Literatura académica sobre el tema "Combustore"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Combustore".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Combustore"
Davidović, Nikola S., Nenad M. Kolarević, Miloš B. Stanković y Marko V. Miloš. "Research of expendable turbojet tubular combustion chamber". Advances in Mechanical Engineering 14, n.º 5 (mayo de 2022): 168781322210959. http://dx.doi.org/10.1177/16878132221095999.
Texto completoHosseini, Seyed, Evan Owens, John Krohn y James Leylek. "Experimental Investigation into the Effects of Thermal Recuperation on the Combustion Characteristics of a Non-Premixed Meso-Scale Vortex Combustor". Energies 11, n.º 12 (4 de diciembre de 2018): 3390. http://dx.doi.org/10.3390/en11123390.
Texto completoWang, T., J. S. Kapat, W. R. Ryan, I. S. Diakunchak y R. L. Bannister. "Effect of Air Extraction for Cooling and/or Gasification on Combustor Flow Uniformity". Journal of Engineering for Gas Turbines and Power 121, n.º 1 (1 de enero de 1999): 46–54. http://dx.doi.org/10.1115/1.2816311.
Texto completoKhandelwal, B., A. Karakurt, V. Sethi, R. Singh y Z. Quan. "Preliminary design and performance analysis of a low emission aero-derived gas turbine combustor". Aeronautical Journal 117, n.º 1198 (diciembre de 2013): 1249–71. http://dx.doi.org/10.1017/s0001924000008848.
Texto completoBurunsuz, К. S., V. V. Kuklinovsky y S. I. Serbin. "Investigations of the emission characteristics of a gas turbine combustor with water steam injection". Refrigeration Engineering and Technology 55, n.º 2 (30 de abril de 2019): 77–83. http://dx.doi.org/10.15673/ret.v55i2.1356.
Texto completoKanta Mukherjee, Nalini. "Analytic description of flame intrinsic instability in one-dimensional model of open–open combustors with ideal and non-ideal end boundaries". International Journal of Spray and Combustion Dynamics 10, n.º 4 (27 de agosto de 2018): 287–314. http://dx.doi.org/10.1177/1756827718795518.
Texto completoFąfara, Jean-Marc. "Overview of low emission combustors of aircraft turbine drive units". Combustion Engines 183, n.º 4 (15 de diciembre de 2020): 45–49. http://dx.doi.org/10.19206/ce-2020-407.
Texto completoSaputro, Herman, Aris Purwanto, Laila Fitriana, Danar S. Wijayanto, Valiant L. P. Sutrisno, Eka D. Ariyanto, Marshal Bima et al. "Analysis of flame stabilization limit in a cylindrical of step micro-combustor with different material through the numerical simulation". MATEC Web of Conferences 197 (2018): 08003. http://dx.doi.org/10.1051/matecconf/201819708003.
Texto completoFeitelberg, A. S., V. E. Tangirala, R. A. Elliott, R. E. Pavri y R. B. Schiefer. "Reduced NOx Diffusion Flame Combustors for Industrial Gas Turbines". Journal of Engineering for Gas Turbines and Power 123, n.º 4 (1 de octubre de 2000): 757–65. http://dx.doi.org/10.1115/1.1376722.
Texto completoChand, Dharmahinder Singh, Daamanjyot Barara, Gautam Ganesh y Suraj Anand. "Comparison of Efficiency of Conventional Shaped Circular and Elliptical Shaped Combustor". MATEC Web of Conferences 151 (2018): 02002. http://dx.doi.org/10.1051/matecconf/201815102002.
Texto completoTesis sobre el tema "Combustore"
Romanelli, Mirko. "Modellazione del comportamento di un combustore e turbina aeronautica con fogging". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12374/.
Texto completoGobbato, Paolo. "Studio delle instabilità termoacustiche in un combustore di turbina a gas". Doctoral thesis, Università degli studi di Padova, 2010. http://hdl.handle.net/11577/3427348.
Texto completoL'instabilità di combustione peggiora le prestazioni di un combustore a flusso continuo e pertanto deve essere considerata un fenomeno indesiderato. Fluttuazioni della pressione e del rilascio termico possono infatti causare vibrazioni meccaniche, rumore, formazione di punti caldi sulle pareti della camera di combustione e incremento delle emissioni inquinanti. La combustione instabile è particolarmente dannosa nei combustori per turbina a gas nei quali ampie oscillazioni di portata e di rilascio termico possono danneggiare irreparabilmente le parti fisse e rotanti della turbina. Nel lavoro che si presenta viene studiato il comportamento termoacustico di un combustore di turbina a gas. Il combustore esaminato è del tipo tubolare, con singolo bruciatore a fiamma diffusiva ed è stato modificato dal costruttore per essere alimentato non solo a gas naturale ma anche a idrogeno. Il processo di sviluppo è stato supportato da prove di combustione su scala reale eseguite su un banco prova in grado di riprodurre le condizioni di pieno carico. L’analisi termoacustica viene condotta seguendo una procedura di indagine basata sulla simulazione numerica del fenomeno mediante un codice numerico commerciale con modelli di turbolenza di tipo RANS. Nelle analisi numeriche i modelli numerici e le griglie di calcolo sono scelti in modo da minimizzare tempi e risorse di calcolo. In questo modo è possibile simulare un intervallo temporale sufficientemente ampio da consentire al sistema di evolvere liberamente fino alle condizioni di regime per poter così valutare l’eventuale presenza di instabilità termoacustiche. Le misure raccolte durante le prove sperimentali sono impiegate nei calcoli sia per l’imposizione delle condizioni al contorno sia per la valutazione dei risultati. I segnali di pressione registrati durante le simulazioni mostrano la permanenza di oscillazioni di pressione nel combustore caratterizzate da un’ampiezza piuttosto ridotta. Queste oscillazioni sono dunque ampiamente tollerabili dal sistema (la combustione è ovunque completa e non vi sono fenomeni di estinzione di fiamma e di surriscaldamento delle pareti del combustore), in accordo con quanto osservato durante le prove sperimentali. Gli spettri calcolati al termine delle simulazioni sono comparati con gli spettri acquisiti durante le prove di combustione. Dal confronto emerge una sostanziale corrispondenza tra i modi di vibrare calcolati e quelli misurati al banco prova.
Khandelwal, Bhupendra. "Development of gas turbine combustor preliminary design methodologies and preliminary assessments of advanced low emission combustor concepts". Thesis, Cranfield University, 2012. http://dspace.lib.cranfield.ac.uk/handle/1826/9157.
Texto completoAslanidou, Ioanna. "Combustor and turbine aerothermal interactions in gas turbines with can combustors". Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:b1527fd0-8e54-4831-8625-32722141511e.
Texto completoAbraham, Santosh. "Heat Transfer and Flow Measurements on a One-Scale Gas Turbine Can Combustor Model". Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/35177.
Texto completoMaster of Science
Carmack, Andrew Cardin. "Heat Transfer and Flow Measurements in Gas Turbine Engine Can and Annular Combustors". Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/32466.
Texto completoMaster of Science
Jelercic, David. "Experiments in annular combustors". Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251891.
Texto completoAnand, Vijay G. "Rotating Detonation Combustor Mechanics". University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1530798871271548.
Texto completoAyache, Simon Victor. "Simulations of turbulent swirl combustors". Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/243609.
Texto completoGray, D. T. "The control of fluidised combustors". Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373677.
Texto completoLibros sobre el tema "Combustore"
Young, Mark F. Measurements of gas turbine combustor and engine augmentor tube sooting characteristics. Monterey, Calif: Naval Postgraduate School, 1988.
Buscar texto completoLee, Richard S. L., James H. Whitelaw y T. S. Wung, eds. Aerothermodynamics in Combustors. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84755-4.
Texto completoCenter, Langley Research, ed. HYPULSE combustor analysis. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Buscar texto completoCenter, Langley Research, ed. HYPULSE combustor analysis. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Buscar texto completoLieuwen, Timothy C. Unsteady combustor physics. Cambridge: Cambridge University Press, 2013.
Buscar texto completoKumar, Sanjiv. A computer model for the simulation of turbulent reacting flow in a jet assisted ram combustor. Chofu, Tokyo: National Aerospace Laboratory, 1995.
Buscar texto completoM, Mellor A., ed. Design of modern turbine combustors. London: Academic Press, 1990.
Buscar texto completoUnited States. Environmental Protection Agency. Office of Water, ed. Development document for final effluent limitations guidelines and standards for the commercial hazardous waste combustor subcategory of the waste combustors point source category. Washington, DC: U.S. Environmental Protection Agency, Office of Water, 2000.
Buscar texto completoJ, Breisacher Kevin y United States. National Aeronautics and Space Administration., eds. 3D rocket combustor acoustics model. [Washington, DC]: National Aeronautics and Space Administration, 1992.
Buscar texto completoP, Menees Gene y Ames Research Center, eds. Wave combustors for trans-atmospheric vehicles. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1989.
Buscar texto completoCapítulos de libros sobre el tema "Combustore"
Seitz, Timo, Ansgar Lechtenberg y Peter Gerlinger. "Rocket Combustion Chamber Simulations Using High-Order Methods". En Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 381–94. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_24.
Texto completoBilger, R. W. "Advanced Laser Diagnostics: Implications of Recent Results for Advanced Combustor Models". En Aerothermodynamics in Combustors, 3–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84755-4_1.
Texto completoLindstedt, R. P. "A Simple Reaction Mechanism for Soot Formation in Non-Premixed Flames". En Aerothermodynamics in Combustors, 145–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84755-4_10.
Texto completoChiu, H. H. "Droplet Vaporization Law in Non-Dilute Sprays". En Aerothermodynamics in Combustors, 159–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84755-4_11.
Texto completoRoth, N., K. Anders y A. Frohn. "Experimental Investigation of the Reduction of Burning Rate Due to Finite Spacing Between Droplets". En Aerothermodynamics in Combustors, 175–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84755-4_12.
Texto completoHiroyasu, Hiroyuki, Masataka Arai, Kaoru Nakamori y Shinji Nakaso. "Blue Flame Combustion in a Jet-Mixing-Type Spray Combustor". En Aerothermodynamics in Combustors, 185–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84755-4_13.
Texto completoLiu, Chi-Chang y Ta-Hui Lin. "The Influence of Upstream Prevaporization on Flame Extinction of One-Dimensional Dilute Sprays". En Aerothermodynamics in Combustors, 197–211. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84755-4_14.
Texto completoHendricks, E. W., S. Sivasegaram y J. H. Whitelaw. "Control of Oscillations in Ducted Premixed Flames". En Aerothermodynamics in Combustors, 215–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84755-4_15.
Texto completoTien, Ta-Ching y James S. T’ien. "Catalytic Ignition Model in Monolithic Reactor with In-Depth Reaction". En Aerothermodynamics in Combustors, 231–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84755-4_16.
Texto completoBai, T., S. Shani, B. R. Daniel y B. T. Zinn. "Combustion of Heavy Fuel Oils in a Rijke Type Pulse Combustor with a Tangential Injection Stream". En Aerothermodynamics in Combustors, 245–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84755-4_17.
Texto completoActas de conferencias sobre el tema "Combustore"
Wang, T., J. S. Kapat, W. R. Ryan, I. S. Diakunchak y R. L. Bannister. "Effect of Air Extraction for Cooling and/or Gasification on Combustor Flow Uniformity". En ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-102.
Texto completoWalker, A. Duncan, Jon F. Carrotte y James J. McGuirk. "Compressor/Diffuser/Combustor Aerodynamic Interactions in Lean Module Combustors". En ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27872.
Texto completoSamarasinghe, Janith, Stephen J. Peluso, Bryan D. Quay y Domenic A. Santavicca. "The 3-D Structure of Swirl-Stabilized Flames in a Lean Premixed Multi-Nozzle Can Combustor". En ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42167.
Texto completoZahn, Max, Michael Betz, Moritz Schulze, Christoph Hirsch y Thomas Sattelmayer. "Predicting the Influence of Damping Devices on the Stability Margin of an Annular Combustor". En ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-64238.
Texto completoLieuwen, Tim, Vince McDonell, Eric Petersen y Domenic Santavicca. "Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition and Instability". En ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90770.
Texto completoGarland, R. V., P. W. Pillsbury y T. E. Dowdy. "Design and Test of a Candidate Topping Combustor for Second Generation PFB Applications". En ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/91-gt-113.
Texto completoLieuwen, Tim y Andrzej Banaszuk. "Background Noise Effects on Combustor Stability". En ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30062.
Texto completoHegde, Gajanana B., Bhupendra Khandelwal, Vishal Sethi y Riti Singh. "Design, Evaluation and Performance Analysis of Staged Low Emission Combustors". En ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-69215.
Texto completoRida, Samir, Saugata Chakravorty, Jaydeep Basani, Stefano Orsino y Naseem Ansari. "An Assessment of Flamelet Generated Manifold Combustion Model for Predicting Combustor Performance". En ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42340.
Texto completoHirano, Kohshi, Yoshiharu Nonaka, Yasuhiro Kinoshita, Masaya Muto y Ryoichi Kurose. "Large-Eddy Simulation of Turbulent Combustion in Multi Combustors for L30A Gas Turbine Engine". En ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42545.
Texto completoInformes sobre el tema "Combustore"
Bray, C. Transport in Dump Combustors. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1986. http://dx.doi.org/10.21236/ada224790.
Texto completoVreeland, Heidi, Christina Norris, Lauren Shum, Jaya Pokuri, Emily Shannon, Anmol Raina, Ayushman Tripathi et al. Collaborative Efforts to Investigate Emissions From Residential and Municipal Trash Burning in India. RTI Press, septiembre de 2018. http://dx.doi.org/10.3768/rtipress.2018.rb.0019.1809.
Texto completoSantavicca, Domenic A. Combustion Instabilities in Lean Premixed Combustors. Fort Belvoir, VA: Defense Technical Information Center, julio de 2001. http://dx.doi.org/10.21236/ada400629.
Texto completoW. R. Laster, E. Anoshkina y P. Szedlacsek. Catalytic Combustor for Fuel-Flexible Turbine. Office of Scientific and Technical Information (OSTI), marzo de 2006. http://dx.doi.org/10.2172/907883.
Texto completoCrayon, D., A. E. Fish, E. Hyland, R. W. Messler y jr. Coatings Evaluation Using a Vented Combustor. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 2001. http://dx.doi.org/10.21236/ada397759.
Texto completoLaster, W. R. y E. Anoshkina. Catalytic Combustor for Fuel-Flexible Turbine. Office of Scientific and Technical Information (OSTI), enero de 2008. http://dx.doi.org/10.2172/1083745.
Texto completoW. R. Laster y E. Anoshkina. Catalytic Combustor for Fuel-Flexible Turbine. Office of Scientific and Technical Information (OSTI), enero de 2008. http://dx.doi.org/10.2172/973070.
Texto completoNational Energy Technology Laboratory. Pulse Combustor Design, A DOE Assessment. Office of Scientific and Technical Information (OSTI), julio de 2003. http://dx.doi.org/10.2172/812682.
Texto completoGidaspow, D. Predictive models of circulating fluidized bed combustors. Office of Scientific and Technical Information (OSTI), julio de 1992. http://dx.doi.org/10.2172/7195746.
Texto completoLouge, M. Y. Scale-up circulating fluidized bed coal combustors. Office of Scientific and Technical Information (OSTI), noviembre de 1991. http://dx.doi.org/10.2172/5520104.
Texto completo