Studies in Computational Intelligence, 59–74. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03206-1_5.
Texto completoIzumi, Satoru, Yusuke Kobayashi, Hideyuki Takahashi, Takuo Suganuma, Tetsuo Kinoshita y Norio Shiratori. "An Effective Inference Method Using Sensor Data for Symbiotic Healthcare Support System". En Computational Science and Its Applications – ICCSA 2010, 152–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12189-0_14.
Texto completoBumee, Somkid, Chalothorn Liamwirat, Treenut Saithong y Asawin Meechai. "Extended Constraint-Based Boolean Analysis: A Computational Method in Genetic Network Inference". En Communications in Computer and Information Science, 71–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16750-8_7.
Texto completoZolkepli, Maslina Binti y Teh Noranis Binti Mohd Aris. "Cross Domain Recommendations Based on the Application of Fuzzy AHP and Fuzzy Inference Method in Establishing Transdisciplinary Collaborations". En Computational and Experimental Simulations in Engineering, 397–412. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27053-7_36.
Texto completoHeard, Nick. "Computational Inference". En An Introduction to Bayesian Inference, Methods and Computation, 39–60. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82808-0_5.
Texto completoAlvo, Mayer. "Bayesian Computation Methods". En Statistical Inference and Machine Learning for Big Data, 385–410. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06784-6_13.
Texto completoLong, Quan. "Computational Haplotype Inference from Pooled Samples". En Methods in Molecular Biology, 309–19. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6750-6_15.
Texto completoKlingner, Marvin y Tim Fingscheidt. "Improved DNN Robustness by Multi-task Training with an Auxiliary Self-Supervised Task". En Deep Neural Networks and Data for Automated Driving, 149–70. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-01233-4_5.
Texto completoClark, Andrew G., Emmanouil T. Dermitzakis y Stylianos E. Antonarakis. "Trisomic Phase Inference". En Computational Methods for SNPs and Haplotype Inference, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24719-7_1.
Texto completoActas de conferencias sobre el tema "Computational inference method"
Kimura, Shuhei, Masato Tokuhisa y Mariko Okada-Hatakeyama. "Simultaneous execution method of gene clustering and network inference". En 2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE, 2016. http://dx.doi.org/10.1109/cibcb.2016.7758123.
Texto completoVu, Luong H., Benjamin N. Passow, Daniel Paluszczyszyn, Lipika Deka y Eric Goodyer. "Neighbouring link travel time inference method using artificial neural network". En 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2017. http://dx.doi.org/10.1109/ssci.2017.8285221.
Texto completoZhou, Lina, Yin Qing, Liehui Jiang, Wenjian Yin y Tieming Liu. "A Method of Type Inference Based on Dataflow Analysis for Decompilation". En 2009 International Conference on Computational Intelligence and Software Engineering. IEEE, 2009. http://dx.doi.org/10.1109/cise.2009.5362985.
Texto completoKoul, Nimrita. "Method for Feature Selection Based on Inference of Gene Regulatory Networks". En 2023 2nd International Conference on Computational Systems and Communication (ICCSC). IEEE, 2023. http://dx.doi.org/10.1109/iccsc56913.2023.10143012.
Texto completoKimura, Shuhei, Kazuki Sota y Masato Tokuhisa. "Inference of Genetic Networks using Random Forests: A Quantitative Weighting Method for Gene Expression Data". En 2022 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE, 2022. http://dx.doi.org/10.1109/cibcb55180.2022.9863035.
Texto completoLiu, Xiaohong, Xianyi Zeng, Yang Xu y Ludovic Koehl. "A method of experiment design based on IOWA operator inference in sensory evaluation". En Multiconference on "Computational Engineering in Systems Applications. IEEE, 2006. http://dx.doi.org/10.1109/cesa.2006.4281644.
Texto completoXianzhi, Tang y Wang Qingnian. "Driving Intention Intelligent Identification Method for Hybrid Vehicles Based on Fuzzy Logic Inference". En 2010 3rd International Symposium on Computational Intelligence and Design (ISCID). IEEE, 2010. http://dx.doi.org/10.1109/iscid.2010.11.
Texto completoGuan, Yu. "Regularization Method for Rule Reduction in Belief Rule-based SystemRegularization Method for Rule Reduction in Belief Rule-based System". En 8th International Conference on Computational Science and Engineering (CSE 2020). AIRCC Publishing Corporation, 2020. http://dx.doi.org/10.5121/csit.2020.101705.
Texto completoWright, Stephen, Avinash Ravikumar, Laura Redmond, Benjamin Lawler, Matthew Castanier, Eric Gingrich y Michael Tess. "Data Reduction Methods to Improve Computation Time for Calibration of Piston Thermal Models". En WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-0112.
Texto completoGuan, Jiaqi, Yang Liu, Qiang Liu y Jian Peng. "Energy-efficient Amortized Inference with Cascaded Deep Classifiers". En Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/302.
Texto completoInformes sobre el tema "Computational inference method"
Giacomini, Raffaella, Toru Kitagawa y Matthew Read. Identification and Inference under Narrative Restrictions. Reserve Bank of Australia, octubre de 2023. http://dx.doi.org/10.47688/rdp2023-07.
Texto completoArthur, Jennifer Ann. Subcritical Neutron Multiplication Inference Benchmarks for Nuclear Data and Computational Methods Validation. Office of Scientific and Technical Information (OSTI), diciembre de 2018. http://dx.doi.org/10.2172/1485365.
Texto completoKoop, Gary, Jamie Cross y Aubrey Poon. Introduction to Bayesian Econometrics in MATLAB. Instats Inc., 2022. http://dx.doi.org/10.61700/t3wrch7yujr7a469.
Texto completoKoop, Gary, Jamie Cross y Aubrey Poon. Introduction to Bayesian Econometrics in MATLAB. Instats Inc., 2023. http://dx.doi.org/10.61700/aebi3thp50fr3469.
Texto completode Kemp, E. A., H. A. J. Russell, B. Brodaric, D. B. Snyder, M. J. Hillier, M. St-Onge, C. Harrison et al. Initiating transformative geoscience practice at the Geological Survey of Canada: Canada in 3D. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/331097.
Texto completode Kemp, E. A., H. A. J. Russell, B. Brodaric, D. B. Snyder, M. J. Hillier, M. St-Onge, C. Harrison et al. Initiating transformative geoscience practice at the Geological Survey of Canada: Canada in 3D. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331871.
Texto completo