Literatura académica sobre el tema "Complex systems, networks, dynamical models on networks, stochastic models"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Complex systems, networks, dynamical models on networks, stochastic models".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Complex systems, networks, dynamical models on networks, stochastic models"

1

Rozum, Jordan C., Jorge Gómez Tejeda Zañudo, Xiao Gan, Dávid Deritei, and Réka Albert. "Parity and time reversal elucidate both decision-making in empirical models and attractor scaling in critical Boolean networks." Science Advances 7, no. 29 (2021): eabf8124. http://dx.doi.org/10.1126/sciadv.abf8124.

Texto completo
Resumen
We present new applications of parity inversion and time reversal to the emergence of complex behavior from simple dynamical rules in stochastic discrete models. Our parity-based encoding of causal relationships and time-reversal construction efficiently reveal discrete analogs of stable and unstable manifolds. We demonstrate their predictive power by studying decision-making in systems biology and statistical physics models. These applications underpin a novel attractor identification algorithm implemented for Boolean networks under stochastic dynamics. Its speed enables resolving a long-standing open question of how attractor count in critical random Boolean networks scales with network size and whether the scaling matches biological observations. Via 80-fold improvement in probed network size (N = 16,384), we find the unexpectedly low scaling exponent of 0.12 ± 0.05, approximately one-tenth the analytical upper bound. We demonstrate a general principle: A system’s relationship to its time reversal and state-space inversion constrains its repertoire of emergent behaviors.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Morrison, Megan, and Lai-Sang Young. "Chaotic heteroclinic networks as models of switching behavior in biological systems." Chaos: An Interdisciplinary Journal of Nonlinear Science 32, no. 12 (2022): 123102. http://dx.doi.org/10.1063/5.0122184.

Texto completo
Resumen
Key features of biological activity can often be captured by transitions between a finite number of semi-stable states that correspond to behaviors or decisions. We present here a broad class of dynamical systems that are ideal for modeling such activity. The models we propose are chaotic heteroclinic networks with nontrivial intersections of stable and unstable manifolds. Due to the sensitive dependence on initial conditions, transitions between states are seemingly random. Dwell times, exit distributions, and other transition statistics can be built into the model through geometric design and can be controlled by tunable parameters. To test our model’s ability to simulate realistic biological phenomena, we turned to one of the most studied organisms, C. elegans, well known for its limited behavioral states. We reconstructed experimental data from two laboratories, demonstrating the model’s ability to quantitatively reproduce dwell times and transition statistics under a variety of conditions. Stochastic switching between dominant states in complex dynamical systems has been extensively studied and is often modeled as Markov chains. As an alternative, we propose here a new paradigm, namely, chaotic heteroclinic networks generated by deterministic rules (without the necessity for noise). Chaotic heteroclinic networks can be used to model systems with arbitrary architecture and size without a commensurate increase in phase dimension. They are highly flexible and able to capture a wide range of transition characteristics that can be adjusted through control parameters.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Safdari, Hadiseh, Martina Contisciani, and Caterina De Bacco. "Reciprocity, community detection, and link prediction in dynamic networks." Journal of Physics: Complexity 3, no. 1 (2022): 015010. http://dx.doi.org/10.1088/2632-072x/ac52e6.

Texto completo
Resumen
Abstract Many complex systems change their structure over time, in these cases dynamic networks can provide a richer representation of such phenomena. As a consequence, many inference methods have been generalized to the dynamic case with the aim to model dynamic interactions. Particular interest has been devoted to extend the stochastic block model and its variant, to capture community structure as the network changes in time. While these models assume that edge formation depends only on the community memberships, recent work for static networks show the importance to include additional parameters capturing structural properties, as reciprocity for instance. Remarkably, these models are capable of generating more realistic network representations than those that only consider community membership. To this aim, we present a probabilistic generative model with hidden variables that integrates reciprocity and communities as structural information of networks that evolve in time. The model assumes a fundamental order in observing reciprocal data, that is an edge is observed, conditional on its reciprocated edge in the past. We deploy a Markovian approach to construct the network’s transition matrix between time steps and parameters’ inference is performed with an expectation-maximization algorithm that leads to high computational efficiency because it exploits the sparsity of the dataset. We test the performance of the model on synthetic dynamical networks, as well as on real networks of citations and email datasets. We show that our model captures the reciprocity of real networks better than standard models with only community structure, while performing well at link prediction tasks.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

KNOPOFF, D. "ON A MATHEMATICAL THEORY OF COMPLEX SYSTEMS ON NETWORKS WITH APPLICATION TO OPINION FORMATION." Mathematical Models and Methods in Applied Sciences 24, no. 02 (2013): 405–26. http://dx.doi.org/10.1142/s0218202513400137.

Texto completo
Resumen
This paper presents a development of the so-called kinetic theory for active particles to the modeling of living, hence complex, systems localized in networks. The overall system is viewed as a network of interacting nodes, mathematical equations are required to describe the dynamics in each node and in the whole network. These interactions, which are nonlinearly additive, are modeled by evolutive stochastic games. The first conceptual part derives a general mathematical structure, to be regarded as a candidate towards the derivation of models, suitable to capture the main features of the said systems. An application on opinion formation follows to show how the theory can generate specific models.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Jirsa, Viktor, and Hiba Sheheitli. "Entropy, free energy, symmetry and dynamics in the brain." Journal of Physics: Complexity 3, no. 1 (2022): 015007. http://dx.doi.org/10.1088/2632-072x/ac4bec.

Texto completo
Resumen
Abstract Neuroscience is home to concepts and theories with roots in a variety of domains including information theory, dynamical systems theory, and cognitive psychology. Not all of those can be coherently linked, some concepts are incommensurable, and domain-specific language poses an obstacle to integration. Still, conceptual integration is a form of understanding that provides intuition and consolidation, without which progress remains unguided. This paper is concerned with the integration of deterministic and stochastic processes within an information theoretic framework, linking information entropy and free energy to mechanisms of emergent dynamics and self-organization in brain networks. We identify basic properties of neuronal populations leading to an equivariant matrix in a network, in which complex behaviors can naturally be represented through structured flows on manifolds establishing the internal model relevant to theories of brain function. We propose a neural mechanism for the generation of internal models from symmetry breaking in the connectivity of brain networks. The emergent perspective illustrates how free energy can be linked to internal models and how they arise from the neural substrate.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Penfold, Christopher A., and David L. Wild. "How to infer gene networks from expression profiles, revisited." Interface Focus 1, no. 6 (2011): 857–70. http://dx.doi.org/10.1098/rsfs.2011.0053.

Texto completo
Resumen
Inferring the topology of a gene-regulatory network (GRN) from genome-scale time-series measurements of transcriptional change has proved useful for disentangling complex biological processes. To address the challenges associated with this inference, a number of competing approaches have previously been used, including examples from information theory, Bayesian and dynamic Bayesian networks (DBNs), and ordinary differential equation (ODE) or stochastic differential equation. The performance of these competing approaches have previously been assessed using a variety of in silico and in vivo datasets. Here, we revisit this work by assessing the performance of more recent network inference algorithms, including a novel non-parametric learning approach based upon nonlinear dynamical systems. For larger GRNs, containing hundreds of genes, these non-parametric approaches more accurately infer network structures than do traditional approaches, but at significant computational cost. For smaller systems, DBNs are competitive with the non-parametric approaches with respect to computational time and accuracy, and both of these approaches appear to be more accurate than Granger causality-based methods and those using simple ODEs models.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Parham, Paul E., and Neil M. Ferguson. "Space and contact networks: capturing the locality of disease transmission." Journal of The Royal Society Interface 3, no. 9 (2005): 483–93. http://dx.doi.org/10.1098/rsif.2005.0105.

Texto completo
Resumen
While an arbitrary level of complexity may be included in simulations of spatial epidemics, computational intensity and analytical intractability mean that such models often lack transparency into the determinants of epidemiological dynamics. Although numerous approaches attempt to resolve this complexity–tractability trade-off, moment closure methods arguably offer the most promising and robust frameworks for capturing the role of the locality of contact processes on global disease dynamics. While a close analogy may be made between full stochastic spatial transmission models and dynamic network models, we consider here the special case where the dynamics of the network topology change on time-scales much longer than the epidemiological processes imposed on them; in such cases, the use of static network models are justified. We show that in such cases, static network models may provide excellent approximations to the underlying spatial contact process through an appropriate choice of the effective neighbourhood size. We also demonstrate the robustness of this mapping by examining the equivalence of deterministic approximations to the full spatial and network models derived under third-order moment closure assumptions. For systems where deviation from homogeneous mixing is limited, we show that pair equations developed for network models are at least as good an approximation to the underlying stochastic spatial model as more complex spatial moment equations, with both classes of approximation becoming less accurate only for highly localized kernels.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Warne, David J., Ruth E. Baker, and Matthew J. Simpson. "Simulation and inference algorithms for stochastic biochemical reaction networks: from basic concepts to state-of-the-art." Journal of The Royal Society Interface 16, no. 151 (2019): 20180943. http://dx.doi.org/10.1098/rsif.2018.0943.

Texto completo
Resumen
Stochasticity is a key characteristic of intracellular processes such as gene regulation and chemical signalling. Therefore, characterizing stochastic effects in biochemical systems is essential to understand the complex dynamics of living things. Mathematical idealizations of biochemically reacting systems must be able to capture stochastic phenomena. While robust theory exists to describe such stochastic models, the computational challenges in exploring these models can be a significant burden in practice since realistic models are analytically intractable. Determining the expected behaviour and variability of a stochastic biochemical reaction network requires many probabilistic simulations of its evolution. Using a biochemical reaction network model to assist in the interpretation of time-course data from a biological experiment is an even greater challenge due to the intractability of the likelihood function for determining observation probabilities. These computational challenges have been subjects of active research for over four decades. In this review, we present an accessible discussion of the major historical developments and state-of-the-art computational techniques relevant to simulation and inference problems for stochastic biochemical reaction network models. Detailed algorithms for particularly important methods are described and complemented with Matlab ® implementations. As a result, this review provides a practical and accessible introduction to computational methods for stochastic models within the life sciences community.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Cardelli, Luca, Isabel Cristina Perez-Verona, Mirco Tribastone, Max Tschaikowski, Andrea Vandin, and Tabea Waizmann. "Exact maximal reduction of stochastic reaction networks by species lumping." Bioinformatics 37, no. 15 (2021): 2175–82. http://dx.doi.org/10.1093/bioinformatics/btab081.

Texto completo
Resumen
Abstrtact Motivation Stochastic reaction networks are a widespread model to describe biological systems where the presence of noise is relevant, such as in cell regulatory processes. Unfortunately, in all but simplest models the resulting discrete state-space representation hinders analytical tractability and makes numerical simulations expensive. Reduction methods can lower complexity by computing model projections that preserve dynamics of interest to the user. Results We present an exact lumping method for stochastic reaction networks with mass-action kinetics. It hinges on an equivalence relation between the species, resulting in a reduced network where the dynamics of each macro-species is stochastically equivalent to the sum of the original species in each equivalence class, for any choice of the initial state of the system. Furthermore, by an appropriate encoding of kinetic parameters as additional species, the method can establish equivalences that do not depend on specific values of the parameters. The method is supported by an efficient algorithm to compute the largest species equivalence, thus the maximal lumping. The effectiveness and scalability of our lumping technique, as well as the physical interpretability of resulting reductions, is demonstrated in several models of signaling pathways and epidemic processes on complex networks. Availability and implementation The algorithms for species equivalence have been implemented in the software tool ERODE, freely available for download from https://www.erode.eu. Supplementary information Supplementary data are available at Bioinformatics online.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Bombieri, Nicola, Silvia Scaffeo, Antonio Mastrandrea, et al. "SystemC Implementation of Stochastic Petri Nets for Simulation and Parameterization of Biological Networks." ACM Transactions on Embedded Computing Systems 20, no. 4 (2021): 1–20. http://dx.doi.org/10.1145/3427091.

Texto completo
Resumen
Model development and simulation of biological networks is recognized as a key task in Systems Biology. Integrated with in vitro and in vivo experimental data, network simulation allows for the discovery of the dynamics that regulate biological systems. Stochastic Petri Nets (SPNs) have become a widespread and reference formalism to model metabolic networks thanks to their natural expressiveness to represent metabolites, reactions, molecule interactions, and simulation randomness due to system fluctuations and environmental noise. In the literature, starting from the network model and the complete set of system parameters, there exist frameworks that allow for dynamic system simulation. Nevertheless, they do not allow for automatic model parameterization, which is a crucial task to identify, in silico, the network configurations that lead the model to satisfy specific temporal properties. To cover such a gap, this work first presents a framework to implement SPN models into SystemC code. Then, it shows how the framework allows for automatic parameterization of the networks. The user formally defines the network properties to be observed and the framework automatically extrapolates, through Assertion-based Verification (ABV), the parameter configurations that satisfy such properties. We present the results obtained by applying the proposed framework to model the complex metabolic network of the purine metabolism. We show how the automatic extrapolation of the system parameters allowed us to simulate the model under different conditions, which led to the understanding of behavioral differences in the regulation of the entire purine network. We also show the scalability of the approach through the modeling and simulation of four biological networks, each one with different structural characteristics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía