Literatura académica sobre el tema "Composite beams"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Composite beams".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Composite beams"
Zhao, Wei Jian, Jia Xin Tong, Shen Ming Yuan y Ye Nan Guo. "Research Progress on Reinforced Concrete Composite Beam in China". Applied Mechanics and Materials 584-586 (julio de 2014): 939–43. http://dx.doi.org/10.4028/www.scientific.net/amm.584-586.939.
Texto completoEndriatno, Nanang. "Experimental Investigation on Vibration Responses of Fiberglass Reinforced Plastic". International Journal of Engineering and Computer Science 10, n.º 4 (26 de abril de 2021): 25316–20. http://dx.doi.org/10.18535/ijecs/v10i4.4575.
Texto completoAl-Thabhawee, Hayder Wafi. "Experimental investigation of composite steel–concrete beams using symmetrical and asymmetrical castellated beams". Curved and Layered Structures 9, n.º 1 (1 de enero de 2022): 227–35. http://dx.doi.org/10.1515/cls-2022-0019.
Texto completoHUANG, C. W. y Y. H. SU. "DYNAMIC CHARACTERISTICS OF PARTIAL COMPOSITE BEAMS". International Journal of Structural Stability and Dynamics 08, n.º 04 (diciembre de 2008): 665–85. http://dx.doi.org/10.1142/s0219455408002946.
Texto completoSong, Xingyu, Yan Liu, Xiaodong Fu, Hongwei Ma y Xiaolun Hu. "Experimental Study on Flexural Behaviour of Prestressed Specified Density Concrete Composite Beams". Sustainability 14, n.º 22 (8 de noviembre de 2022): 14727. http://dx.doi.org/10.3390/su142214727.
Texto completoUmer Sial, Sardar y M. Iqbal Khan. "Performance of Strain hardening cementitious composite as strengthening and protective overlay in flexural members". MATEC Web of Conferences 199 (2018): 09005. http://dx.doi.org/10.1051/matecconf/201819909005.
Texto completoLu, Tingting, Kai Guan y Haowei Jin. "Experimental Study on Bending Performance of High-Performance Fiber-Reinforced Cement Composite Prefabricated Monolithic Composite Beams". Buildings 13, n.º 7 (10 de julio de 2023): 1744. http://dx.doi.org/10.3390/buildings13071744.
Texto completoWang, Boxin, Ruichang Fang y Qing Wang. "Flexural Behavior of Fiber-Reinforced Self-Stressing Concrete T-Shaped Composite Beams". Advances in Civil Engineering 2020 (24 de junio de 2020): 1–17. http://dx.doi.org/10.1155/2020/8810440.
Texto completoHan, Xiaoli, Jian Dai, Wei Qian, Zhaoyang Zhu y Baolong Li. "Effects of dowels on the mechanical properties of wooden composite beams in ancient timber structures". BioResources 16, n.º 4 (27 de agosto de 2021): 6891–909. http://dx.doi.org/10.15376/biores.16.4.6891-6909.
Texto completoMaaroof, Atyaf Abdul Azeez, Jasim Ali Abdullah y Suhaib Yahya Kasim. "Performance of Steel Perforated and Partially-Encased Composite Self-Connected Beams". Jurnal Kejuruteraan 34, n.º 4 (30 de julio de 2022): 703–17. http://dx.doi.org/10.17576/jkukm-2022-34(4)-18.
Texto completoTesis sobre el tema "Composite beams"
Bhutta, Salman Ahmed. "Analytical modeling of hybrid composite beams". Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-11102009-020112/.
Texto completoMegharief, Jihad Dokali. "Behavior of composite castellated beams". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ37273.pdf.
Texto completoMolenstra, Nadia Julia. "Ultimate strength of composite beams". Thesis, University of Warwick, 1990. http://wrap.warwick.ac.uk/34713/.
Texto completoFan, Chun Keung Roger. "Buckling in continuous composite beams". Thesis, University of Warwick, 1990. http://wrap.warwick.ac.uk/106724/.
Texto completoJamal, Dany. "Solution methods of composite beams". Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2012. http://www.nusl.cz/ntk/nusl-264913.
Texto completoDo, Nascimento Oliveira Jose Emidio. "Deformation and damage analysis of composite beams equipped with polyvinylidene fluoride film sensors /". [S.l. : s.n.], 2008. http://dk.cput.ac.za/cgi/viewcontent.cgi?article=1001&context=td_cput.
Texto completoKong, Yow Wai. "Computer aided design of composite beams". Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63364.
Texto completoRakib, Saad Namik. "The behaviour of continuous composite beams". Thesis, Cardiff University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425983.
Texto completoBARROS, LUIS PAULO FRANCO DE. "PIEZOELECTRIC PATCHES MODELING FOR COMPOSITE BEAMS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1998. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=26509@1.
Texto completoEsta dissertação trata da modelagem dos esforços transmitidos por atuadores piezoelétricos, colados ou embutidos em vigas compósitas laminadas. O trabalho é motivado por aplicações na área de materiais e estruturas inteligentes. Em particular, procura-se avaliar o comportamento de diferentes teorias aproximadas nas faixas de médias e altas frequências, quando os comprimentos de onda podem ser da ordem da espessura da viga. Nestes casos, teorias tradicionais de vigas deixam de representar com acuracidade a resposta dinâmica de estruturas compósitas. Além disso, modelos convencionais que procuram representar os esforços gerados pelo atuador por forças e momentos fletores equivalentes, geralmente resultantes de uma análise estática, deixam de ser efetivos. São estudados modelos baseados na Teoria Clássica de Laminação (hipótese cinemática de Bernoulli-Euler) e na Teoria de Deformação Cisalhante de Primeira Ordem (hipótese cinemática de Timonshenko) e na Teoria discreta de Laminação proposta por Reddy (Reddy’s Layerwise Theory). Os três modelos são escritos na forma de equações de estado, e um método de solução é proposto para se obter a matriz de impedância dos atuadores. Resultados dos modelos estudados são comparados com os obtidos pelo método dos elementos finitos (código ANSYStm). São apresentados resultados para atuadores formados por camadas de PZT e Alumínio, bem como por camadas intercaladas de PZT, Aramide-Epóxi e Alumínio.
This dissertation addresses the problem of modeling the excitation of laminated composite beams by piezoelectric patches bonded or embedded in the structure. This work has been motivated by applications in the field of smart structures and materials. In particular, attention is paid to the electromechanical response in the high-frequency range. An attempt is made to evaluate the capabilities of different laminate theories in the medium and high-frequency ranges, where traditional models, such as the Classical (Bernouli-Euler) or First Order Shear Deformation (Timoshenko) theories, fail to provide accurate assessments of the structural dynamic response. Also, at these frequency ranges, conventional approaches to model the piezoelectric excitation via equivalent forces and bending moments, usually resulting from static analysis, are no longer satisfactory. Three different laminate theories are investigated: Classical, First Order Shear Deformation, and Reddy’s Layerwise theories. In the frequency domain, the governing electro-elastodynamic equations are written in a common state space formulation. A general method of solution is presented where the impedance matrix for the actuator is analytically evaluated. Comparisons are also made with numerical models obtained from a commercial finite element code.
Adhikari, Samiran. "High-definition Modeling of Composite Beams". University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1627666419572229.
Texto completoLibros sobre el tema "Composite beams"
Fan, Chun Keung Roger. Buckling in continuous composite beams. [s.l.]: typescript, 1990.
Buscar texto completoMolenstra, Nadia Julia. Ultimate strength of composite beams. [s.l.]: typescript, 1990.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. Flutter analysis of composite box beams. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Buscar texto completoKissane, Robert J. Lateral restraint of non-composite beams. Albany, NY: New York State Dept. of Transportation, Engineering Research and Development Bureau, 1985.
Buscar texto completoDarwin, David. Steel and composite beams with web openings: Design of steel and composite beams with web openings. Chicago, Ill: American Institute of Steel Construction, 1990.
Buscar texto completoBanks, H. Thomas. On damping mechanisms in beams. Hampton, Va: ICASE, 1989.
Buscar texto completoCenter, Lewis Research, ed. Free vibrations of delaminated beams. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1992.
Buscar texto completoGhorashi, Mehrdaad. Statics and Rotational Dynamics of Composite Beams. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-14959-2.
Texto completoLibrescu, Liviu. Thin-walled composite beams: Theory and application. Dordrecht: Springer, 2006.
Buscar texto completoW, Hyer M. y United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., eds. Large deformation dynamic bending of composite beams. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.
Buscar texto completoCapítulos de libros sobre el tema "Composite beams"
Dolan, Charles W. y H. R. Hamilton. "Composite Beams". En Prestressed Concrete, 283–300. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97882-6_10.
Texto completoOñate, Eugenio. "3D Composite Beams". En Structural Analysis with the Finite Element Method Linear Statics, 150–232. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-8743-1_4.
Texto completoStrømmen, Einar N. "Stresses in Composite Beams". En Structural Mechanics, 149–56. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44318-4_7.
Texto completoOñate, Eugenio. "Composite Laminated Plane Beams". En Structural Analysis with the Finite Element Method Linear Statics, 98–149. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-8743-1_3.
Texto completoÖchsner, Andreas y M. Merkel. "Beams of Composite Materials". En One-Dimensional Finite Elements, 209–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31797-2_9.
Texto completoÖchsner, Andreas y Markus Merkel. "Beams of Composite Materials". En One-Dimensional Finite Elements, 205–27. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75145-0_9.
Texto completoGangaRao, Hota V. S. y Woraphot Prachasaree. "Analysis of FRP Composite Beams". En FRP Composite Structures, 149–203. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003196754-5.
Texto completoGay, Daniel. "Torsion of Composite Beams of Any Section Shape". En Composite Materials, 377–85. 4a ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003195788-20.
Texto completoGay, Daniel. "Bending of Composite Beams of Any Section Shape". En Composite Materials, 355–76. 4a ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003195788-19.
Texto completoKvočák, Vincent y Daniel Dubecký. "Fatigue Tests of Composite Beams". En SpringerBriefs in Applied Sciences and Technology, 79–87. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66925-6_7.
Texto completoActas de conferencias sobre el tema "Composite beams"
McCarrick, James. "A Composite Target Concept for Multi-Pulse Radiography". En BEAMS 2002: 14th International Conference on High-Power Particle Beams. AIP, 2002. http://dx.doi.org/10.1063/1.1530821.
Texto completoSheehan, Therese, Xianghe Dai, Jie Yang, Kan Zhou y Dennis Lam. "Flexural behaviour of composite slim floor beams". En 12th international conference on ‘Advances in Steel-Concrete Composite Structures’ - ASCCS 2018. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/asccs2018.2018.6963.
Texto completo"Cyclic Response of Composite Coupling Beams". En SP-174: Hybrid and Composite Structures. American Concrete Institute, 1998. http://dx.doi.org/10.14359/5959.
Texto completoBradford, Mark A., Yong-Lin Pi y Brian Uy. "Ductility of Composite Beams with Trapezoidal Composite Slabs". En International Conference on Composite Construction in Steel and Concrete 2008. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41142(396)13.
Texto completoAggelopoulos, Eleftherios, Francois Hanus y Mark Lawson. "Shear connection requirements for composite cellular beams". En 12th international conference on ‘Advances in Steel-Concrete Composite Structures’ - ASCCS 2018. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/asccs2018.2018.7161.
Texto completoVivek, P. G., Ankuran Saha, Apurba Das, Kazuaki Inaba y Amit Karmakar. "Stiffness Analysis of Delaminated Composite Beams Using Roller Clamps". En ASME 2021 Gas Turbine India Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gtindia2021-76042.
Texto completoKumar, T. Hemanth y G. Sri Harsha. "Finite element analysis of composite beams". En SEVENTH INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0057910.
Texto completoGardner, Leroy, Merih Kucukler y Lorenzo Macorini. "Deformation-Based Design of Composite Beams". En International Conference on Composite Construction in Steel and Concrete 2013. Reston, VA: American Society of Civil Engineers, 2016. http://dx.doi.org/10.1061/9780784479735.011.
Texto completoGizejowski, Marian A. y Wael A. Salah. "Numerical Modeling of Composite Castellated Beams". En International Conference on Composite Construction in Steel and Concrete 2008. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41142(396)45.
Texto completoEmam, Samir A. y Ali H. Nayfeh. "Postbuckling and Free Vibrations of Composite Beams". En ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35007.
Texto completoInformes sobre el tema "Composite beams"
Ferrante, César A. O., Sebastião A. L. de Andrade, Luciano R. O. de Lima y Pedro C. G. da S. Vellasco. BEHAVIOUR OF COMPOSITE BEAMS WITH EMBEDDED COMPRESSION FLANGE. The Hong Kong Institute of Steel Construction, diciembre de 2018. http://dx.doi.org/10.18057/icass2018.p.116.
Texto completoPortela, Genock, Ulises Barajas y Jose A. Albarran-Garcia. Analysis and Load Rating of Pre-flex Composite Beams. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2011. http://dx.doi.org/10.21236/ada550595.
Texto completoAl-Chaar, Ghassan, Steven Sweeney, Richard Lampo y Marion Banko. Full-scale testing of thermoplastic composite I-Beams for bridges. Construction Engineering Research Laboratory (U.S.), junio de 2017. http://dx.doi.org/10.21079/11681/22641.
Texto completoGoodman, Daniel. Advanced Low-Cost Composite Curing With High Energy Electron Beams. Phase 2. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 1998. http://dx.doi.org/10.21236/ada358391.
Texto completoZhu, Ting, Shenggang Fan, Yunlong Han, Runmin Ding y Yang Li. Numerical Investigation on Fire Resistance of Stainless Steel Composite Beams with Rectangular Section. The Hong Kong Institute of Steel Construction, diciembre de 2018. http://dx.doi.org/10.18057/icass2018.p.134.
Texto completoTang, Po-Yun. Bending Deformation Increase of Bending-Extension Coupled Composite Beams Bonded with Actuator(s). Fort Belvoir, VA: Defense Technical Information Center, octubre de 1995. http://dx.doi.org/10.21236/ada302002.
Texto completoBank, Lawrence C., Anthony J. Lamanna, James C. Ray y Gerardo I. Velazquez. Rapid Strengthening of Reinforced Concrete Beams with Mechanically Fastened, Fiber-Reinforced Polymeric Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2002. http://dx.doi.org/10.21236/ada400415.
Texto completoRamesh, Selvarajah, Lisa Choe, Mina Seif, Matthew Hoehler, William Grosshandler, Ana Sauca, Matthew Bundy et al. Compartment fire experiments on long-span composite-beams with simple shear connections part 1:. Gaithersburg, MD: National Institute of Standards and Technology, octubre de 2019. http://dx.doi.org/10.6028/nist.tn.2054.
Texto completoChoe, Lisa, Selvarajah Ramesh, Matthew Hoehler, Mina Seif, Matthew Bundy, John Reilly y Branko Glisic. Compartment fire experiments on long-span composite-beams with simple shear connections part 2:. Gaithersburg, MD: National Institute of Standards and Technology, noviembre de 2019. http://dx.doi.org/10.6028/nist.tn.2055.
Texto completoRafeeq, Ranj. Torsional Strengthening of Reinforced Concrete Beams Using CFRP Composites. Portland State University Library, enero de 2000. http://dx.doi.org/10.15760/etd.3121.
Texto completo