Siga este enlace para ver otros tipos de publicaciones sobre el tema: Complexe of oriented matroids.

Artículos de revistas sobre el tema "Complexe of oriented matroids"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Complexe of oriented matroids".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Mücksch, Paul. "Modular flats of oriented matroids and poset quasi-fibrations." Transactions of the American Mathematical Society, Series B 11, no. 9 (2024): 306–28. http://dx.doi.org/10.1090/btran/168.

Texto completo
Resumen
We study the combinatorics of modular flats of oriented matroids and the topological consequences for their Salvetti complexes. We show that the natural map to the localized Salvetti complex at a modular flat of corank one is what we call a poset quasi-fibration – a notion derived from Quillen’s fundamental Theorem B from algebraic K K -theory. As a direct consequence, the Salvetti complex of an oriented matroid whose geometric lattice is supersolvable is a K ( π , 1 ) K(\pi ,1) -space – a generalization of the classical result for supersolvable hyperplane arrangements due to Falk, Randell and Terao. Furthermore, the fundamental group of the Salvetti complex of a supersolvable oriented matroid is an iterated semidirect product of finitely generated free groups – analogous to the realizable case. Our main tools are discrete Morse theory, the shellability of certain subcomplexes of the covector complex of an oriented matroid, a nice combinatorial decomposition of poset fibers of the localization map, and an isomorphism of covector posets associated to modular elements. We provide a simple construction of supersolvable oriented matroids. This gives many non-realizable supersolvable oriented matroids and by our main result aspherical CW-complexes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Chepoi, Victor, Kolja Knauer, and Manon Philibert. "Ample Completions of Oriented Matroids and Complexes of Uniform Oriented Matroids." SIAM Journal on Discrete Mathematics 36, no. 1 (2022): 509–35. http://dx.doi.org/10.1137/20m1355434.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Bandelt, Hans-Jürgen, Victor Chepoi, and Kolja Knauer. "COMs: Complexes of oriented matroids." Journal of Combinatorial Theory, Series A 156 (May 2018): 195–237. http://dx.doi.org/10.1016/j.jcta.2018.01.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Webster, Julian. "Cell complexes, oriented matroids and digital geometry." Theoretical Computer Science 305, no. 1-3 (2003): 491–502. http://dx.doi.org/10.1016/s0304-3975(02)00712-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Fukuda, Komei, Hiroyuki Miyata, and Sonoko Moriyama. "Complete Enumeration of Small Realizable Oriented Matroids." Discrete & Computational Geometry 49, no. 2 (2012): 359–81. http://dx.doi.org/10.1007/s00454-012-9470-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Knauer, Kolja, and Tilen Marc. "On Tope Graphs of Complexes of Oriented Matroids." Discrete & Computational Geometry 63, no. 2 (2019): 377–417. http://dx.doi.org/10.1007/s00454-019-00111-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Bokowski, Jürgen, and Tomaž Pisanski. "Oriented matroids and complete-graph embeddings on surfaces." Journal of Combinatorial Theory, Series A 114, no. 1 (2007): 1–19. http://dx.doi.org/10.1016/j.jcta.2006.06.012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Naimi, Ramin, and Elena Pavelescu. "Linear embeddings of K9 are triple linked." Journal of Knot Theory and Its Ramifications 23, no. 03 (2014): 1420001. http://dx.doi.org/10.1142/s0218216514200016.

Texto completo
Resumen
We use the theory of oriented matroids to show that any linear embedding of K9, the complete graph on nine vertices, into 3-space contains a non-split link with three components. This shows that Sachs' conjecture on linear, linkless embeddings of graphs, whether true or false, does not extend to 3-links.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Alfonsín, J. L. Ramírez. "On Linked Spatial Representations." Journal of Knot Theory and Its Ramifications 10, no. 01 (2001): 143–50. http://dx.doi.org/10.1142/s0218216501000780.

Texto completo
Resumen
What is the smallest positive integer m=m(L) such that every linear spatial representation of the complete graph with n vertices, n≥m contain cycles isotopic to link L? In this paper, we show that [Formula: see text]. The proof uses the well-known cyclic polytope and its combinatorial description in terms of oriented matroids.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Welsh, D. J. A. "ORIENTED MATROIDS." Bulletin of the London Mathematical Society 27, no. 5 (1995): 499–501. http://dx.doi.org/10.1112/blms/27.5.499.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Booth, Richard F., Alexandre V. Borovik, Israel M. Gelfand, and Neil White. "Oriented Lagrangian Matroids." European Journal of Combinatorics 22, no. 5 (2001): 639–56. http://dx.doi.org/10.1006/eujc.2000.0485.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Bokowski, Jürgen, António Guedes de Oliveira, and Jürgen Richter-Gebert. "Algebraic varieties characterizing matroids and oriented matroids." Advances in Mathematics 87, no. 2 (1991): 160–85. http://dx.doi.org/10.1016/0001-8708(91)90070-n.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Delucchi, Emanuele. "Modular elimination in matroids and oriented matroids." European Journal of Combinatorics 32, no. 3 (2011): 339–43. http://dx.doi.org/10.1016/j.ejc.2010.10.013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Wenzel, Walter. "Book Review: Oriented matroids." Bulletin of the American Mathematical Society 31, no. 2 (1994): 296–98. http://dx.doi.org/10.1090/s0273-0979-1994-00536-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Bachem, A., and W. Kern. "Adjoints of oriented matroids." Combinatorica 6, no. 4 (1986): 299–308. http://dx.doi.org/10.1007/bf02579255.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Fenton, William E. "Completeness in oriented matroids." Discrete Mathematics 66, no. 1-2 (1987): 79–89. http://dx.doi.org/10.1016/0012-365x(87)90120-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

McLennan, Andrew, and Rabee Tourky. "Games in oriented matroids." Journal of Mathematical Economics 44, no. 7-8 (2008): 807–21. http://dx.doi.org/10.1016/j.jmateco.2007.07.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Santos, Francisco. "Triangulations of oriented matroids." Memoirs of the American Mathematical Society 156, no. 741 (2002): 0. http://dx.doi.org/10.1090/memo/0741.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Sturmfels, Bernd, Alexander Postnikov, and Isabella Novik. "Syzygies of oriented matroids." Duke Mathematical Journal 111, no. 2 (2002): 287–317. http://dx.doi.org/10.1215/s0012-7094-02-11124-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Richter-Gebert, Jürgen. "Two interesting oriented matroids." Documenta Mathematica 1 (1996): 137–48. http://dx.doi.org/10.4171/dm/7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Hochstättler, Winfried, and Robert Nickel. "Joins of oriented matroids." European Journal of Combinatorics 32, no. 6 (2011): 841–52. http://dx.doi.org/10.1016/j.ejc.2011.02.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Borovik, Alexandre V., Israel Gelfand, and Neil White. "On exchange properties for Coxeter matroids and oriented matroids." Discrete Mathematics 179, no. 1-3 (1998): 59–72. http://dx.doi.org/10.1016/s0012-365x(96)00027-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Bokowski, J., and A. G. Deoliveira. "Invariant Theory-like Theorems for Matroids and Oriented Matroids." Advances in Mathematics 109, no. 1 (1994): 34–44. http://dx.doi.org/10.1006/aima.1994.1078.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Ardila, Federico, Felipe Rincón, and Lauren Williams. "Positively oriented matroids are realizable." Journal of the European Mathematical Society 19, no. 3 (2017): 815–33. http://dx.doi.org/10.4171/jems/680.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Fukuda, Komei, and Tamas Terlaky. "LINEAR COMPLEMENTARITY AND ORIENTED MATROIDS." Journal of the Operations Research Society of Japan 35, no. 1 (1992): 45–61. http://dx.doi.org/10.15807/jorsj.35.45.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Bachem, Achim, and Walter Kern. "Extension Equivalence of Oriented Matroids." European Journal of Combinatorics 7, no. 3 (1986): 193–97. http://dx.doi.org/10.1016/s0195-6698(86)80020-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Sturmfels, Bernd. "Neighborly Polytopes and Oriented Matroids." European Journal of Combinatorics 9, no. 6 (1988): 537–46. http://dx.doi.org/10.1016/s0195-6698(88)80050-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Bachem, Achim, and Alfred Wanka. "Separation theorems for oriented matroids." Discrete Mathematics 70, no. 3 (1988): 303–10. http://dx.doi.org/10.1016/0012-365x(88)90006-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Fukuda, Komei, and Keiichi Handa. "Antipodal graphs and oriented matroids." Discrete Mathematics 111, no. 1-3 (1993): 245–56. http://dx.doi.org/10.1016/0012-365x(93)90159-q.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Sturmfels, Bernd, and Günter M. Ziegler. "Extension spaces of oriented matroids." Discrete & Computational Geometry 10, no. 1 (1993): 23–45. http://dx.doi.org/10.1007/bf02573961.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Richter-Gebert, Jürgen. "Oriented matroids with few mutations." Discrete & Computational Geometry 10, no. 3 (1993): 251–69. http://dx.doi.org/10.1007/bf02573980.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Miller, Douglas A. "Oriented matroids from smooth manifolds." Journal of Combinatorial Theory, Series B 43, no. 2 (1987): 173–86. http://dx.doi.org/10.1016/0095-8956(87)90020-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Abello and Kumar. "Visibility Graphs and Oriented Matroids." Discrete & Computational Geometry 28, no. 4 (2002): 449–65. http://dx.doi.org/10.1007/s00454-002-2881-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Lawrence, Jim. "Oriented Matroids and Associated Valuations." Discrete & Computational Geometry 33, no. 3 (2004): 445–62. http://dx.doi.org/10.1007/s00454-004-1114-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Lawrence, J. "Mutation Polynomials and Oriented Matroids." Discrete & Computational Geometry 24, no. 2 (2000): 365–90. http://dx.doi.org/10.1007/s004540010042.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Cordovil, Raul, and Komei Fukuda. "Oriented Matroids and Combinatorial Manifolds." European Journal of Combinatorics 14, no. 1 (1993): 9–15. http://dx.doi.org/10.1006/eujc.1993.1002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Cordovil, Raul, and Pierre Duchet. "Cyclic Polytopes and Oriented Matroids." European Journal of Combinatorics 21, no. 1 (2000): 49–64. http://dx.doi.org/10.1006/eujc.1999.0317.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Anderson, Laura, and Rephael Wenger. "Oriented Matroids and Hyperplane Transversals." Advances in Mathematics 119, no. 1 (1996): 117–25. http://dx.doi.org/10.1006/aima.1996.0028.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Roudneff, J. P. "Inseparability graphs of oriented matroids." Combinatorica 9, no. 1 (1989): 75–84. http://dx.doi.org/10.1007/bf02122686.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Guzmán-Pro, Santiago, and Winfried Hochstättler. "Oriented cobicircular matroids are GSP." Discrete Mathematics 347, no. 1 (2024): 113686. http://dx.doi.org/10.1016/j.disc.2023.113686.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Chen, Xiangying. "An Axiomatization of Matroids and Oriented Matroids as Conditional Independence Models." SIAM Journal on Discrete Mathematics 38, no. 2 (2024): 1526–36. http://dx.doi.org/10.1137/23m1558653.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Živaljević, Rade T. "Oriented matroids and Ky Fan’s theorem." Combinatorica 30, no. 4 (2010): 471–84. http://dx.doi.org/10.1007/s00493-010-2446-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Hartmann, Mark, and Michael H. Schneider. "Max-balanced flows in oriented matroids." Discrete Mathematics 137, no. 1-3 (1995): 223–40. http://dx.doi.org/10.1016/0012-365x(93)e0168-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Cordovil, R., and M. L. Moreira. "A homotopy theorem on oriented matroids." Discrete Mathematics 111, no. 1-3 (1993): 131–36. http://dx.doi.org/10.1016/0012-365x(93)90149-n.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Bokowski, Jürgen, and Bernd Sturmfels. "On the coordinatization of oriented matroids." Discrete & Computational Geometry 1, no. 4 (1986): 293–306. http://dx.doi.org/10.1007/bf02187702.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Miyata, Hiroyuki, and Arnau Padrol. "Enumerating Neighborly Polytopes and Oriented Matroids." Experimental Mathematics 24, no. 4 (2015): 489–505. http://dx.doi.org/10.1080/10586458.2015.1015084.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Cordovil, R. "A Commutative Algebra for Oriented Matroids." Discrete & Computational Geometry 27, no. 1 (2002): 73–84. http://dx.doi.org/10.1007/s00454-001-0053-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Rambau, J. "Circuit Admissible Triangulations of Oriented Matroids." Discrete & Computational Geometry 27, no. 1 (2002): 155–61. http://dx.doi.org/10.1007/s00454-001-0058-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Buchi, J. Richard, and William E. Fenton. "Large convex sets in oriented matroids." Journal of Combinatorial Theory, Series B 45, no. 3 (1988): 293–304. http://dx.doi.org/10.1016/0095-8956(88)90074-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Las Vergnas, Michel. "Acyclic reorientations of weakly oriented matroids." Journal of Combinatorial Theory, Series B 49, no. 2 (1990): 195–99. http://dx.doi.org/10.1016/0095-8956(90)90027-w.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía