Literatura académica sobre el tema "Complexe of oriented matroids"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Complexe of oriented matroids".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Complexe of oriented matroids"
Mücksch, Paul. "Modular flats of oriented matroids and poset quasi-fibrations". Transactions of the American Mathematical Society, Series B 11, n.º 9 (30 de enero de 2024): 306–28. http://dx.doi.org/10.1090/btran/168.
Texto completoChepoi, Victor, Kolja Knauer y Manon Philibert. "Ample Completions of Oriented Matroids and Complexes of Uniform Oriented Matroids". SIAM Journal on Discrete Mathematics 36, n.º 1 (24 de febrero de 2022): 509–35. http://dx.doi.org/10.1137/20m1355434.
Texto completoBandelt, Hans-Jürgen, Victor Chepoi y Kolja Knauer. "COMs: Complexes of oriented matroids". Journal of Combinatorial Theory, Series A 156 (mayo de 2018): 195–237. http://dx.doi.org/10.1016/j.jcta.2018.01.002.
Texto completoWebster, Julian. "Cell complexes, oriented matroids and digital geometry". Theoretical Computer Science 305, n.º 1-3 (agosto de 2003): 491–502. http://dx.doi.org/10.1016/s0304-3975(02)00712-0.
Texto completoFukuda, Komei, Hiroyuki Miyata y Sonoko Moriyama. "Complete Enumeration of Small Realizable Oriented Matroids". Discrete & Computational Geometry 49, n.º 2 (19 de diciembre de 2012): 359–81. http://dx.doi.org/10.1007/s00454-012-9470-0.
Texto completoKnauer, Kolja y Tilen Marc. "On Tope Graphs of Complexes of Oriented Matroids". Discrete & Computational Geometry 63, n.º 2 (11 de julio de 2019): 377–417. http://dx.doi.org/10.1007/s00454-019-00111-z.
Texto completoBokowski, Jürgen y Tomaž Pisanski. "Oriented matroids and complete-graph embeddings on surfaces". Journal of Combinatorial Theory, Series A 114, n.º 1 (enero de 2007): 1–19. http://dx.doi.org/10.1016/j.jcta.2006.06.012.
Texto completoNaimi, Ramin y Elena Pavelescu. "Linear embeddings of K9 are triple linked". Journal of Knot Theory and Its Ramifications 23, n.º 03 (marzo de 2014): 1420001. http://dx.doi.org/10.1142/s0218216514200016.
Texto completoAlfonsín, J. L. Ramírez. "On Linked Spatial Representations". Journal of Knot Theory and Its Ramifications 10, n.º 01 (febrero de 2001): 143–50. http://dx.doi.org/10.1142/s0218216501000780.
Texto completoWelsh, D. J. A. "ORIENTED MATROIDS". Bulletin of the London Mathematical Society 27, n.º 5 (septiembre de 1995): 499–501. http://dx.doi.org/10.1112/blms/27.5.499.
Texto completoTesis sobre el tema "Complexe of oriented matroids"
Horn, Silke [Verfasser]. "Tropical Oriented Matroids and Cubical Complexes / Silke Horn". München : Verlag Dr. Hut, 2012. http://d-nb.info/1028784643/34.
Texto completoPhilibert, Manon. "Cubes partiels : complétion, compression, plongement". Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0403.
Texto completoPartial cubes (aka isometric subgraphs of hypercubes) are a fundamental class of metric graph theory. They comprise many important graph classes (trees, median graphs, tope graphs of complexes of oriented matroids, etc.), arising from different areas of research such as discrete geometry, combinatorics or geometric group theory.First, we investigate the structure of partial cubes of VC-dimension 2. We show that those graphs can be obtained via amalgams from even cycles and full subdivisions of complete graphs. This decomposition allows us to obtain various characterizations. In particular, any partial cube can be completed to an ample partial cube of VC-dimension 2. Then, we show that the tope graphs of oriented matroids and complexes of uniform oriented matroids can also be completed to ample partial cubes of the same VC-dimension.Using a result of Moran and Warmuth, we establish that those classes satisfy the conjecture of Floyd and Warmuth, one of the oldest open problems in computational machine learning. Particularly, they admit (improper labeled) compression schemes of size their VC-dimension.Next, we describe a proper labeled compression scheme of size d for complexes of oriented matroids of VC-dimension d, generalizing the result of Moran and Warmuth for ample sets. Finally, we give a characterization via excluded pc-minors and via forbidden isometric subgraphs of partial cubes isometrically embedded into the grid \mathbb{Z}^2 and the cylinder P_n \square C_{2k} for some n and k > 4
Nickel, Robert [Verfasser]. "Flows and colorings in oriented matroids / Robert Nickel". Hagen : Fernuniversität Hagen, 2013. http://d-nb.info/1031144978/34.
Texto completoJunes, Leandro. "Duality of higher order non-Euclidean property for oriented matroids". Diss., Online access via UMI:, 2008.
Buscar texto completoSol, Kevin. "Une approche combinatoire novatrice fondée sur les matroïdes orientés pour la caractérisation de la morphologie 3D des structures anatomiques". Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20183/document.
Texto completoIn this thesis, we propose an innovative combinatorial method based on oriented matroids for the quantitative study of the shape of 3D anatomical structures. We rely on landmarks which were previously defined by experts on the studied anatomical structure. The novelty of this method results from the use of oriented matroids. These mathematical tools allow us to encode the relative position of landmarks in a purely combinatorial way, that is without using concepts of angles or distances, by associating a sign (0, + or -) for each subset of (d+1) landmarks where d is the dimension of space (in our case 2 or 3). In the first part, we assume that there exist constraints of orders on each coordinate axis for the landmarks. We obtain a characterization (in dimension 2 and 3) of the subsets of landmarks of which the associated sign is constant, regardless of the values of the coordinates satisfying the constraints of order. In a second part, we try to classify a set of 3D models, encoding in advance by these lists of signs. We first analyze how to apply classic clustering algorithms, and then describe how to characterize the classes directly, using signs associated with some subsets of landmarks. In the third part, we explain the algorithms and the implementation of this new morphometry method in order to apply it to real data. In the last part, we apply the method to three databases each consisting of several dozens of points defined on several dozens to several hundreds of cranial structures for applications in comparative anatomy, in orthodontics and on clinical cases of children with craniofacial deformities
Liu, Quan. "Modélisation bayésienne des interactions multidimensionnelles dans un système complexe : application à la gestion des risques de crues". Thesis, Toulouse, INPT, 2018. http://www.theses.fr/2018INPT0038/document.
Texto completoThe work addresses the modelling and analysis of complex systems, characterized, in an uncertain and evolving framework, by numerous interactions between components. Within a risk management framework, the work aims to create a spatio-temporal causal model for the explanation and probability of certain feared events for diagnostic and prognostic purposes. The modelling work is based on the Bayesian approach and, more specifically, on the Bayesian Networks (BN). In an attempt to consider large-scale systems and represent their spatio-temporal complexity, their multi-scale and uncertain character in a dynamic framework, the idea of this work is then to extend the concept of Dynamic Bayesian Networks (DBN) and use the Object Oriented paradigm to apply it to Bayesian networks. In their current form, object-oriented Bayesian networks can create reusable but not instantiable instances. In other words, this implies that the generated object is likely to be called several times in the construction of a model, but without these parameters (marginal or conditional probabilities tables) being modified. This thesis aims to fill this gap by proposing a structured approach to construct large object-based systems (characterized by simple Bayesian networks) whose parameters can be updated according to the moment or context of their call and use. This concept is embodied in the form of Bayesian Multidimensional Networks by their propensity to combine several dimensions, whether spatial or temporal
Di, Pietro Maria Florencia. "Systematic assessment of the role of Dynein regulators in oriented cell divisions by live RNAi screen in a novel vertebrate model of spindle orientation". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066405/document.
Texto completoMitotic spindle orientation is involved in cell fate decisions, tissue homeostasis and morphogenesis. In many contexts, spindle orientation is controlled by the LGN molecular complex, whose subcortical localization determines the site of recruitment of the dynein motor which exerts forces on astral microtubules orienting the spindle. In vertebrates, there is missing information about the molecules regulating the formation of the complex and those working downstream of it. This prompted us to screen for new regulators of vertebrate spindle orientation. For this, I developed a novel model of spindle orientation specifically controlled by the LGN complex. Using this model, I performed a live siRNA screen testing 110 candidates including molecular motors for their function in spindle orientation. Remarkably, this screen revealed that specific dynein regulators contribute differentially to spindle orientation. Moreover, I found that an uncharacterized member of the dynactin complex, the actin capping protein CAPZ-B, is a strong regulator of spindle orientation. Analyses of CAPZ-B function in cultured cells showed that CAPZ-B regulates spindle orientation independently of its classical role in modulating actin dynamics. Instead, CAPZ-B controls spindle orientation by modulating the localization/activity of the dynein/dynactin complexes and the dynamics of spindle microtubules. Finally, we demonstrated that CAPZ-B regulates planar spindle orientation in vivo in the chick embryonic neuroepithelium. I expect that my work will contribute to the understanding of dynein function during vertebrate spindle orientation and will open the path for new investigations in the field
Ezratty, Véronique. "Dévelopement d'une nouvelle approche pour la performance durable des projets d'une organisation". Phd thesis, Ecole Centrale Paris, 2012. http://tel.archives-ouvertes.fr/tel-00680991.
Texto completoDi, Pietro Maria Florencia. "Systematic assessment of the role of Dynein regulators in oriented cell divisions by live RNAi screen in a novel vertebrate model of spindle orientation". Electronic Thesis or Diss., Paris 6, 2016. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2016PA066405.pdf.
Texto completoMitotic spindle orientation is involved in cell fate decisions, tissue homeostasis and morphogenesis. In many contexts, spindle orientation is controlled by the LGN molecular complex, whose subcortical localization determines the site of recruitment of the dynein motor which exerts forces on astral microtubules orienting the spindle. In vertebrates, there is missing information about the molecules regulating the formation of the complex and those working downstream of it. This prompted us to screen for new regulators of vertebrate spindle orientation. For this, I developed a novel model of spindle orientation specifically controlled by the LGN complex. Using this model, I performed a live siRNA screen testing 110 candidates including molecular motors for their function in spindle orientation. Remarkably, this screen revealed that specific dynein regulators contribute differentially to spindle orientation. Moreover, I found that an uncharacterized member of the dynactin complex, the actin capping protein CAPZ-B, is a strong regulator of spindle orientation. Analyses of CAPZ-B function in cultured cells showed that CAPZ-B regulates spindle orientation independently of its classical role in modulating actin dynamics. Instead, CAPZ-B controls spindle orientation by modulating the localization/activity of the dynein/dynactin complexes and the dynamics of spindle microtubules. Finally, we demonstrated that CAPZ-B regulates planar spindle orientation in vivo in the chick embryonic neuroepithelium. I expect that my work will contribute to the understanding of dynein function during vertebrate spindle orientation and will open the path for new investigations in the field
Piechnik, Lindsay C. "Lattice Subdivisions and Tropical Oriented Matroids, Featuring Products of Simplices". Thesis, 2011. https://doi.org/10.7916/D8MS40RX.
Texto completoLibros sobre el tema "Complexe of oriented matroids"
Anders, Björner, ed. Oriented matroids. 2a ed. Cambridge: Cambridge University Press, 1999.
Buscar texto completoAnders, Björner, ed. Oriented matroids. Cambridge: Cambridge University Press, 1993.
Buscar texto completoComputational oriented matroids: Equivalence classes of matrices within a natural framework. Cambridge, UK: Cambridge University Press, 2006.
Buscar texto completoBachem, A. Linear programming duality: An introduction to oriented matroids. Berlin: Springer-Verlag, 1992.
Buscar texto completoLattice Subdivisions and Tropical Oriented Matroids, Featuring Products of Simplices. [New York, N.Y.?]: [publisher not identified], 2011.
Buscar texto completoZiegler, Gunter M., Neil White, Anders Björner, Bernd Sturmfels y Michel Las Vergnas. Oriented Matroids. Cambridge University Press, 2009.
Buscar texto completoWhite, Neil, Günter M. Ziegler, Anders Björner, Bernd Sturmfels y Michel Las Vergnas. Oriented Matroids. Cambridge University Press, 2011.
Buscar texto completoTriangulations of Oriented Matroids. American Mathematical Society, 2002.
Buscar texto completoMatveev, Andrey O. Pattern Recognition on Oriented Matroids. de Gruyter GmbH, Walter, 2017.
Buscar texto completoMatveev, Andrey O. Pattern Recognition on Oriented Matroids. de Gruyter GmbH, Walter, 2017.
Buscar texto completoCapítulos de libros sobre el tema "Complexe of oriented matroids"
Bachem, Achim y Walter Kern. "Oriented Matroids". En Universitext, 57–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-58152-6_5.
Texto completoHorn, Silke. "Tropical Oriented Matroids". En Springer INdAM Series, 53–57. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20155-9_11.
Texto completoPfeifle, Julian y Jörg Rambau. "Computing Triangulations Using Oriented Matroids". En Algebra, Geometry and Software Systems, 49–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05148-1_3.
Texto completoBuchi, J. Richard y William E. Fenton. "Large Convex Sets in Oriented Matroids". En The Collected Works of J. Richard Büchi, 685–96. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4613-8928-6_38.
Texto completoGioan, Emeric. "The Tutte polynomial of oriented matroids". En Handbook of the Tutte Polynomial and Related Topics, 565–89. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9780429161612-31.
Texto completoStaffetti, E., A. Grau, F. Serratosa y A. Sanfeliu. "Oriented Matroids for Shape Representation and Indexing". En Pattern Recognition and Image Analysis, 1012–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-44871-6_117.
Texto completoSchewe, Lars. "Generation of Oriented Matroids Using Satisfiability Solvers". En Lecture Notes in Computer Science, 216–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11832225_19.
Texto completoAbello, James y Krishna Kumar. "Visibility graphs and oriented matroids (extended abstract)". En Graph Drawing, 147–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/3-540-58950-3_366.
Texto completoGugisch, Ralf. "A Construction of Isomorphism Classes of Oriented Matroids". En Algorithmic Algebraic Combinatorics and Gröbner Bases, 229–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01960-9_7.
Texto completoBokowski, Jürgen. "Finite Point Sets and Oriented Matroids Combinatorics in Geometry". En Learning and Geometry: Computational Approaches, 67–96. Boston, MA: Birkhäuser Boston, 1996. http://dx.doi.org/10.1007/978-1-4612-4088-4_4.
Texto completoActas de conferencias sobre el tema "Complexe of oriented matroids"
Valero, J. A., I. Lizarazo y P. A. Arbelaez. "Multispectral image segmentation based on Cartesian complexes and their associated oriented matroids". En GEOBIA 2016 : Solutions and Synergies. University of Twente Faculty of Geo-Information and Earth Observation (ITC), 2016. http://dx.doi.org/10.3990/2.442.
Texto completoRAMBAU, JÖRG. "TOPCOM: TRIANGULATIONS OF POINT CONFIGURATIONS AND ORIENTED MATROIDS". En Proceedings of the First International Congress of Mathematical Software. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777171_0035.
Texto completo