Artículos de revistas sobre el tema "Compact binary coalescence"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Compact binary coalescence".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Kalogera, V. "Close Binaries with Two Compact Objects". International Astronomical Union Colloquium 177 (2000): 579–84. http://dx.doi.org/10.1017/s0252921100060668.
Texto completoGraziani, Luca. "Hunting for Dwarf Galaxies Hosting the Formation and Coalescence of Compact Binaries". Physics 1, n.º 3 (6 de diciembre de 2019): 412–29. http://dx.doi.org/10.3390/physics1030030.
Texto completoSpera, Mario, Alessandro Alberto Trani y Mattia Mencagli. "Compact Binary Coalescences: Astrophysical Processes and Lessons Learned". Galaxies 10, n.º 4 (25 de junio de 2022): 76. http://dx.doi.org/10.3390/galaxies10040076.
Texto completoPiccinni, Ornella Juliana. "Status and Perspectives of Continuous Gravitational Wave Searches". Galaxies 10, n.º 3 (25 de mayo de 2022): 72. http://dx.doi.org/10.3390/galaxies10030072.
Texto completoO'Shaughnessy, R., V. Kalogera y Krzysztof Belczynski. "BINARY COMPACT OBJECT COALESCENCE RATES: THE ROLE OF ELLIPTICAL GALAXIES". Astrophysical Journal 716, n.º 1 (20 de mayo de 2010): 615–33. http://dx.doi.org/10.1088/0004-637x/716/1/615.
Texto completoUsman, Samantha A., Alexander H. Nitz, Ian W. Harry, Christopher M. Biwer, Duncan A. Brown, Miriam Cabero, Collin D. Capano et al. "The PyCBC search for gravitational waves from compact binary coalescence". Classical and Quantum Gravity 33, n.º 21 (10 de octubre de 2016): 215004. http://dx.doi.org/10.1088/0264-9381/33/21/215004.
Texto completoAbac, A. G., R. Abbott, I. Abouelfettouh, F. Acernese, K. Ackley, S. Adhicary, N. Adhikari et al. "Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M ⊙ Compact Object and a Neutron Star". Astrophysical Journal Letters 970, n.º 2 (26 de julio de 2024): L34. http://dx.doi.org/10.3847/2041-8213/ad5beb.
Texto completoRasio, Frederic A. y Stuart L. Shapiro. "Hydrodynamic Evolution of Coalescing Compact Binaries". Symposium - International Astronomical Union 165 (1996): 17–28. http://dx.doi.org/10.1017/s0074180900055522.
Texto completoWEN, LINQING y QI CHU. "EARLY DETECTION AND LOCALIZATION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCES". International Journal of Modern Physics D 22, n.º 11 (septiembre de 2013): 1360011. http://dx.doi.org/10.1142/s0218271813600110.
Texto completoMozzon, S., L. K. Nuttall, A. Lundgren, T. Dent, S. Kumar y A. H. Nitz. "Dynamic normalization for compact binary coalescence searches in non-stationary noise". Classical and Quantum Gravity 37, n.º 21 (20 de octubre de 2020): 215014. http://dx.doi.org/10.1088/1361-6382/abac6c.
Texto completoCannon, Kipp, Romain Cariou, Adrian Chapman, Mireia Crispin-Ortuzar, Nickolas Fotopoulos, Melissa Frei, Chad Hanna et al. "TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE". Astrophysical Journal 748, n.º 2 (15 de marzo de 2012): 136. http://dx.doi.org/10.1088/0004-637x/748/2/136.
Texto completoAbbott, B. P., R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, C. Adams et al. "GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M ⊙". Astrophysical Journal 892, n.º 1 (19 de marzo de 2020): L3. http://dx.doi.org/10.3847/2041-8213/ab75f5.
Texto completoKopparapu, Ravi Kumar, Chad Hanna, Vicky Kalogera, Richard O’Shaughnessy, Gabriela González, Patrick R. Brady y Stephen Fairhurst. "Host Galaxies Catalog Used in LIGO Searches for Compact Binary Coalescence Events". Astrophysical Journal 675, n.º 2 (10 de marzo de 2008): 1459–67. http://dx.doi.org/10.1086/527348.
Texto completoNielsen, Alex B. "Compact binary coalescence parameter estimations for 2.5 post-Newtonian aligned spinning waveforms". Classical and Quantum Gravity 30, n.º 7 (15 de marzo de 2013): 075023. http://dx.doi.org/10.1088/0264-9381/30/7/075023.
Texto completoStachie, Cosmin, Tito Dal Canton, Nelson Christensen, Marie-Anne Bizouard, Michael Briggs, Eric Burns, Jordan Camp y Michael Coughlin. "Searches for Modulated γ-Ray Precursors to Compact Binary Mergers in Fermi-GBM Data". Astrophysical Journal 930, n.º 1 (1 de mayo de 2022): 45. http://dx.doi.org/10.3847/1538-4357/ac5f53.
Texto completoChen, Bing-Guang, Tong Liu, Yan-Qing Qi, Bao-Quan Huang, Yun-Feng Wei, Tuan Yi, Wei-Min Gu y Li Xue. "Effects of Vertical Advection on Multimessenger Signatures of Black Hole Neutrino-dominated Accretion Flows in Compact Binary Coalescences". Astrophysical Journal 941, n.º 2 (1 de diciembre de 2022): 156. http://dx.doi.org/10.3847/1538-4357/aca406.
Texto completoDupree, William y Sukanta Bose. "Multi-detector null-stream-based $\chi^2$ statistic for compact binary coalescence searches". Classical and Quantum Gravity 36, n.º 19 (11 de septiembre de 2019): 195012. http://dx.doi.org/10.1088/1361-6382/ab30cf.
Texto completoVan Den Broeck, C. "Astrophysics, cosmology, and fundamental physics with compact binary coalescence and the Einstein Telescope". Journal of Physics: Conference Series 484 (5 de marzo de 2014): 012008. http://dx.doi.org/10.1088/1742-6596/484/1/012008.
Texto completoBiwer, C. M., Collin D. Capano, Soumi De, Miriam Cabero, Duncan A. Brown, Alexander H. Nitz y V. Raymond. "PyCBC Inference: A Python-based Parameter Estimation Toolkit for Compact Binary Coalescence Signals". Publications of the Astronomical Society of the Pacific 131, n.º 996 (11 de enero de 2019): 024503. http://dx.doi.org/10.1088/1538-3873/aaef0b.
Texto completoLiu, Yuan, Zhihui Du, Shin Kee Chung, Shaun Hooper, David Blair y Linqing Wen. "GPU-accelerated low-latency real-time searches for gravitational waves from compact binary coalescence". Classical and Quantum Gravity 29, n.º 23 (2 de noviembre de 2012): 235018. http://dx.doi.org/10.1088/0264-9381/29/23/235018.
Texto completoRomero-Shaw, I. M., C. Talbot, S. Biscoveanu, V. D’Emilio, G. Ashton, C. P. L. Berry, S. Coughlin et al. "Bayesian inference for compact binary coalescences with bilby: validation and application to the first LIGO–Virgo gravitational-wave transient catalogue". Monthly Notices of the Royal Astronomical Society 499, n.º 3 (21 de septiembre de 2020): 3295–319. http://dx.doi.org/10.1093/mnras/staa2850.
Texto completoWin, Aung Naing, Yu-Ming Chu, Hasrat Hussain Shah, Syed Zaheer Abbas y Munawar Shah. "Electromagnetic counterpart to gravitational waves from coalescence of binary black hole with magnetic monopole charge". International Journal of Modern Physics A 35, n.º 31 (10 de noviembre de 2020): 2050205. http://dx.doi.org/10.1142/s0217751x2050205x.
Texto completoMacLeod, Morgan, Kishalay De y Abraham Loeb. "Dusty, Self-obscured Transients from Stellar Coalescence". Astrophysical Journal 937, n.º 2 (1 de octubre de 2022): 96. http://dx.doi.org/10.3847/1538-4357/ac8c31.
Texto completoArtale, M. Celeste, Yann Bouffanais, Michela Mapelli, Nicola Giacobbo, Nadeen B. Sabha, Filippo Santoliquido, Mario Pasquato y Mario Spera. "An astrophysically motivated ranking criterion for low-latency electromagnetic follow-up of gravitational wave events". Monthly Notices of the Royal Astronomical Society 495, n.º 2 (7 de mayo de 2020): 1841–52. http://dx.doi.org/10.1093/mnras/staa1252.
Texto completoHu, Chin-Ping, Lupin Chun-Che Lin, Kuo-Chuan Pan, Kwan-Lok Li, Chien-Chang Yen, Albert K. H. Kong y C. Y. Hui. "A Comprehensive Analysis of the Gravitational Wave Events with the Stacked Hilbert–Huang Transform: From Compact Binary Coalescence to Supernova". Astrophysical Journal 935, n.º 2 (1 de agosto de 2022): 127. http://dx.doi.org/10.3847/1538-4357/ac8165.
Texto completoMaurya, S. K., G. Mustafa, M. Govender y Ksh Newton Singh. "Exploring physical properties of minimally deformed strange star model and constraints on maximum mass limit in f(𝒬) gravity". Journal of Cosmology and Astroparticle Physics 2022, n.º 10 (1 de octubre de 2022): 003. http://dx.doi.org/10.1088/1475-7516/2022/10/003.
Texto completoVijaykumar, Aditya, Avinash Tiwari, Shasvath J. Kapadia, K. G. Arun y Parameswaran Ajith. "Waltzing Binaries: Probing the Line-of-sight Acceleration of Merging Compact Objects with Gravitational Waves". Astrophysical Journal 954, n.º 1 (25 de agosto de 2023): 105. http://dx.doi.org/10.3847/1538-4357/acd77d.
Texto completoWei, Wei, E. A. Huerta, Mengshen Yun, Nicholas Loutrel, Md Arif Shaikh, Prayush Kumar, Roland Haas y Volodymyr Kindratenko. "Deep Learning with Quantized Neural Networks for Gravitational-wave Forecasting of Eccentric Compact Binary Coalescence". Astrophysical Journal 919, n.º 2 (28 de septiembre de 2021): 82. http://dx.doi.org/10.3847/1538-4357/ac1121.
Texto completoZhang, Bing. "Charged Compact Binary Coalescence Signal and Electromagnetic Counterpart of Plunging Black Hole–Neutron Star Mergers". Astrophysical Journal 873, n.º 2 (8 de marzo de 2019): L9. http://dx.doi.org/10.3847/2041-8213/ab0ae8.
Texto completoKomossa, S. y J. A. Zensus. "Compact object mergers: observations of supermassive binary black holes and stellar tidal disruption events". Proceedings of the International Astronomical Union 10, S312 (agosto de 2014): 13–25. http://dx.doi.org/10.1017/s1743921315007395.
Texto completoWolfe, Noah E., Salvatore Vitale y Colm Talbot. "Too small to fail: characterizing sub-solar mass black hole mergers with gravitational waves". Journal of Cosmology and Astroparticle Physics 2023, n.º 11 (1 de noviembre de 2023): 039. http://dx.doi.org/10.1088/1475-7516/2023/11/039.
Texto completoTsutsui, T., A. Nishizawa y S. Morisaki. "Early warning of precessing neutron-star black hole binary mergers with the near-future gravitational-wave detectors". Monthly Notices of the Royal Astronomical Society 512, n.º 3 (17 de marzo de 2022): 3878–84. http://dx.doi.org/10.1093/mnras/stac715.
Texto completoHamilton, Chris y Roman R. Rafikov. "Relativistic Phase Space Diffusion of Compact Object Binaries in Stellar Clusters and Hierarchical Triples". Astrophysical Journal 961, n.º 2 (30 de enero de 2024): 237. http://dx.doi.org/10.3847/1538-4357/ad0be2.
Texto completoZhang, Zhen, Shu-Xu Yi, Shuang-Nan Zhang, Shao-Lin Xiong y Shuo Xiao. "Tidally-induced Magnetar Super Flare at the Eve of Coalescence with Its Compact Companion". Astrophysical Journal Letters 939, n.º 2 (1 de noviembre de 2022): L25. http://dx.doi.org/10.3847/2041-8213/ac9b55.
Texto completoSpurzem, R., P. Berczik, I. Berentzen, D. Merritt, M. Preto y P. Amaro-Seoane. "Formation and Evolution of Black Holes in Galactic Nuclei and Star Clusters". Proceedings of the International Astronomical Union 3, S246 (septiembre de 2007): 346–50. http://dx.doi.org/10.1017/s1743921308015901.
Texto completoKrishnendu, N. V. y Frank Ohme. "Testing General Relativity with Gravitational Waves: An Overview". Universe 7, n.º 12 (16 de diciembre de 2021): 497. http://dx.doi.org/10.3390/universe7120497.
Texto completoHough, Jim. "Gravitational wave: gamma-ray burst connections". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365, n.º 1854 (9 de febrero de 2007): 1335–42. http://dx.doi.org/10.1098/rsta.2006.1977.
Texto completoCoughlin, Michael W., Sarah Antier, David Corre, Khalid Alqassimi, Shreya Anand, Nelson Christensen, David A. Coulter et al. "Optimizing multitelescope observations of gravitational-wave counterparts". Monthly Notices of the Royal Astronomical Society 489, n.º 4 (7 de septiembre de 2019): 5775–83. http://dx.doi.org/10.1093/mnras/stz2485.
Texto completoMiyatsu, Tsuyoshi, Myung-Ki Cheoun y Koichi Saito. "Asymmetric Nuclear Matter in Relativistic Mean-field Models with Isoscalar- and Isovector-meson Mixing". Astrophysical Journal 929, n.º 1 (1 de abril de 2022): 82. http://dx.doi.org/10.3847/1538-4357/ac5f40.
Texto completoHu, Qian y John Veitch. "Rapid Premerger Localization of Binary Neutron Stars in Third-generation Gravitational-wave Detectors". Astrophysical Journal Letters 958, n.º 2 (1 de diciembre de 2023): L43. http://dx.doi.org/10.3847/2041-8213/ad0ed4.
Texto completoWang, Min-Hao, Shun-Ke Ai, Zheng-Xiang Li, Nan Xing, He Gao y Bing Zhang. "Testing the Hypothesis of a Compact-binary-coalescence Origin of Fast Radio Bursts Using a Multimessenger Approach". Astrophysical Journal 891, n.º 2 (13 de marzo de 2020): L39. http://dx.doi.org/10.3847/2041-8213/ab7a1b.
Texto completoTalbot, Colm y Eric Thrane. "Flexible and Accurate Evaluation of Gravitational-wave Malmquist Bias with Machine Learning". Astrophysical Journal 927, n.º 1 (1 de marzo de 2022): 76. http://dx.doi.org/10.3847/1538-4357/ac4bc0.
Texto completoNi, Wei-Tou, Gang Wang y An-Ming Wu. "Astrodynamical middle-frequency interferometric gravitational wave observatory AMIGO: Mission concept and orbit design". International Journal of Modern Physics D 29, n.º 04 (marzo de 2020): 1940007. http://dx.doi.org/10.1142/s0218271819400078.
Texto completoCoughlin, Michael W., Tim Dietrich, Sarah Antier, Mattia Bulla, Francois Foucart, Kenta Hotokezaka, Geert Raaijmakers, Tanja Hinderer y Samaya Nissanke. "Implications of the search for optical counterparts during the first six months of the Advanced LIGO’s and Advanced Virgo’s third observing run: possible limits on the ejecta mass and binary properties". Monthly Notices of the Royal Astronomical Society 492, n.º 1 (10 de diciembre de 2019): 863–76. http://dx.doi.org/10.1093/mnras/stz3457.
Texto completoYu, Shenghua, Youjun Lu y C. Simon Jeffery. "Orbital evolution of neutron-star–white-dwarf binaries by Roche lobe overflow and gravitational wave radiation". Monthly Notices of the Royal Astronomical Society 503, n.º 2 (5 de marzo de 2021): 2776–90. http://dx.doi.org/10.1093/mnras/stab626.
Texto completoZhang, Bing. "Erratum: “Charged Compact Binary Coalescence Signal and Electromagnetic Counterpart of Plunging BH–NS Mergers” (2019, ApJL, 873, L9)". Astrophysical Journal 891, n.º 2 (17 de marzo de 2020): L45. http://dx.doi.org/10.3847/2041-8213/ab7dc9.
Texto completoLi, T. G. F., W. Del Pozzo, S. Vitale, C. Van Den Broeck, M. Agathos, J. Veitch, K. Grover, T. Sidery, R. Sturani y A. Vecchio. "Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence: Further investigations". Journal of Physics: Conference Series 363 (1 de junio de 2012): 012028. http://dx.doi.org/10.1088/1742-6596/363/1/012028.
Texto completoAndres, N., M. Assiduo, F. Aubin, R. Chierici, D. Estevez, F. Faedi, G. M. Guidi et al. "Assessing the compact-binary merger candidates reported by the MBTA pipeline in the LIGO–Virgo O3 run: probability of astrophysical origin, classification, and associated uncertainties". Classical and Quantum Gravity 39, n.º 5 (3 de febrero de 2022): 055002. http://dx.doi.org/10.1088/1361-6382/ac482a.
Texto completoXu, Fei, Jose María Ezquiaga y Daniel E. Holz. "Please Repeat: Strong Lensing of Gravitational Waves as a Probe of Compact Binary and Galaxy Populations". Astrophysical Journal 929, n.º 1 (1 de abril de 2022): 9. http://dx.doi.org/10.3847/1538-4357/ac58f8.
Texto completoStachie, C., T. Dal Canton, E. Burns, N. Christensen, R. Hamburg, M. Briggs, J. Broida et al. "Search for advanced LIGO single interferometer compact binary coalescence signals in coincidence with Gamma-ray events in Fermi-GBM". Classical and Quantum Gravity 37, n.º 17 (5 de agosto de 2020): 175001. http://dx.doi.org/10.1088/1361-6382/aba28a.
Texto completo