Literatura académica sobre el tema "Computational Genomic"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Computational Genomic".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Computational Genomic"
Nalbantoglu, Ozkan Ufuk y Khalid Sayood. "Computational Genomic Signatures". Synthesis Lectures on Biomedical Engineering 6, n.º 2 (31 de mayo de 2011): 1–129. http://dx.doi.org/10.2200/s00360ed1v01y201105bme041.
Texto completoYelick, Katherine, Aydın Buluç, Muaaz Awan, Ariful Azad, Benjamin Brock, Rob Egan, Saliya Ekanayake et al. "The parallelism motifs of genomic data analysis". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, n.º 2166 (20 de enero de 2020): 20190394. http://dx.doi.org/10.1098/rsta.2019.0394.
Texto completoHien, Le Thi Thu, Nguyen Tuong Van, Kim Thi Phuong Oanh, Nguyen Dang Ton, Huynh Thi Thu Hue, Nguyen Thuy Duong, Pham Le Bich Hang y Nguyen Hai Ha. "Genomics and big data: Research, development and applications". Vietnam Journal of Biotechnology 19, n.º 3 (13 de octubre de 2021): 393–410. http://dx.doi.org/10.15625/1811-4989/16158.
Texto completoLu, Bingxin y Hon Wai Leong. "Computational methods for predicting genomic islands in microbial genomes". Computational and Structural Biotechnology Journal 14 (2016): 200–206. http://dx.doi.org/10.1016/j.csbj.2016.05.001.
Texto completoSalamon, Hugh, Midori Kato-Maeda, Peter M. Small, Jorg Drenkow y Thomas R. Gingeras. "Detection of Deleted Genomic DNA Using a Semiautomated Computational Analysis of GeneChip Data". Genome Research 10, n.º 12 (21 de noviembre de 2000): 2044–54. http://dx.doi.org/10.1101/gr.152900.
Texto completoZUO, GuangHong y BaiLin HAO. "Computational microbiology in genomic era". SCIENTIA SINICA Vitae 47, n.º 2 (22 de enero de 2017): 159–70. http://dx.doi.org/10.1360/n052016-00312.
Texto completoLe, Vinh. "A computational framework to analyze human genomes". Journal of Computer Science and Cybernetics 35, n.º 2 (3 de junio de 2019): 105–18. http://dx.doi.org/10.15625/1813-9663/35/2/13827.
Texto completoCui, Zhe, Jayaram Kancherla, Kyle W. Chang, Niklas Elmqvist y Héctor Corrada Bravo. "Proactive visual and statistical analysis of genomic data in Epiviz". Bioinformatics 36, n.º 7 (29 de noviembre de 2019): 2195–201. http://dx.doi.org/10.1093/bioinformatics/btz883.
Texto completoWan, Peng y Dongsheng Che. "A Computational Framework for Tracing the Origins of Genomic Islands in Prokaryotes". International Scholarly Research Notices 2014 (28 de octubre de 2014): 1–9. http://dx.doi.org/10.1155/2014/732857.
Texto completoChorbadjiev, Lubomir, Jude Kendall, Joan Alexander, Viacheslav Zhygulin, Junyan Song, Michael Wigler y Alexander Krasnitz. "Integrated Computational Pipeline for Single-Cell Genomic Profiling". JCO Clinical Cancer Informatics, n.º 4 (septiembre de 2020): 464–71. http://dx.doi.org/10.1200/cci.19.00171.
Texto completoTesis sobre el tema "Computational Genomic"
Mumey, Brendan Marshall. "Some computational problems from genomic mapping /". Thesis, Connect to this title online; UW restricted, 1997. http://hdl.handle.net/1773/6932.
Texto completoAlkan, Can. "Computational Studies on Evolution and Functionality of Genomic Repeats". Case Western Reserve University School of Graduate Studies / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=case1120143436.
Texto completoGaspar, Paulo Miguel da Silva. "Computational methods for gene characterization and genomic knowledge extraction". Doctoral thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/13949.
Texto completoMotivation: Medicine and health sciences are changing from the classical symptom-based to a more personalized and genetics-based paradigm, with an invaluable impact in health-care. While advancements in genetics were already contributing significantly to the knowledge of the human organism, the breakthrough achieved by several recent initiatives provided a comprehensive characterization of the human genetic differences, paving the way for a new era of medical diagnosis and personalized medicine. Data generated from these and posterior experiments are now becoming available, but its volume is now well over the humanly feasible to explore. It is then the responsibility of computer scientists to create the means for extracting the information and knowledge contained in that data. Within the available data, genetic structures contain significant amounts of encoded information that has been uncovered in the past decades. Finding, reading and interpreting that information are necessary steps for building computational models of genetic entities, organisms and diseases; a goal that in due course leads to human benefits. Aims: Numerous patterns can be found within the human variome and exome. Exploring these patterns enables the computational analysis and manipulation of digital genomic data, but requires specialized algorithmic approaches. In this work we sought to create and explore efficient methodologies to computationally calculate and combine known biological patterns for various purposes, such as the in silico optimization of genetic structures, analysis of human genes, and prediction of pathogenicity from human genetic variants. Results: We devised several computational strategies to evaluate genes, explore genomes, manipulate sequences, and analyze patients’ variomes. By resorting to combinatorial and optimization techniques we were able to create and combine sequence redesign algorithms to control genetic structures; by combining the access to several web-services and external resources we created tools to explore and analyze available genetic data and patient data; and by using machine learning we developed a workflow for analyzing human mutations and predicting their pathogenicity.
Motivação: A medicina e as ciências da saúde estão atualmente num processo de alteração que muda o paradigma clássico baseado em sintomas para um personalizado e baseado na genética. O valor do impacto desta mudança nos cuidados da saúde é inestimável. Não obstante as contribuições dos avanços na genética para o conhecimento do organismo humano até agora, as descobertas realizadas recentemente por algumas iniciativas forneceram uma caracterização detalhada das diferenças genéticas humanas, abrindo o caminho a uma nova era de diagnóstico médico e medicina personalizada. Os dados gerados por estas e outras iniciativas estão disponíveis mas o seu volume está muito para lá do humanamente explorável, e é portanto da responsabilidade dos cientistas informáticos criar os meios para extrair a informação e conhecimento contidos nesses dados. Dentro dos dados disponíveis estão estruturas genéticas que contêm uma quantidade significativa de informação codificada que tem vindo a ser descoberta nas últimas décadas. Encontrar, ler e interpretar essa informação são passos necessários para construir modelos computacionais de entidades genéticas, organismos e doenças; uma meta que, em devido tempo, leva a benefícios humanos. Objetivos: É possível encontrar vários padrões no varioma e exoma humano. Explorar estes padrões permite a análise e manipulação computacional de dados genéticos digitais, mas requer algoritmos especializados. Neste trabalho procurámos criar e explorar metodologias eficientes para o cálculo e combinação de padrões biológicos conhecidos, com a intenção de realizar otimizações in silico de estruturas genéticas, análises de genes humanos, e previsão da patogenicidade a partir de diferenças genéticas humanas. Resultados: Concebemos várias estratégias computacionais para avaliar genes, explorar genomas, manipular sequências, e analisar o varioma de pacientes. Recorrendo a técnicas combinatórias e de otimização criámos e conjugámos algoritmos de redesenho de sequências para controlar estruturas genéticas; através da combinação do acesso a vários web-services e recursos externos criámos ferramentas para explorar e analisar dados genéticos, incluindo dados de pacientes; e através da aprendizagem automática desenvolvemos um procedimento para analisar mutações humanas e prever a sua patogenicidade.
SINHA, AMIT U. "Discovery and Analysis of Genomic Patterns: Applications to Transcription Factor Binding and Genome Rearrangement". University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1204227723.
Texto completoSaha, Mandal Arnab. "Computational Analysis of the Evolution of Non-Coding Genomic Sequences". University of Toledo Health Science Campus / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=mco1372349811.
Texto completoDanks, Jacob R. "Algorithm Optimizations in Genomic Analysis Using Entropic Dissection". Thesis, University of North Texas, 2015. https://digital.library.unt.edu/ark:/67531/metadc804921/.
Texto completoCICCOLELLA, SIMONE. "Practical algorithms for Computational Phylogenetics". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/364980.
Texto completoIn this manuscript we described the main computational challenges of the cancer phylogenetic field and we proposed different solutions for the three main problems of (i) the progression reconstruction of a tumor sample, (ii) the clustering of SCS data to allow for a cleaner and faster inference and (iii) the evaluation of different phylogenies. Furthermore we combined them into a usable pipeline to allow for a faster analysis.
Picard, Colette Lafontaine. "Dynamics of DNA methylation and genomic imprinting in arabidopsis". Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122539.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 210-226).
DNA methylation is an epigenetic mark that is highly conserved and important in diverse cellular processes, ranging from transposon silencing to genomic imprinting. In plants, DNA methylation is both mitotically and meiotically heritable, and changes in DNA methylation can be generationally stable and have long-lasting consequences. This thesis aims to improve understanding of DNA methylation dynamics in plants, particularly across generations and during reproduction. In the first project, I present an analysis of the generational dynamics of gene body methylation using recombinant inbred lines derived from differentially methylated parents. I show that while gene body methylation is highly generationally stable, changes in methylation state occur nonrandomly and are enriched in regions of intermediate methylation.
Important DNA methylation changes also occur during seed development in flowering plants, and these changes underlie genomic imprinting, the phenomenon of parent-of-origin specific gene expression. In plants, imprinting occurs in the endosperm, a seed tissue that functions analogously to the mammalian placenta. Imprinted expression is linked to DNA methylation patterns that serve to differentiate the maternally- and paternally-inherited alleles, but the mechanisms used to achieve imprinted expression are often unknown. I next explore imprinted expression and DNA methylation in Arabidopsis lyrata, a close relative of the model plant Arabidopsis thaliana. I find that the majority of imprinted genes in A. lyrata endosperm are also imprinted in A. thaliana, suggesting that imprinted expression is generally conserved. Surprisingly, a subset of A. lyrata imprinted genes are associated with a novel DNA methylation pattern and may be regulated by a different mechanism than their A.
thaliana counterparts. I then explore the genetics of paternal suppression of the seed abortion phenotype caused by mutation of a maternally expressed imprinted gene. Finally, I present the first large single-nuclei RNA-seq dataset generated in plants, reporting data from 1,093 individual nuclei obtained from developing seeds. I find evidence of previously uncharacterized cell states in endosperm, and examine imprinted expression at the single-cell level. Together, these projects contribute to our understanding of DNA methylation and imprinting dynamics during plant development, and highlight the strong generational stability of certain DNA methylation patterns.
by Colette Lafontaine Picard.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Computational and Systems Biology Program
Rezwan, Faisal Ibne. "Improving computational predictions of Cis-regulatory binding sites in genomic data". Thesis, University of Hertfordshire, 2011. http://hdl.handle.net/2299/7133.
Texto completoAlkhnbashi, Omer S. [Verfasser] y Rolf [Akademischer Betreuer] Backofen. "Computational characterisation of genomic CRISPR-Cas systems in archaea and bacteria". Freiburg : Universität, 2017. http://d-nb.info/1139210904/34.
Texto completoLibros sobre el tema "Computational Genomic"
Nalbantoglu, Ozkan Ufuk y Khalid Sayood. Computational Genomic Signatures. Cham: Springer International Publishing, 2011. http://dx.doi.org/10.1007/978-3-031-01650-9.
Texto completoDassanayake, Ranil S. Genomic and proteomic techniques: In post genomics era. Oxford: Alpha Science International, 2011.
Buscar texto completoBioinformatics in the post-genomic era: Genome, transcriptome, proteome, and information-based medicine. Boston: Addison-Wesley, 2005.
Buscar texto completoMasood, Nosheen y Saima Shakil Malik, eds. 'Essentials of Cancer Genomic, Computational Approaches and Precision Medicine. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1067-0.
Texto completoInc, ebrary, ed. Advances in genomic sequence analysis and pattern discovery. Hackensack, N.J: World Scientific, 2011.
Buscar texto completoDennis, Wigle, Jurisica Igor y Wong Bill, eds. Cancer informatics in the post genomic era. New York: Springer, 2007.
Buscar texto completoDwyer, Rex A. Genomic Perl: From bioinformatics basics to working code. Cambridge: Cambridge University Press, 2003.
Buscar texto completoY, Galperin Michael y Koonin Eugene V, eds. Frontiers in computational genomics. Norfolk, U.K: Caister, 2003.
Buscar texto completoShugart, Yin Yao, ed. Applied Computational Genomics. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5558-1.
Texto completoYao, Yin, ed. Applied Computational Genomics. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1071-3.
Texto completoCapítulos de libros sobre el tema "Computational Genomic"
Nalbantoglu, Ozkan Ufuk y Khalid Sayood. "Applications: Phylogeny Construction". En Computational Genomic Signatures, 49–60. Cham: Springer International Publishing, 2011. http://dx.doi.org/10.1007/978-3-031-01650-9_4.
Texto completoWong, Bill y Igor Jurisica. "Computational Platforms". En Cancer Informatics in the Post Genomic Era, 85–86. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/978-0-387-69321-7_6.
Texto completoZhang, Jie. "Biostatistics, Data Mining and Computational Modeling". En Genomic Approach to Asthma, 339–47. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8764-6_15.
Texto completoRitter, Otto. "The Integrated Genomic Database (IGD)". En Computational Methods in Genome Research, 57–73. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2451-9_5.
Texto completoJurisica, Igor. "Integrative Computational Biology". En Cancer Informatics in the Post Genomic Era, 129–45. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/978-0-387-69321-7_8.
Texto completoSharma, Abhishek y Ashok Kumar. "Genomics, Transcriptomics and Proteomics for Computational Biology". En Genomic, Proteomics, and Biotechnology, 1–11. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003220831-1.
Texto completoFertin, Guillaume y Irena Rusu. "Computing Genomic Distances: An Algorithmic Viewpoint". En Algorithms in Computational Molecular Biology, 773–97. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470892107.ch34.
Texto completoDuitama, Jorge. "Genomic Variants Detection and Genotyping". En Computational Methods for Next Generation Sequencing Data Analysis, 133–47. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119272182.ch6.
Texto completoZanetti, João Paulo Pereira, Leonid Chindelevitch y João Meidanis. "Generalizations of the Genomic Rank Distance to Indels". En Algorithms for Computational Biology, 152–64. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18174-1_11.
Texto completoTapia, José Juan, Enrique Morett y Edgar E. Vallejo. "A Clustering Genetic Algorithm for Genomic Data Mining". En Studies in Computational Intelligence, 249–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01088-0_11.
Texto completoActas de conferencias sobre el tema "Computational Genomic"
Kanwal, Sehrish, Andrew Lonie y Richard O. Sinnott. "Digital reproducibility requirements of computational genomic workflows". En 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2017. http://dx.doi.org/10.1109/bibm.2017.8217887.
Texto completo"Computational Solutions to Explore Genomic 3D Organization". En 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2022. http://dx.doi.org/10.1109/bibm55620.2022.9995500.
Texto completoNgo, Mathias y Raphael Labayrade. "Multi-Genomic Algorithms". En 2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM). IEEE, 2014. http://dx.doi.org/10.1109/mcdm.2014.7007187.
Texto completoCannataro, Mario. "Session details: Genomic variation". En BCB '21: 12th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3478666.
Texto completoNabavi, Sheida. "Session details: Genomic variation". En BCB '22: 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3552480.
Texto completo"Computational pipeline for genomic epidemiology surveillance of pathogenic bacteria". En Bioinformatics of Genome Regulation and Structure/ Systems Biology. institute of cytology and genetics siberian branch of the russian academy of science, Novosibirsk State University, 2020. http://dx.doi.org/10.18699/bgrs/sb-2020-068.
Texto completoOcchipinti, Annalisa y Claudio Angione. "A Computational Model of Cancer Metabolism for Personalised Medicine". En Building Bridges in Medical Science 2021. Cambridge Medicine Journal, 2021. http://dx.doi.org/10.7244/cmj.2021.03.001.3.
Texto completoSchwartz, Russell. "Computationally resolving heterogeneity in mixed genomic samples". En 2016 IEEE 6th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS). IEEE, 2016. http://dx.doi.org/10.1109/iccabs.2016.7802796.
Texto completoYue, Dong, Yidong Chen, Shou-Jiang Gao y Yufei Huang. "Computational prediction of microRNA regulatory pathways". En 2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS). IEEE, 2011. http://dx.doi.org/10.1109/gensips.2011.6169469.
Texto completoKim, Sungeun, Li Shen, Andrew J. Saykin y John D. West. "Data synthesis and tool development for exploring imaging genomic patterns". En 2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE, 2009. http://dx.doi.org/10.1109/cibcb.2009.4925742.
Texto completoInformes sobre el tema "Computational Genomic"
Stevens, Rick. Development of an Extensible Computational Framework for Centralized Storage and Distributed Curation and Analysis of Genomic Data Genome-scale Metabolic Models. Office of Scientific and Technical Information (OSTI), agosto de 2010. http://dx.doi.org/10.2172/1234257.
Texto completoFluhr, Robert y Volker Brendel. Harnessing the genetic diversity engendered by alternative gene splicing. United States Department of Agriculture, diciembre de 2005. http://dx.doi.org/10.32747/2005.7696517.bard.
Texto completoFridman, Eyal, Jianming Yu y Rivka Elbaum. Combining diversity within Sorghum bicolor for genomic and fine mapping of intra-allelic interactions underlying heterosis. United States Department of Agriculture, enero de 2012. http://dx.doi.org/10.32747/2012.7597925.bard.
Texto completoEdwards, Jeremy, S. Metabolic engineering of deinococcus radiodurans based on computational analysis and functional genomics. Office of Scientific and Technical Information (OSTI), febrero de 2005. http://dx.doi.org/10.2172/836597.
Texto completoEbrahim, Ali. Development and Dissemination of Computational Methods for Genome-scale Modeling. Office of Scientific and Technical Information (OSTI), enero de 2016. http://dx.doi.org/10.2172/1468961.
Texto completoOvcharenko, I. FY06 LDRD Final Report "Development of Computational Techniques For Decoding The Language of Genomes". Office of Scientific and Technical Information (OSTI), enero de 2007. http://dx.doi.org/10.2172/899447.
Texto completo