Literatura académica sobre el tema "Competitive algorithms"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Competitive algorithms".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Competitive algorithms"
Im, Sungjin, Janardhan Kulkarni y Kamesh Munagala. "Competitive Algorithms from Competitive Equilibria". Journal of the ACM 65, n.º 1 (24 de enero de 2018): 1–33. http://dx.doi.org/10.1145/3136754.
Texto completoBender, Michael A., Jeremy T. Fineman, Mahnush Movahedi, Jared Saia, Varsha Dani, Seth Gilbert, Seth Pettie y Maxwell Young. "Resource-Competitive Algorithms". ACM SIGACT News 46, n.º 3 (septiembre de 2015): 57–71. http://dx.doi.org/10.1145/2818936.2818949.
Texto completoFiat, Amos, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel D. Sleator y Neal E. Young. "Competitive paging algorithms". Journal of Algorithms 12, n.º 4 (diciembre de 1991): 685–99. http://dx.doi.org/10.1016/0196-6774(91)90041-v.
Texto completoBudura, Georgeta, Corina Botoca y Nicolae Miclău. "Competitive learning algorithms for data clustering". Facta universitatis - series: Electronics and Energetics 19, n.º 2 (2006): 261–69. http://dx.doi.org/10.2298/fuee0602261b.
Texto completoLIU, ZHI-QIANG y YAJUN ZHANG. "COMPENSATION COMPETITIVE LEARNING". International Journal of Computational Intelligence and Applications 01, n.º 03 (septiembre de 2001): 303–22. http://dx.doi.org/10.1142/s1469026801000263.
Texto completoFiat, Amos, Yuval Rabani y Yiftach Ravid. "Competitive k-server algorithms". Journal of Computer and System Sciences 48, n.º 3 (junio de 1994): 410–28. http://dx.doi.org/10.1016/s0022-0000(05)80060-1.
Texto completoMajd, Amin, Golnaz Sahebi, Masoud Daneshtalab, Juha Plosila, Shahriar Lotfi y Hannu Tenhunen. "Parallel imperialist competitive algorithms". Concurrency and Computation: Practice and Experience 30, n.º 7 (16 de enero de 2018): e4393. http://dx.doi.org/10.1002/cpe.4393.
Texto completoWu, Yonghua, Guohun Zhu, Huaying Chen y Jucun Qin. "WIN Algorithm for Discrete Online TSP". Journal of Advanced Computational Intelligence and Intelligent Informatics 15, n.º 9 (20 de noviembre de 2011): 1199–202. http://dx.doi.org/10.20965/jaciii.2011.p1199.
Texto completoOsman, Hossam y Moustafa M. Fahmy. "Probabilistic Winner-Take-All Learning Algorithm for Radial-Basis-Function Neural Classifiers". Neural Computation 6, n.º 5 (septiembre de 1994): 927–43. http://dx.doi.org/10.1162/neco.1994.6.5.927.
Texto completoMohapatra, Prabhujit, Kedar Nath Das, Santanu Roy, Ram Kumar y Nilanjan Dey. "A Novel Multi-Objective Competitive Swarm Optimization Algorithm". International Journal of Applied Metaheuristic Computing 11, n.º 4 (octubre de 2020): 114–29. http://dx.doi.org/10.4018/ijamc.2020100106.
Texto completoTesis sobre el tema "Competitive algorithms"
Li, Rongbin y 李榕滨. "New competitive algorithms for online job scheduling". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/197555.
Texto completopublished_or_final_version
Computer Science
Doctoral
Doctor of Philosophy
Wong, Chiu Wai M. Eng Massachusetts Institute of Technology. "Competitive algorithms for online matching and vertex cover problems". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/85521.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 73-75).
The past decade has witnessed an explosion of research on the online bipartite matching problem. Surprisingly, its dual problem, online bipartite vertex cover, has never been explicitly studied before. One of the motivation for studying this problem is that it significantly generalizes the classical ski rental problem. An instance of such problems specifies a bipartite graph G = (L, R, E) whose left vertices L are offline and right vertices arrive online one at a time. An algorithm must maintain a valid vertex cover from which no vertex can ever be removed. The objective is to minimize the size of the cover. In this thesis, we introduce a charging-based algorithmic framework for this problem as well as its generalizations. One immediate outcome is a simple analysis of an optimal 1/1-1/e- competitive algorithm for online bipartite vertex cover. By extending the charging-based analysis in various nontrivial ways, we also obtain optimal l_1 e-competitive algorithms for the edge-weighted and submodular versions of online bipartite vertex cover, which all match the best performance of ski rental. As an application, we show that by analyzing our algorithm in the primal-dual framework, our result on submodular vertex cover implies an optimal (1/1-1/e)-competitive algorithm for its dual, online bipartite submodular matching. This problem is a generalization of online bipartite matching and may have applications in display ad allocation. We consider also the more general scenario where all the vertices are online and the graph is not necessarily bipartite, which is known as the online fractional vertex cover and matching problems. Our contribution in this direction is a primal-dual 1.901-competitive (or 1/1.901 ~~ 0.526) algorithm for these problems. Previously, it was only known that they admit a simple well-known 2-competitive (or 1/2) greedy algorithm. Our result is the first successful attempt to beat the greedy algorithm for these two problems. Moreover, our algorithm for the online matching problem significantly generalizes the traditional online bipartite graph matching problem, where vertices from only one side of the bipartite graph arrive online. In particular, our algorithm improves upon the result of the fractional version of the online edge-selection problem in Blum et. al. (JACM '06). Finally, on the hardness side, we show that no randomized online algorithm can achieve a competitive ratio better than 1.753 and 0.625 for the online fractional vertex cover problem and the online fractional matching problem respectively, even for bipartite graphs.
by Chiu Wai Wong.
M. Eng.
Chan, Sze-hang y 陳思行. "Competitive online job scheduling algorithms under different energy management models". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/206690.
Texto completopublished_or_final_version
Computer Science
Doctoral
Doctor of Philosophy
McNeill, Dean K. "Adaptive visual representations for autonomous mobile robots using competitive learning algorithms". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ35045.pdf.
Texto completoZhang, Kening. "A COMPETITIVE RECONFIGURATION APPROACH TO AUTONOMOUS FAULT HANDLING USING GENETIC ALGORITHMS". Doctoral diss., University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2319.
Texto completoPh.D.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Computer Engineering PhD
Premkumar, Aravind Preshant. "Competitive Algorithms and System for Multi-Robot Exploration of Unknown Environments". Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/78847.
Texto completoMaster of Science
Lorenz, Julian Michael. "Optimal trading algorithms : portfolio transactions, multiperiod portfolio selection, and competitive online search /". Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17746.
Texto completoLiu, Ming. "Design and Evaluation of Algorithms for Online Machine Scheduling Problems". Phd thesis, Ecole Centrale Paris, 2009. http://tel.archives-ouvertes.fr/tel-00453316.
Texto completoTsai, Carol Leanne. "Heuristic Algorithms for Agnostically Identifying the Globally Stable and Competitive Metastable Morphologies of Block Copolymer Melts". Thesis, University of California, Santa Barbara, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13423067.
Texto completoBlock copolymers are composed of chemically distinct polymer chains that can be covalently linked in a variety of sequences and architectures. They are ubiquitous as ingredients of consumer products and also have applications in advanced plastics, drug delivery, advanced membranes, and next generation nano-lithographic patterning. The wide spectrum of possible block copolymer applications is a consequence of block copolymer self-assembly into periodic, meso-scale morphologies as a function of varying block composition and architecture in both melt and solution states, and the broad spectrum of physical properties that such mesophases afford.
Materials exploration and discovery has traditionally been pursued through an iterative process between experimental and theoretical/computational collaborations. This process is often implemented in a trial-and-error fashion, and from the computational perspective of generating phase diagrams, usually requires some existing knowledge about the competitive phases for a given system. Self-Consistent Field Theory (SCFT) simulations have proven to be both qualitatively and quantitatively accurate in the determination, or forward mapping, of block copolymer phases of a given system. However, it is possible to miss candidates. This is because SCFT simulations are highly dependent on their initial configurations, and the ability to map phase diagrams requires a priori knowledge of what the competing candidate morphologies are. The unguided search for the stable phase of a block copolymer of a given composition and architecture is a problem of global optimization. SCFT by itself is a local optimization method, so we can combine it with population-based heuristic algorithms geared at global optimization to facilitate forward mapping. In this dissertation, we discuss the development of two such methods: Genetic Algorithm + SCFT (GA-SCFT) and Particle Swarm Optimization + SCFT (PSO-SCFT). Both methods allow a population of configurations to explore the space associated with the numerous states accessible to a block copolymer of a given composition and architecture.
GA-SCFT is a real-space method in which a population of SCFT field configurations “evolves” over time. This is achieved by initializing the population randomly, allowing the configurations to relax to local basins of attraction using SCFT simulations, then selecting fit members (lower free energy structures) to recombine their fields and undergo mutations to generate a new “generation” of structures that iterate through this process. We present results from benchmark testing of this GA-SCFT technique on the canonical AB diblock copolymer melt, for which the theoretical phase diagram has long been established. The GA-SCFT algorithm successfully predicts many of the conventional mesophases from random initial conditions in large, 3-dimensional simulation cells, including hexagonally-packed cylinders, BCC-packed spheres, and lamellae, over a broad composition range and weak to moderate segregation strength. However, the GA-SCFT method is currently not effective at discovery of network phases, such as the Double-Gyroid (GYR) structure.
PSO-SCFT is a reciprocal space approach in which Fourier components of SCFT fields near the principal shell are manipulated. Effectively, PSO-SCFT facilitates the search through a space of reciprocal-space SCFT seeds which yield a variety of morphologies. Using intensive free energy as a fitness metric by which to compare these morphologies, the PSO-SCFT methodology allows us to agnostically identify low-lying competitive and stable morphologies. We present results for applying PSO-SCFT to conformationally symmetric diblock copolymers and a miktoarm star polymer, AB4, which offers a rich variety of competing sphere structures. Unlike the GA-SCFT method we previously presented, PSO-SCFT successfully predicts the double gyroid morphology in the AB-diblock. Furthermore, PSO-SCFT successfully recovers the A 15 morphology at a composition where it is expected to be stable in the miktoarm system, as well as several competitive metastable candidates, and a new sphere morphology belonging to the hexagonal space group 191, which has not been seen before in polymer systems. Thus, we believe the PSO-SCFT method provides a promising platform for screening for competitive structures in a given block copolymer system.
Nayyar, Krati. "Input Sensitive Analysis of a Minimum Metric Bipartite Matching Algorithm". Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/86518.
Texto completoMaster of Science
Libros sobre el tema "Competitive algorithms"
Kothari, Ravi. A competitive genetic algorithm for single row facility layout. Ahmedabad: Indian Institute of Management, 2012.
Buscar texto completoBorodin, Allan. Online computation and competitive analysis. Cambridge, [Eng.]: Cambridge University Press, 1998.
Buscar texto completoKravets, O. Ya. Information systems competitive development: Algorithms and software for intranet interfaces. Yelm, WA: Science Book Publishing House, 2013.
Buscar texto completoKoren, Gilad. An optimal scheduling algorithm with a competitive factor for real-time systems. New York: Courant Institute of Mathematical Sciences, New York University, 1991.
Buscar texto completoKoren, Gilad. An optimal scheduling algorithm with a competitive factor for real-time systems. New York: Courant Institute of Mathematical Sciences, New York University, 1991.
Buscar texto completoValdez, Fevrier, Juan Barraza y Patricia Melin. Hybrid Competitive Learning Method Using the Fireworks Algorithm and Artificial Neural Networks. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-47712-6.
Texto completoOnline Computation and Competitive Analysis. Cambridge University Press, 2005.
Buscar texto completoLaaksonen, Antti. Guide to Competitive Programming: Learning and Improving Algorithms Through Contests. Springer, 2020.
Buscar texto completoBuchbinder, Niv y Joseph (Seffi) Naor. Design of Competitive Online Algorithms Via a Primal-Dual Approach. Now Publishers, 2009.
Buscar texto completoCompetitive Programming in Python: 128 Algorithms to Develop Your Coding Skills. University of Cambridge ESOL Examinations, 2020.
Buscar texto completoCapítulos de libros sobre el tema "Competitive algorithms"
Bu, Tian-Ming. "Competitive Auction". En Encyclopedia of Algorithms, 364–66. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2864-4_78.
Texto completoBu, Tian-Ming. "Competitive Auction". En Encyclopedia of Algorithms, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27848-8_78-2.
Texto completoBu, Tian-Ming. "Competitive Auction". En Encyclopedia of Algorithms, 165–66. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-30162-4_78.
Texto completoFiat, Amos y Gerhard J. Woeginger. "Competitive analysis of algorithms". En Online Algorithms, 1–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0029562.
Texto completoIrani, Sandy. "Competitive analysis of paging". En Online Algorithms, 52–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0029564.
Texto completoFiat, Amos y Gerhard J. Woeginger. "Competitive odds and ends". En Online Algorithms, 385–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0029578.
Texto completoAspnes, James. "Competitive analysis of distributed algorithms". En Online Algorithms, 118–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0029567.
Texto completoDeshmukh, Kaustubh, Andrew V. Goldberg, Jason D. Hartline y Anna R. Karlin. "Truthful and Competitive Double Auctions". En Algorithms — ESA 2002, 361–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45749-6_34.
Texto completoBose, Prosenjit, Rolf Fagerberg, André van Renssen y Sander Verdonschot. "Competitive Local Routing with Constraints". En Algorithms and Computation, 23–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48971-0_3.
Texto completoHarks, Tobias, Stefan Heinz y Marc E. Pfetsch. "Competitive Online Multicommodity Routing". En Approximation and Online Algorithms, 240–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/11970125_19.
Texto completoActas de conferencias sobre el tema "Competitive algorithms"
Im, Sungjin, Janardhan Kulkarni y Kamesh Munagala. "Competitive algorithms from competitive equilibria". En STOC '14: Symposium on Theory of Computing. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2591796.2591814.
Texto completoPaiton, Dylan M., Steven Shepard, Kwan Ho Ryan Chan y Bruno A. Olshausen. "Subspace Locally Competitive Algorithms". En NICE '20: Neuro-inspired Computational Elements Workshop. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3381755.3381765.
Texto completoCoester, Christian, Roie Levin, Joseph (Seffi) Naor y Ohad Talmon. "Competitive Algorithms for Block-Aware Caching". En SPAA '22: 34th ACM Symposium on Parallelism in Algorithms and Architectures. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3490148.3538567.
Texto completoKamali, Shahin y Helen Xu. "Multicore Paging Algorithms Cannot Be Competitive". En SPAA '20: 32nd ACM Symposium on Parallelism in Algorithms and Architectures. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3350755.3400270.
Texto completoBuchbinder, Niv, Shahar Chen y Joseph (Seffi) Naor. "Competitive Analysis via Regularization". En Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2013. http://dx.doi.org/10.1137/1.9781611973402.32.
Texto completoPlyasunov, A. y A. Panin. "On three-level problem of competitive pricing". En NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS (NUMTA–2016): Proceedings of the 2nd International Conference “Numerical Computations: Theory and Algorithms”. Author(s), 2016. http://dx.doi.org/10.1063/1.4965327.
Texto completoManasse, Mark, Lyle McGeoch y Daniel Sleator. "Competitive algorithms for on-line problems". En the twentieth annual ACM symposium. New York, New York, USA: ACM Press, 1988. http://dx.doi.org/10.1145/62212.62243.
Texto completoRozell, Christopher, Don Johnson, Richard Baraniuk y Bruno Olshausen. "Locally Competitive Algorithms for Sparse Approximation". En 2007 IEEE International Conference on Image Processing. IEEE, 2007. http://dx.doi.org/10.1109/icip.2007.4379981.
Texto completoJinhong Xu, Weijun Xu, Jinling Li y Yucheng Dong. "Competitive Algorithms about Online Reverse Auctions". En 2008 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2008. http://dx.doi.org/10.1109/cec.2008.4631185.
Texto completoLiu, Hui y David Y. Yun. "Competitive learning algorithms for image coding". En Aerospace Sensing, editado por Steven K. Rogers. SPIE, 1992. http://dx.doi.org/10.1117/12.140018.
Texto completoInformes sobre el tema "Competitive algorithms"
Marty, Frédéric y Thierry Warin. Deciphering Algorithmic Collusion: Insights from Bandit Algorithms and Implications for Antitrust Enforcement. CIRANO, diciembre de 2023. http://dx.doi.org/10.54932/iwpg7510.
Texto completoBrown, Zach y Alexander MacKay. Competition in Pricing Algorithms. Cambridge, MA: National Bureau of Economic Research, mayo de 2021. http://dx.doi.org/10.3386/w28860.
Texto completoIyer, Ganesh y T. Tony Ke. Competitive Model Selection in Algorithmic Targeting. Cambridge, MA: National Bureau of Economic Research, marzo de 2023. http://dx.doi.org/10.3386/w31002.
Texto completoParker, Robert y Carleton Coffrin. The Grid Optimization Competition Benchmark Algorithm. Office of Scientific and Technical Information (OSTI), octubre de 2023. http://dx.doi.org/10.2172/2202592.
Texto completoChang, Shu-jen, Ray Perlner, William E. Burr, Meltem Sonmez Turan, John M. Kelsey, Souradyuti Paul y Lawrence E. Bassham. Third-Round Report of the SHA-3 Cryptographic Hash Algorithm Competition. Gaithersburg, MD: National Institute of Standards and Technology, noviembre de 2012. http://dx.doi.org/10.6028/nist.ir.7896.
Texto completoRegenscheid, Andrew, Ray Perlner, Shu-jen Chang, John Kelsey, Mridul Nandi y Souradyuti Paul. Status report on the first round of the SHA-3 cryptographic hash algorithm competition. Gaithersburg, MD: National Institute of Standards and Technology, 2009. http://dx.doi.org/10.6028/nist.ir.7620.
Texto completoTuran, Meltem Sonmez, Ray Perlner, Lawrence E. Bassham, William Burr, Donghoon Chang, Shu-jen Chang, Morris J. Dworkin, John M. Kelsey, Souradyuti Paul y Rene Peralta. Status report on the second round of the SHA-3 cryptographic hash algorithm competition. Gaithersburg, MD: National Institute of Standards and Technology, 2011. http://dx.doi.org/10.6028/nist.ir.7764.
Texto completoElacqua, Gregory, Anne Sofie Westh Olsen y Santiago Velez-Ferro. Open configuration options The Market Design Approach to Teacher Assignment: Evidence from Ecuador. Inter-American Development Bank, septiembre de 2021. http://dx.doi.org/10.18235/0003824.
Texto completoDurovic, Mateja y Franciszek Lech. A Consumer Law Perspective on the Commercialization of Data. Universitätsbibliothek J. C. Senckenberg, Frankfurt am Main, 2021. http://dx.doi.org/10.21248/gups.64577.
Texto completoSeginer, Ido, James Jones, Per-Olof Gutman y Eduardo Vallejos. Optimal Environmental Control for Indeterminate Greenhouse Crops. United States Department of Agriculture, agosto de 1997. http://dx.doi.org/10.32747/1997.7613034.bard.
Texto completo