Literatura académica sobre el tema "Combustion hydrogène"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Combustion hydrogène".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Combustion hydrogène"

1

Guénan, Karine. "L’avion à hydrogène ZEROe : défis technologiques et impacts sur l’écosystème". Annales des Mines - Réalités industrielles Mai 2024, n.º 2 (14 de junio de 2024): 99–103. http://dx.doi.org/10.3917/rindu1.242.0099.

Texto completo
Resumen
L’aviation, symbole de mobilité et de rapprochement, doit réinventer son futur, pour répondre aux exigences de neutralité carbone d’ici 2050. L’hydrogène se présente comme une solution d’avenir pour la décarbonation de nombreuses industries. Cependant, son adoption dans l’aéronautique nécessitera des avancées majeures, de la production et distribution à grande échelle d’hydrogène vert, alimentées par les énergies renouvelables, à la conception de réservoirs cryogéniques sécurisés, en passant par l’adaptation des équipements et infrastructures aéroportuaires. Airbus se positionne en champion de cette transition, collaborant avec des partenaires, leaders mondiaux dans leur domaine respectif, pour concrétiser son ambition. Les concepts novateurs de l’avion à hydrogène ZEROe, propulsé par des piles à combustible ou des moteurs à combustion d’hydrogène, promettent une réduction significative des émissions de CO 2 . L’objectif est clair : transformer l’industrie aéronautique, pour un avenir plus durable, sûr et uni.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Mahfoudi, El-Ahcene, Abderrahmane Gahmousse, Athmane Harizi, Kamel Talbi y Abdellah Hadjadj. "Simulation numérique de l’écoulement compressible supersonique Application aux tuyères propulsives à combustible liquide hydrogène". Journal of Renewable Energies 15, n.º 3 (23 de octubre de 2023): 365–72. http://dx.doi.org/10.54966/jreen.v15i3.327.

Texto completo
Resumen
Ce travail porte sur la simulation numérique de l’écoulement supersonique adapté dans les tuyères propulsives où le gaz d’essai supposé parfait est le gaz de combustion de l’Hydrogène. Il vise à déterminer les paramètres de l’écoulement Eulérien supersonique dans la tuyère convergente divergente. La méthode numérique utilisée pour la résolution de l’écoulement est basée sur une approche des volumes finis en coordonnées généralisées. L’intégration du système pour les équations de conservation d’Euler s’effectue sur un volume élémentaire quadrilatère. Dans cette étude, le traitement des flux convectifs est effectué en utilisant la méthode de Roe. Pour la discrétisation temporelle des équations, un schéma explicite de type Runge-Kutta du second ordre est utilisé.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Studer, Etienne, Danièle Abdo, Sonia Benteboula, Gilles Bernard-Michel, Nadia Coulon, Frédéric Dabbene, Sergey Kudriakov et al. "Sûreté des réacteurs : la connaissance du risque hydrogène enrichie de 20 ans de R&D". Revue Générale Nucléaire, n.º 1 (enero de 2018): 48–53. http://dx.doi.org/10.1051/rgn/20181048.

Texto completo
Resumen
Le CEA s’est doté d’une compétence forte pour comprendre, modéliser et prévenir le risque hydrogène dans les installations nucléaires. À partir du milieu des années 1990, une approche couplée numérique et expérimental a été mise en oeuvre pour atteindre ces objectifs : le projet TONUS pour se doter d’outils numériques pour traiter de la distribution et de la combustion de l’hydrogène et le projet MISTRA pour alimenter ces modèles numériques en données expérimentales « CFD grade » pour la distribution de l’hydrogène et l’efficacité des moyens de prévention. Ces connaissances et ces outils ont conforté les démonstrations de sûreté des installations existantes tant civiles que militaires et contribuent à la conception de nouveaux réacteurs toujours plus sûrs. Enfin, elles sont valorisées pour la sûreté des installations industrielles liées à l’hydrogène vecteur d’énergie.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

De Giorgi, M. G., G. Cinieri, G. Marseglia, Z. Ali Shah y Ghazanfar Mehdi. "Combustion Efficiency of Carbon-neutral Fuel using Micro-Combustor Designed for Aerospace Applications". Journal of Physics: Conference Series 2716, n.º 1 (1 de marzo de 2024): 012091. http://dx.doi.org/10.1088/1742-6596/2716/1/012091.

Texto completo
Resumen
Abstract Recent advancements in the field of micro combustor research are growing for achieving high-performance systems in micro power generation and microelectromechanical devices. To mitigate the hazardous emissions from carbon fuels, as an alternative, zero-carbon-free fuels ammonia, and hydrogen are being explored in micro combustion processes. The distinctive feature of a micro combustor lies in its significantly higher area to volume ratio in comparison with traditional combustion systems, leading to accelerated combustion reaction rates. However, the small size of micro combustors poses a challenge in achieving efficient mixing of highly reactive fuels like hydrogen and ammonia with oxidizers. The unique properties of micro combustors can lead to differences in the combustion behavior of hydrogen and ammonia compared to larger-scale combustion systems. Hence, examining the performance of carbon-free fuels in micro combustors is crucial for the advancement of clean energy combustion systems. A numerical investigation on a Y-shaped micro-combustor was carried out to identify the aspects of non-premixed combustion of ammonia/air and hydrogen/air. The findings reveal that in the case of hydrogen combustion, stable flames were reached, even at low equivalence ratios. Therefore, the distinct combustion properties of hydrogen and ammonia result in varying NOx emissions, with hydrogen generally leading to higher NOx levels due to its higher flame temperature and increased thermal NOx production.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Serbin, Serhiy, Mykola Radchenko, Anatoliy Pavlenko, Kateryna Burunsuz, Andrii Radchenko y Daifen Chen. "Improving Ecological Efficiency of Gas Turbine Power System by Combusting Hydrogen and Hydrogen-Natural Gas Mixtures". Energies 16, n.º 9 (22 de abril de 2023): 3618. http://dx.doi.org/10.3390/en16093618.

Texto completo
Resumen
Currently, the issue of creating decarbonized energy systems in various spheres of life is acute. Therefore, for gas turbine power systems including hybrid power plants with fuel cells, it is relevant to transfer the existing engines to pure hydrogen or mixtures of hydrogen with natural gas. However, significant problems arise associated with the possibility of the appearance of flashback zones and acoustic instability of combustion, an increase in the temperature of the walls of the flame tubes, and an increase in the emission of nitrogen oxides, in some cases. This work is devoted to improving the efficiency of gas turbine power systems by combusting pure hydrogen and mixtures of natural gas with hydrogen. The organization of working processes in the premixed combustion chamber and the combustion chamber with a sequential injection of ecological and energy steam for the “Aquarius” type power plant is considered. The conducted studies of the basic aerodynamic and energy parameters of a gas turbine combustor working on hydrogen-containing gases are based on solving the equations of conservation and transfer in a multicomponent reacting system. A four-stage chemical scheme for the burning of a mixture of natural gas and hydrogen was used, which allows for the rational parameters of environmentally friendly fuel burning devices to be calculated. The premixed combustion chamber can only be recommended for operations on mixtures of natural gas with hydrogen, with a hydrogen content not exceeding 20% (by volume). An increase in the content of hydrogen leads to the appearance of flashback zones and fuel combustion inside the channels of the swirlers. For the combustion chamber of the combined-cycle power plant “Vodoley”, when operating on pure hydrogen, the formation of flame flashback zones does not occur.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Lee, Jaeyoung, Chang Bum Sohn, Young Sik Jeong y Young Bae Kim. "A Numerical Analysis of Premixed Hydrogen–Methane Flame with Three Different Header Types of Combustor". Fire 7, n.º 10 (10 de octubre de 2024): 361. http://dx.doi.org/10.3390/fire7100361.

Texto completo
Resumen
This study investigated the impact of thin-flame combustor design on hydrogen flame characteristics and combustion performance through numerical simulations. Differences in the flame shape and combustibility between pure methane and pure hydrogen combustion were analyzed. Three combustor header shapes (flat, concave, and convex) were modeled to assess the influence of header shape on flame behavior. The results revealed distinct flow patterns, with the concave header promoting strong central flows and the convex header dispersing the flow outward. Temperature field analysis indicated that the hydrogen flames had higher temperatures and shorter quenching distances than the methane flames. A comparative analysis of combustion products was conducted to evaluate combustion performance and NOx emissions. The findings showed that the concave header had a high combustibility, with hydrogen combustion producing greater temperatures and NOx fractions than methane combustion.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Franco, Alessandro y Michele Rocca. "Industrial Decarbonization through Blended Combustion of Natural Gas and Hydrogen". Hydrogen 5, n.º 3 (26 de agosto de 2024): 519–39. http://dx.doi.org/10.3390/hydrogen5030029.

Texto completo
Resumen
The transition to cleaner energy sources, particularly in hard-to-abate industrial sectors, often requires the gradual integration of new technologies. Hydrogen, crucial for decarbonization, is explored as a fuel in blended combustions. Blending or replacing fuels impacts combustion stability and heat transfer rates due to differing densities. An extensive literature review examines blended combustion, focusing on hydrogen/methane mixtures. While industrial burners claim to accommodate up to 20% hydrogen, theoretical support is lacking. A novel thermodynamic analysis methodology is introduced, evaluating methane/hydrogen combustion using the Wobbe index. The findings highlight practical limitations beyond 25% hydrogen volume, necessitating a shift to “totally hydrogen” combustion. Blended combustion can be proposed as a medium-term strategy, acknowledging hydrogen’s limited penetration. Higher percentages require burner and infrastructure redesign.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Wang, Kefu, Feng Li, Tao Zhou y Yiqun Ao. "Numerical Study of Combustion and Emission Characteristics for Hydrogen Mixed Fuel in the Methane-Fueled Gas Turbine Combustor". Aerospace 10, n.º 1 (10 de enero de 2023): 72. http://dx.doi.org/10.3390/aerospace10010072.

Texto completo
Resumen
The aeroderivative gas turbine is widely used as it demonstrates many advantages. Adding hydrogen to natural gas fuels can improve the performance of combustion. Following this, the effects of hydrogen enrichment on combustion characteristics were analyzed in an aeroderivative gas turbine combustor using CFD simulations. The numerical model was validated with experimental results. The conditions of the constant mass flow rate and the constant energy input were studied. The results indicate that adding hydrogen reduced the fuel residues significantly (fuel mass at the combustion chamber outlet was reduced up to 60.9%). In addition, the discharge of C2H2 and other pollutants was reduced. Increasing the volume fraction of hydrogen in the fuel also reduced CO emissions at the constant energy input while increasing CO emissions at the constant fuel mass flow rate. An excess in the volume fraction of added hydrogen changed the combustion mode in the combustion chamber, resulting in fuel-rich combustion (at constant mass flow rate) and diffusion combustion (at constant input power). Hydrogen addition increased the pattern factor and NOx emissions at the outlet of the combustion chamber.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Tamang, Sajan y Heesung Park. "Numerical investigation on the dry low NOx of hydrogen combustion". Journal of Physics: Conference Series 2968, n.º 1 (1 de febrero de 2025): 012009. https://doi.org/10.1088/1742-6596/2968/1/012009.

Texto completo
Resumen
Abstract Globally, energy is predominantly generated through the combustion of fossil fuels. However, the emissions from these fuels severely impact the ecological balance and environment. As a result, there is a growing emphasis on clean and renewable energy sources as alternatives. Hydrogen is a promising and clean energy source for gas turbines, transportation, and industrial applications. Nevertheless, due to significant differences in hydrogen’s thermophysical properties, it cannot be directly integrated into conventional combustion systems. Therefore, a specialized micromix combustion model must be developed to achieve stable combustion with low dry NOx emissions. In this study, a novel micromix combustor is developed based on the cross-flow mixing of air and injected hydrogen fuel. Under this concept, hydrogen combustion occurs through diffusion-type flames, with the reaction taking place in a very short time. This micromix combustor design ensures inherently stable combustion, resistant to flashback while maintaining low dry NOx emissions. The results indicate that the stability of the flame structure and thermal NOx emissions are controlled by the operating equivalence ratios. A stable hydrogen flame was particularly formed in the shear regions between the two vortices. Thermal NOx generation was strongly influenced by the flame front temperature, with measurements ranging from approximately 0.66 to 11.14 ppm (at 15% oxygen concentration). Consequently, thermal NOx emissions increased by up to 16 times under an equivalence ratio of 0.5.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Huang, Juan-Chen, Yu-Hsuan Lai, Jeng-Shan Guo y Jaw-Yen Yang. "Simulation of Two-Dimensional Scramjet Combustor Reacting Flow Field Using Reynolds Averaged Navier-Stokes WENO Solver". Communications in Computational Physics 18, n.º 4 (octubre de 2015): 1181–210. http://dx.doi.org/10.4208/cicp.190115.210715s.

Texto completo
Resumen
AbstractThe non-equilibrium chemical reacting combustion flows of a proposed long slender scramjet system were numerically studied by solving the turbulent Reynolds averaged Navier-Stokes (RANS) equations. The Spalart-Allmaras one equation turbulence model is used which produces better results for near wall and boundary layer flow field problems. The lower-upper symmetric Gauss-Seidel implicit scheme, which enables results converge efficiently under steady state condition, is combined with the weighted essentially non-oscillatory (WENO) scheme to yield an accurate simulation tool for scramjet combustion flow field analysis. Using the WENO schemes high-order accuracy and its non-oscillatory solution at flow discontinuities, better resolution of the hypersonic flow problems involving complex shock-shock/shock-boundary layer interactions inside the flow path, can be achieved. Two types of scramjet combustor with cavity-based and strut-based fuel injector were considered as the testing models. The flow characteristics with and without combustion reactions of the two types combustor model were studied with a transient hydrogen/oxygen combustion model. The detailed results of aerodynamic data are obtained and discussed, moreover, the combustion properties of varying the equivalent ratio of hydrogen, including the concentration of reacting species, hydrogen and oxygen, and the reacting products, water, are demonstrated to study the combustion process and performance of the combustor. The comparisons of flow field structures, pressure on wall and velocity profiles between the experimental data and the solutions of the present algorithms, showed qualitatively as well as the quantitatively in good agreement, and validated the adequacy of the present simulation tool for hypersonic scramjet reacting flow analysis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Tesis sobre el tema "Combustion hydrogène"

1

Guiberteau, Clément. "Οxycοmbustiοn de l'hydrοgène et de mélanges hydrοgène-méthane : étude des caractéristiques de flamme". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMIR04.

Texto completo
Resumen
La décarbonation des procédés industriels de combustion haute-température (hauts-fourneaux, fours verriers, four à clinker, . . .) est possible par l’utilisation de différents combustibles alternatifs. Parmi eux, l’hydrogène est envisagé. Par rapport au méthane, l’hydrogène est plus léger et moins énergétique à volume égal, sa combustion se caractérise par une augmentation de la vitesse de flamme laminaire et de la température de flamme (en combustion à l’air mais pas nécessairement en oxycombustion) et enfin par des fumées plus humides. La disparition du carbone atomique dans l’oxyflamme d’hydrogène implique aussi la disparition de certaines réactions chimiques et des suies. Un changement de combustible du méthane à l’hydrogène va donc induire des effets en termes de structure de flammes, de transfert thermique, d’émissions polluantes et de rayonnement spontané. L’objectif de la thèse est d’étudier ces effets par une approche expérimentale sur une oxyflamme turbulente non-prémélangée coaxiale en caractérisant les conséquences d’une augmentation de la proportion d’hydrogène dans le combustible. Les conditions expérimentales reproduisent à l’échelle de laboratoire celles d’un four industriel et permettent des mesures non-intrusives dans la flamme grâce aux accès optiques. L’étude caractérise le rayonnement spontané d’une oxyflamme d’hydrogène et explore notamment ses propriétés de candoluminescence orangée. La structure des zones de réactions et la longueur de la flamme sont étudiées par imagerie de chimiluminescence sur les radicaux OH∗ et CH∗. Les interactions entre l’écoulement et la flamme sont étudiées par vélocimétrie par images de particules et fluorescence induite par laser sur le radical OH synchrones. Enfin, les conséquences de l’enrichissement en hydrogène sur le transfert thermique et les émissions d’oxydes d’azote sont mesurées. Ces résultats expérimentaux sont soutenus par des calculs numériques de thermocinétique et de transfert radiatif monodimensionnels. La méthodologie utilisée dans ces travaux avec des résultats expérimentaux et numériques permet de comprendre les principales modifications des caractéristiques de flammes lors de la transition du méthane vers l’hydrogène en oxycombustion
The decarbonation of high-temperature industrial combustion processes (to produce iron, glass, cement . . .) is considered using alternative fuels. Among them, hydrogen is considered. Compared to methane, hydrogen has a lower density and lower energy density for an equivalent volume. Its combustion is characterized by an increase of laminar flame speed, water vapor content in flue gases and flame temperature, this latter one more significant in air combustion than in oxycombustion. A progressive replacement of methane by hydrogen induces significant changes in flame structure and combustion features that need to be explored. The objective of this work is to study these effects by an experimental approach on acoaxial diffusion oxyflame, characterizing the consequences of increase of the hydrogen proportion in the (CH₄ − H₂) fuel blend up to pure hydrogen. This is done in a lab-scale facility reproducing industrial furnace operating conditions and allowing in-flame measurements thanks to modular optical accesses.The study characterize spontaneaous emissions from hydrogen oxyflame and particularly its orange candoluminescents properties. Reaction zones structure and flame length are studied with OH∗ and CH∗chemiluminesences. Interactions between flame and flow are studied with synchronized planar laser induced fluorescence and particles images velocimetry. Finally, consequences of hydrogen proportion increase on thermal transfer and nitrogen oxydes are mesured. These experimental results are sustained by monodimensionnal numerical thermokinetical and radiative transfer calculations. The applied methodology used in this work having experimental results, together with numerical calculations allowed to understand the significant modifications of flame characteristics when transitioning gaseous fuel from methane to hydrogen with pure oxygen oxidizers
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Laribe-Mourey, Sylvie. "La chaudière chimique à hydrogène : conception et mise en œuvre". Compiègne, 1991. http://www.theses.fr/1991COMPD408.

Texto completo
Resumen
Un nouveau système énergétique producteur d'hydrogène est présenté ici, son fonctionnement est basé sur un fluide réactif régénérable. Ce fluide contient une poudre d'aluminium atomisé en suspension dans l'eau. Le fluide peut être stocké pendant de longues périodes sans changement de propriétés. La production d'hydrogène est obtenue par réaction chimique de l'aluminium avec une solution d'hydroxyde de sodium à température ambiante. Les produits de la réaction peuvent être régénérés en aluminium. Un pilote de production d'hydrogène alimenté par ce fluide à base d'aluminium a pu être développé. L'hydrogène peut être utilisé dans toutes les applications ou les combustibles fossiles sont utilisés aujourd'hui : l'application choisie ici est une chaudière à usage domestique ou industriel. Le chauffage d'eau ou de locaux est obtenu grâce à un réacteur catalytique dans lequel l'hydrogène se combine avec l'oxygène de l'air en présence d'un catalyseur, la réaction est exothermique et sans flamme. Cette chaudière à hydrogène est sans danger (pas de transport ni de stockage d'hydrogène) et non polluante (pas d'émissions de NOx et CO2).
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Farjon, Philippe. "Développement et mise en œuvre de méthodes d’optimisation sur des chambres de combustion aéronautiques fonctionnant à l’hydrogène". Electronic Thesis or Diss., Toulouse, ISAE, 2024. http://www.theses.fr/2024ESAE0052.

Texto completo
Resumen
La nécessité de diminuer l'impact climatique de l'aviation pousse les avionneurs à réfléchir à de nouvelles technologies pour "décarboner" l'aviation. En ce qui concerne la propulsion, l'une des alternatives envisagées est de remplacer le kérosène par de l'hydrogène. Ce changement de carburant permettrait de ne pas produire de CO2 mais implique des modifications profondes au niveau des injecteurs de la chambre de combustion. Historiquement, les différentes technologies d'injections ont été développées par essais-erreurs. Ce processus de conception a permis des avancées majeures mais manque de généricité et ne garantit pas l'obtention d'un injecteur optimal. Aujourd'hui, profitant de l'augmentation des moyens numériques, il est possible d'envisager l'utilisation massive de la CFD couplée avec des techniques d'optimisation pour concevoir et développer les nouvelles générations de chambre de combustion fonctionnant à l'hydrogène. Dans ce travail de thèse, une nouvelle méthode de conception est proposée afin de concevoir des injecteurs H2-air. Dans un premier temps, il est nécessaire de commencer par trois étapes préliminaires. À partir d'une version de base de l'injecteur MICADO qu'on cherche à améliorer, différentes méthodologies CFD sont comparées à des simulations de référence pour trouver le meilleur compromis précision-temps de restitution. Cette comparaison nous mène à retenir une approche haute fidélité utilisant des simulations LES et une approche basse fidélité basée sur des simulations RANS. En parallèle, une chaîne de calcul automatique est conçue pour faciliter la mise en pratique de la méthode de conception. Ensuite, la dernière étape préliminaire consiste à vérifier l'applicabilité d'une stratégie multi-fidélité, stratégie ayant le potentiel de réduire le coût total de l'optimisation. À la suite de ces étapes préliminaires, plusieurs études d'optimisation à deux et quatre paramètres sont menées afin de déterminer l'algorithme d'optimisation le plus performant à iso-budget entre différentes méthodes d'optimisation bayésienne. Cette comparaison entre les différentes études montre les capacités et limites des algorithmes sélectionnés à identifier des injecteurs prometteurs
The need to decrease the climate impact of aviation motivates aircraft manufacturers to find new technologies to decarbonize aviation. One of the possible solution concerning aircraft propulsion is to replace the use of kerosene by hydrogen. The combustion of hydrogen does not emit CO2 but it involves in-depth modifications of the injectors of the combustion chamber. Historically, injector design are based on a trial and error method. This approach was successful for legacy kerosene injectors but is fundamentally limited because it is both costly and tedious to explore all the given parameter space by hand. Nowadays, with the advances in computing science, CFD simulations can be considered massively in the combustor design process combined with the use of optimization techniques. In this thesis, we propose a new design method for the design of H2-air injectors. Firstly, it is necessary to begin with three preliminary steps. Starting from a baseline version of the MICADO injector that we want to improve, several CFD methodologies are compared to reference simulations in order to find the best trade-off accuracy/restitution time. This comparison leads us to retain a high fidelity approach based on LES simulations and a low fidelity approach based on RANS simulations. An automatic CFD workflow is developped simultaneously to ease the optimization studies. Then, the last preliminary step is to check the applicability of a multi-fidelity strategy, knowing that such a strategy can reduce the total cost of the optimization study. After these preliminary steps, several optimization studies of two and four dimensions are performed in order to determine the most efficient algorithm at a fixed budget between different Bayesian optimization methods. This comparison between the different studies shows the capabilities and the limits of the selected algorithms to identify promising injectors
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Ayoub, Mechline. "Etude de l’extension du régime de combustion sans flamme aux mélanges Méthane/Hydrogène et aux environnements à basse température". Thesis, Rouen, INSA, 2013. http://www.theses.fr/2013ISAM0010/document.

Texto completo
Resumen
La combustion sans flamme est un régime de combustion massivement dilué associant forte efficacité énergétique et très faibles émissions polluantes dans les fours industriels. La composition du combustible et la température des parois de la chambre de combustion sont deux paramètres très influents de ce régime. Dans de précédents travaux menés au CORIA, l’étude du régime de combustion sans flamme des mélanges méthane-hydrogène à 18% d’excès d’air a mené à des résultats originaux et prometteurs. D’autre part, la haute température des parois s’est avérée un élément primordial pour la stabilisation de la combustion sans flamme. Dans le cadre du projet CANOE en collaboration avec GDF SUEZ et l’ADEME, cette thèse a pour objectif, d’une part de compléter l’étude de l’extension de ce régime à des mélanges méthane-hydrogène pour des conditions opératoires plus proches des conditions classiques de fonctionnement de brûleurs (10% d’excès d’air), et d’autre part, d'étudier les problèmes de stabilité de la combustion sans flamme en environnement à basse température pour envisager son application à des configurations de type chaudière industrielle.Sur le four pilote à hautes températures de parois du CORIA, l’ajout de l’hydrogène dans le combustible a permis de garder le régime de combustion sans flamme pour toutes les proportions méthane - hydrogène avec très peu d’émissions polluantes. Une augmentation de l’excès d’air est toutefois nécessaire pour certaines conditions opératoires. Les expériences réalisées avec abaissement progressif de la température des parois ont permis d’étudier l’influence de celle-ci sur le développement de la combustion sans flamme, et d’atteindre les limites de stabilité de ce régime. Des résultats similaires sont obtenus sur une installation semi-industrielle de GDF SUEZ. L’ajout d’hydrogène rend la combustion sans flamme moins sensible à l’abaissement de la température de parois. Une étude analytique de jets turbulents confinés a été développée pour représenter l'interaction entre les jets de réactifs et leur environnement dans la chambre de combustion permettant d'atteindre le régime de combustion sans flamme par entraînement, dilution et préchauffage. Ce modèle nous a permis d’établir une étude systématique permettant de mettre en valeur l’effet de chaque paramètre sur le développement des jets dans l’enceinte, et ainsi servir de moyen de pré-dimensionnement de brûleur à combustion sans flamme. L'apport de chaleur nécessaire à la stabilisation à basse température a ainsi été estimé. Sur cette base, un brûleur adapté aux configurations à parois froides a été dimensionné et fabriqué. L’applicabilité de la combustion sans flamme avec ce brûleur dans une chambre de combustion à parois froides, spécialement conçue et fabriquée dans cet objectif au cours de cette thèse, a été étudiée. Un régime de combustion diluée à basses températures a pu être stabilisé, mais le fort taux d'imbrûlés produits en sortie reste à réduire
Mild flameless combustion is a massively diluted combustion regime associating high energy efficiency and very low pollutant emissions from industrial furnaces. The fuel composition and walls temperature are two very influential parameters of this combustion regime. In previous works realized at CORIA, flameless combustion of methane - hydrogen mixtures at 18% of excess air has shown very promising results. In another hand, high walls temperature is an essential element for flameless combustion stabilization. Within the framework of the project CANOE in collaboration with GDF SUEZ and ADEME, the objective of this PhD thesis is to complete the study of flameless combustion for methane-hydrogen mixtures in operating conditions similar to classical operating conditions of burners (10% of excess air), and in another hand, to study the stability limits of this combustion regime in low temperature environment like in industrial boiler.Experiments realized on the CORIA high temperature pilot facility, have proved that hydrogen addition in the fuel keep flameless combustion regime stable for all methane - hydrogen proportions, with very ultra-low pollutant emissions. An increase of excess air is however necessary for some operating conditions.Experiments realized with wall temperature progressive decrease allowed to study the influence of this parameter on flameless combustion, and to reach its stability limits. Similar results are obtained on the semi-industrial facility of GDF SUEZ. With hydrogen addition, flameless combustion is less sensitive to wall temperature decrease. An analytical representation of confined turbulent jets has been then developed to represent interaction between the reactant jets and their environment in the combustion chamber allowing reaching fameless combustion regime by entrainment, dilution and preheating. The effect of each parameter on the development of the jets can be then studied, which can be used as convenient tool of flameless combustion burners design. The heat quantity necessary for the low wall temperature stabilization has been quantified. On this base, a burner adapted to the configurations with cold walls has been designed. The applicability of the flameless combustion with this burner has been studied in a combustion chamber with low wall temperature specially designed for this purpose during this thesis. A mild diluted combustion regime has been achieved, but the high levels of unburnt gases have to be reduced
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Malet, Fabrice. "Etude expérimentale et numérique de la propagation de flammes prémélangées turbulentes dans une atmosphère pauvre en hydrogène et humide". Orléans, 2005. http://www.theses.fr/2005ORLE2050.

Texto completo
Resumen
L'objet de la thèse est l'amélioration de l'évaluation du risque hydrogène dans les réacteurs nucléaires, dans le cas où les mélanges pauvres donnent lieu à des déflagrations accélérées. Dans ce but les propriétés explosives des mélanges hydrogène/air/diluant ont été étudiées avec deux dispositifs : (1) une bombe sphérique afin de déterminer les propriétés des flammes laminaires (vitesse fondamentale à étirement nul, énergie globale d'activation, nombre de Zeldovich, longueur de Markstein. . . ). (2) Une ENceinte d'ACCElération de Flamme (ENACCEF) hautement instrumentée et encombrée d'obstacles afin de d'observer l'accélération de flammes. Le premier dispositif a permis la validation d'un modèle de cinétique chimique et la formulation de la vitesse normale de combustion paramétrée des conditions initiales (composition, température, pression). L'étude des accélérations de flammes (jusqu'à 600m/s) en présence d'obstacles a mis en évidence les influences sur les profils de vitesse de flamme, du taux de blocage, de la forme des obstacles, de la composition du mélange réactif ainsi que de la présence de gradients de concentration. Enfin, une étude de simulation numérique portant sur des flammes laminaires et accélérées a permis d'améliorer le code de calcul TONUS en introduisant un suivi fin de la position de flamme. Les expériences en bombe sphérique ont été reproduites grâce à la mise au point d'une corrélation entre le taux numérique de combustion et la richesse. La modélisation a conduit à une meilleure compréhension des phénomènes d'accélération de flamme. La prise en compte, dans le code, des pertes thermiques a amélioré la simulation des expériences d'accélération de flamme.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

El, Ahmar Elise. "Combustion assistée par hydrogène et radicaux générés par plasmas non thermiques". Orléans, 2007. http://www.theses.fr/2007ORLE2030.

Texto completo
Resumen
La lutte contre la pollution produite par les véhicules automobiles a induit de nombreuses recherches orientées vers l’amélioration des techniques de combustion. Une nouvelle technologie basée sur le traitement plasma des gaz à l'admission semble pouvoir améliorer le fonctionnement des moteurs thermiques et diminuer la pollution. La technique consiste à enrichir en hydrogène (H2) le mélange air-méthane (CH4) avant son admission dans le moteur. L’objectif de ce travail a été la conception et la réalisation de deux réacteurs plasmas à décharges glissantes fonctionnant à la pression atmosphérique destinés à la production de gaz de synthèse (CO+H2). Une étude paramétrique (débit, puissance électrique et concentration initiale de CH4) a été menée sur les deux réacteurs afin de montrer leurs efficacités pour la conversion de CH4 et la production de H2. Une concentration maximale de H2 de 20% a été obtenue à la sortie du réacteur plasma. Les résultats expérimentaux ont été comparés à un modèle thermodynamique qui a permis de montrer que seulement 35 à 45% du gaz injecté est effectivement traité par la décharge. Des études cinétiques et physico-chimiques (couplage d’un modèle d’écoulement à un modèle cinétique) ont été menées pour une meilleure compréhension des phénomènes mis en jeu dans le plasma. Les essais sur le banc moteur ont montré une réduction des émissions des oxydes d’azote et des hydrocarbures imbrulés et une augmentation des émissions du monoxyde de carbone.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Girault, Ivan. "Développements formels et numériques vers la simulation numérique directe avec particules résolues de la combustion d'hydrogène en lit fluidisé". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP083.

Texto completo
Resumen
Ce travail de thèse a été réalisé dans le cadre du projet ANR MIMOSAH qui vise à caractériser la combustion d'hydrogène en lit fluidisé, en présence de particules partiellement inertes, avec prise en compte de réactions de surface. L'objectif est de modéliser la combustion en milieu particulaire de la micro à la macro-échelle, avec une double approche numérique et expérimentale. Cette thèse concerne l’approche numérique à l’échelle microscopique, et plus particulièrement le développement d'une stratégie numérique pour la simulation numérique directe de la combustion d’hydrogène en présence de particules complètement résolues. Le point de départ de ce travail est le code RESPECT, basé sur la résolution d'une formulation monofluide sur maillage Cartésien, doublée d'une méthode de pénalisation visqueuse pour traiter l'interaction fluide solide. Initialement, le code avait été validé uniquement dans un contexte incompressible et anisotherme, sans inclure de modèles pour les phénomènes de combustion gazeuse et de chimie de surface. Ce travail présente donc une série de développements formels puis numériques, en vue d'intégrer la description de ces phénomènes dans le code RESPECT
This thesis work was carried out as part of the ANR MIMOSAH project, which aims to characterize the combustion of hydrogen in a fluidized bed, in the presence of partially inert particles, taking into account surface reactions. The objective is to model combustion in a particulate environment from micro to macro scale, using a dual numerical and experimental approach. This thesis focuses on the numerical approach at the microscopic scale, particularly the development of a numerical strategy for the direct numerical simulation of hydrogen combustion in the presence of fully resolved particles. The starting point of this work is the RESPECT code, based on the resolution of a single-fluid formulation on Cartesian grids, coupled with a viscous penalization method to handle fluid-solid interaction. Initially, the code had only been validated in an incompressible and anisothermal context, without including models for gaseous combustion phenomena and surface chemistry. This work presents a series of formal and numerical developments aimed at integrating the description of these phenomena into the RESPECT code
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Cruz, Garcia Marta de la. "Contrôle actif de la combustion appliqué à la cogénération". Châtenay-Malabry, Ecole centrale de Paris, 2005. http://www.theses.fr/2005ECAP0975.

Texto completo
Resumen
L'utilisation combinée de l'hydrogène avec des hydrocarbures s'avère aujourd'hui comme une solution possible pour la réduction des émissions polluantes ainsi que pour le contrôle des instabilités de combustion. Durant les travaux de cette thèse, un brûleur multi-combustible de géométrie cylindrique a été conçu, fabriqué et optimisé : une flamme de prémélange propane-air d'injection annulaire réagit sous l'action d'un jet central d'hydrogène. Ce jet permet l'injection multidirectionnelle de l'hydrogène : axiale, tournante ou la combinaison des deux. La flamme de prémélange propane-air présente deux types d'instabilités en fonction du débit d'air : à bas débits d'air nous avons observé un couplage thermo-acoustique identique avec le mode quart d'onde de la chambre de combustion ; à hauts débits d'air, l'instabilité paraît être une amplification du bruit du jet. L'effet de l'hydrogène varie alors en fonction du type d'instabilité de la flamme de prémélange. L'injection centrale d'hydrogène a un effet qui dépend du type d'instabilité du brûleur. L'instabilité des bas débits d'air est contrôlée par le swirl central d'hydrogène. En revanche, l'instabilité des hauts débits d'air est amplifiée avec l'injection d'hydrogène et atteint même des limites dangereuses si cette injection est tournante. Le contrôle est fait par la stabilisation de la flamme de prémélange sur le jet tournant d'hydrogène
Hydrogen utilization in hydrocarbon flames can be a possible solution to reduce pollutant emissions and to control combustion instabilities. The present research is concerned with some of the issues raised by hydrogen injection and with the possibilities of the technique. A multi-fuel cylindrical burner has been designed and submitted to systematic investigations. The configuration is that of a premixed propane-air annular flame interacting with a central hydrogen jet. The jet permits a multidirectional injection of hydrogen. The hydrogen stream may be introduced in the axial direction, it may be given a finite level of swirl or it may be injected axially and swirled simultaneously. The premixed propane-air flame features two types of combustion instabilities depending on the air flow rate : for low air flow rates one observes a thermo-acoustic instability identified with the quarter wave mode of the combustion chamber. At high air flow rates the instability features a broadband spectral content and combustion appears to amplify the natural level of fluctuations occurring in the reactant jet. The effect of central hydrogen injection depends on the type of combustion instability of the burner. The quarter wave resonance of the combustion chamber instability appearing for low air flow rates can be controlled by a central hydrogen jet with swirl. On the other hand, at high air flow rates, the instability is enhanced by hydrogen injection and can even reach large amplitudes if the jet is swirled. As a result, for low air flow rates the swirl hydrogen injection is strong enough to lift the propane-air flame stabilized on the central injector
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Hok, Jean-Jacques. "Stratégie de modélisation pour la simulation aux grandes échelles d'explosions de mélanges hydrogène-air pauvres". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP065.

Texto completo
Resumen
La crise climatique à laquelle le monde est confronté aujourd'hui exige des actions immédiates pour réduire les émissions de carbone. En particulier, une transition énergétique rapide vers des sources plus propres est nécessaire. Parmi de nombreux candidats, l'hydrogène se distingue en tant que vecteur d'énergie décarboné. Cependant, son stockage et son transport en grandes quantités posent des problèmes de sécurité. Dans le cas d'une fuite accidentelle d'hydrogène, un mélange hautement inflammable peut se former. En cas d'allumage, différents scénarios et régimes de combustion sont possibles, en fonction de différents facteurs tels que la géométrie (dimensions, confinement, présence d'obstacles), la composition du mélange, la température, la pression ou le niveau de turbulence. Ces régimes vont de la déflagration lente à la transition vers la détonation dans le pire des cas. Pour prédire les dommages consécutifs à une explosion, la Mécanique des Fluides Numérique présente l'avantage d'être plus sûre que les expériences et de donner accès à des quantités difficiles ou impossibles à mesurer empiriquement. Cette thèse traite de la prédiction des explosions de mélanges d'hydrogène-air pauvres en utilisant l'approche de Simulation aux Grandes Échelles (SGE ou LES en anglais). Les mélanges pauvres d'H2-air sont caractérisés par leur nombre de Lewis subunitaire, qui traduit un déséquilibre entre les processus de diffusion moléculaire et thermique avec des conséquences majeures : (1) les flammes H2-air pauvres sont très sensibles à l'étirement ; (2) elles sont enclines à développer des cellules sur le front de flamme dues à l'instabilité thermo-diffusive. Les deux constituent des mécanismes d'accélération qui impactent la surpression générée lors de l'explosion. Dans ce travail, nous montrons que l'utilisation du modèle de Flamme Épaissie (TF en anglais) pour simuler les flammes à nombre de Lewis subunitaire : (1) induit une amplification de l'effet d'étirement sur la flamme ; (2) combinée à la faible résolution de maillage en LES, filtre les instabilités de front de flamme. Le couplage de ces mécanismes indésirables peut générer une propagation erronée de la flamme qui remet en question la capacité de prédiction de la LES pour les explosions de mélanges H2-air pauvres. Dans le cadre de cette thèse, une stratégie de modélisation est proposée afin de prédire de manière fiable et précise les explosions d'hydrogène-air pauvre. Un nouveau paradigme est envisagé pour corriger séparément l'amplification des effets d'étirement et modéliser les phénomènes de sous-maille dus à l'instabilité thermo-diffusive. Ces deux corrections sont d'abord développées sur des configurations canoniques, puis étendues et validées sur des configurations d'explosion plus réalistes
The climate crisis the world faces today calls for immediate actions to curb down carbon emissions. In particular, a rapid energy transition towards cleaner sources is necessary. Among many candidates, hydrogen stands out as a carbon-free energy vector. However, its storage and transport in big quantities raise safety concerns. Following a leakage, mixed with the surrounding air, this hydrogen can form a highly flammable mixture. In case of accidental ignition of this mixture, different combustion scenarios and regimes are possible, depending on factors such as geometry (dimensions, confinement, presence of obstacles), mixture composition, temperature, pressure or turbulence level. These regimes range from slow deflagration to the transition to detonation in the worst case. To predict the damage induced by an explosion, Computational Fluid Dynamics has the advantage of being safer than experiments and gives access to quantities hard or impossible to measure empirically. This thesis deals with the prediction of lean hydrogen-air explosions using Large-Eddy Simulation (LES). Lean H2-air mixtures are known for their distinctive sub-unity Lewis number, which characterises an unbalance between molecular and heat diffusion processes with major consequences: (1) lean H2-air flames are strongly sensitive to stretch; (2) they are prone to develop flame front cells due to the thermo-diffusive instability. Both constitute accelerating mechanisms which impact the overpressure generated during the explosion. In this work, we show that the Thickened Flame (TF) approach to simulate sub-unity Lewis number flames: (1) induces an amplification of stretch on the flame; (2) combined with the low grid resolution in LES, filters out flame front instabilities. The coupling of these undesired mechanisms can generate an erroneous flame propagation which questions the predictability of LES for lean H2-air explosions. In this thesis, a modelling strategy is proposed to reliably and accurately predict lean hydrogen-air explosions. A new paradigm is considered to separately correct the amplification of stretch effects and model subgrid phenomena due to the thermo-diffusive instability. These two corrections are first developed on canonical configurations and then extended and validated on more realistic explosion configurations
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Robinson, Alexander. "Development and testing of hydrogen fuelled combustion chambers for the possible use in an ultra micro gas turbine". Doctoral thesis, Universite Libre de Bruxelles, 2012. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209706.

Texto completo
Resumen
The growing need of mobile power sources with high energy density and the robustness to operate also in the harshest environmental surroundings lead to the idea of downscaling gas turbines to ì-scale. Classified as PowerMEMS devices, a couple of design attempts have emerged in the last decade. One of these attempts was the Belgian “PowerMEMS” design started back in 2003 and aiming towards a ì-scale gas turbine rated at 1 kW of electrical power output.

This PhD thesis presents the scientific evaluation and development history of different combustion chamber designs based upon the “PowerMEMS” design parameters. With hydrogen as chosen fuel, the non-premixed diffusive “micromix” concept was selected as combustion principle. Originally designed for full scale gas turbine applications in two different variants, consequently the microcombustor development had to start with the downscaling of these two principles towards ì-scale. Both principles have the advantage to be inherently safe against flashback, due to the non-premixed concept, which is an important issue even in this small scale application when burning hydrogen. By means of water analogy and CFD simulations the hydrogen injection system and the chamber geometry could be validated and optimized. Besides the specific design topics that emerged during the downscaling process of the chosen combustion concepts, the general difficulties of microcombustor design like e.g. high power density, low Reynolds numbers, short residence time, and manufacturing restrictions had to be tackled as well.

As full scale experimental test campaigns are still mandatory in the field of combustion research, extensive experimental testing of the different prototypes was performed. All test campaigns were conducted with a newly designed test rig in a combustion lab modified for microcombustion investigations, allowing testing of miniaturized combustors according to full engine requirements with regard to mass flow, inlet temperature, and chamber pressure. The main results regarding efficiency, equivalence ratio, and combustion temperature were obtained by evaluating the measured exhaust gas composition. Together with the performed ignition and extinction trials, the evaluation and analysis of the obtained test results leads to a full characterization of each tested prototype and delivered vital information about the possible operating regime in a later UMGT application. In addition to the stability and efficiency characteristics, another critical parameter in combustor research, the NOx emissions, was investigated and analyzed for the different combustor prototypes.

As an advancement of the initial downscaled micromix prototypes, the following microcombustor prototype was not only a combustion demonstrator any more, but already aimed for easy module integration into the real UMGT. With a further optimized combustion efficiency, it also featured an innovative recuperative cooling of the chamber walls and thus allowing an cost effective all stainless steel design.

Finally, a statement about the pros and cons of the different micromix combustion concepts and their correspondent combustor designs towards a possible ì-scale application could be given.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished

Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Libros sobre el tema "Combustion hydrogène"

1

1933-, Wendt Hartmut, ed. Electrochemical hydrogen technologies: Electrochemical production and combustion of hydrogen. Amsterdam: Elsevier, 1990.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Eichert, Helmut. Zur Dynamik des Verbrennungsablaufs von Wasserstoff-Luft- und Wasserstoff-Methan-Luft-Gemischen. Koln: DLR, 1989.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Green, James M. A premixed hydrogen/oxygen catalytic igniter. [Washington, DC]: National Aeronautics and Space Administration, 1989.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Gelfand, Boris E., Mikhail V. Silnikov, Sergey P. Medvedev y Sergey V. Khomik. Thermo-Gas Dynamics of Hydrogen Combustion and Explosion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25352-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

V, Silnikov Mikhail, Medvedev Sergey P, Khomik Sergey V y SpringerLink (Online service), eds. Thermo-Gas Dynamics of Hydrogen Combustion and Explosion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Billings, Roger E. The hydrogen world view. Independence, Mo: American Academy of Science, 1991.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Gerke, Udo. Numerical analysis of mixture formation and combustion in a hydrogen direct-injection internal combustion engine. Göttingen: Cuvillier, 2007.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Stamps, D. W. Hydrogen-air-diluent detonation study for nuclear reactor safety analyses. Washington, D.C: Division of Systems Research, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1991.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Ahuja, J. K. Numerical simulation of shock-induced combustion in a superdetonative hydrogen-air system. Washington, D. C: American Institute of Aeronautics and Astronautics, 1993.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Nemitallah, Medhat A., Mohamed A. Habib y Ahmed Abdelhafez. Hydrogen for Clean Energy Production: Combustion Fundamentals and Applications. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-7925-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Capítulos de libros sobre el tema "Combustion hydrogène"

1

Nuttall, William J., Joseph B. Powell, Karim L. Anaya-Stucchi, Adetokunboh T. Bakenne y Andy Wilson. "Hydrogen in the Near Term". En Insights into the New Hydrogen Economy, 43–83. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-71833-5_3.

Texto completo
Resumen
AbstractThis chapter focuses on the major near-term opportunities whereby hydrogen can contribute to modern energy policy goals. Key applications of hydrogen are described in areas such as industrial applications (both established and emerging), domestic heating, transport and mobility. Concerning the latter: ground, air and maritime opportunities are discussed. One aspect of transportation usage is highlighted – the use of hydrogen in fuel cell electric vehicles or in hydrogen combusting internal combustion engines. The industrial use of hydrogen is still dominated by the needs of the traditional petroleum industry together with demands from ammonia producers for agricultural fertilizer manufacture. Emerging industrial opportunities include low-carbon primary steel making.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Ji, Changwei, Jianpu Shen y Shuofeng Wang. "Numerical Investigation of Combustion Characteristics of the Port Fuel Injection Hydrogen-Oxygen Internal Combustion Engine Under the Low-Temperature Intake Condition". En Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 25–34. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_3.

Texto completo
Resumen
AbstractThe flammability limits of the hydrogen-oxygen mixture are extremely wide, and the ignition energy is low. Due to its excellent combustion properties, the hydrogen-oxygen mixture can be used as fuel in internal combustion engines (ICEs). However, the combustion of hydrogen-oxygen mixture is too intense, which results in limited research on its application in ICEs and is limited to low-temperature conditions in aerospace. This research aims to numerically discuss the coupling effects of equivalence ratio and ignition timing on the port fuel injection hydrogen-oxygen ICE under the low-temperature intake condition. The three-dimensional geometric model of a single-cylinder ICE was established using the CONVERGE software and validated against the mean in-cylinder pressure and reaction mechanism. The results indicate that adjusting equivalence ratio and ignition timing operating parameters is beneficial for controlling the temperature and pressure in the cylinder within a reasonable range during the total combustion process. In general, under the low-temperature intake condition, adopting a high equivalence ratio and optimal ignition timing strategy improve the combustion process and power performance of the port fuel injection hydrogen-oxygen ICE.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Takasaki, Koji y Hiroshi Tajima. "Hydrogen Combustion Systems". En Green Energy and Technology, 335–55. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56042-5_25.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Klell, Manfred, Helmut Eichlseder y Alexander Trattner. "Internal Combustion Engines". En Hydrogen in Automotive Engineering, 193–249. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-35061-1_7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Tang, Xinhao, Suhua Shen, Yanjie Hu y Chunxiao Wang. "Airworthiness Design and Verification Analysis of Unconventional Thermodynamic Cycle Hydrogen Aero-Turbine Engines". En Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 15–24. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_2.

Texto completo
Resumen
AbstractHydrogen fuel is an extremely ideal aviation power with its characteristics of high power density and zero carbon emission. Hydrogen fuel is stored in a low-temperature liquid state in aircraft, and the liquid hydrogen needs to be warmed up to hydrogen gas by heat transfer before entering the combustion chamber to participate in combustion. Since liquid hydrogen has the traits of low temperature and high specific heat capacity, large amount of heat is required to complete the heat transfer process. And the engine thermal cycle process can be fully utilized for heat transfer of liquid hydrogen. This paper presents the design and verification of unconventional thermal cycle system based on an unconventional thermal cycle configuration for hydrogen aero-turbine engines under the existing airworthiness regulations. This paper can provide support for the airworthiness design and verification of hydrogen aero-turbine engines with unconventional thermal cycle configurations, and provide a reference for the introduction of the airworthiness validation special conditions policy applicable to hydrogen aero-turbine engines.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Ju, Yiguang, Xingqian Mao, Joseph K. Lefkowitz y Hongtao Zhong. "Plasma-Assisted Hydrogen Combustion". En Hydrogen for Future Thermal Engines, 429–58. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28412-0_11.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Qin, Guojin, Zhenwei Zhang, Xiangqin Hou, Yunfei Huang, Ruiling Li, Ailin Xia y Yihuan Wang. "Combustion Characteristics of Hydrogen". En Hydrogen Production from Nonrenewable Resources, 18–30. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003382263-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Mathur, H. B. "Hydrogen Fuelled Internal Combustion Engines". En Progress in Hydrogen Energy, 159–77. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3809-0_11.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Mishra, Debi Prasad y Swarup Y. Jejurkar. "Burner Technology for Hydrogen Fuel". En Advances in Combustion Technology, 47–62. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003049005-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Turányi, Tamás. "Reaction Kinetics of Hydrogen Combustion". En Hydrogen for Future Thermal Engines, 65–92. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28412-0_2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Combustion hydrogène"

1

Fan, Gaofeng, Yanni Fu, Gaofeng Wang, Jifa Zhang, Yao Zheng y Yifan Xia. "Numerical Investigation of the Combustion and Thermoacoustic Characteristics in an Annular Combustor with Hydrogen". En 2024 The 9th International Conference on Power and Renewable Energy (ICPRE), 1533–39. IEEE, 2024. https://doi.org/10.1109/icpre62586.2024.10768604.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Poyyapakkam, Madhavan, John Wood, Steven Mayers, Andrea Ciani, Felix Guethe y Khawar Syed. "Hydrogen Combustion Within a Gas Turbine Reheat Combustor". En ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-69165.

Texto completo
Resumen
This paper describes a novel lean premixed reheat burner technology suitable for Hydrogen-rich fuels. The inlet temperature for such a combustor is very high and reaction of the fuel/oxidant mixture is initiated through auto-ignition, the delay time for which reduces significantly for Hydrogen-rich fuels in comparison to natural gases. Therefore the residence time available for premixing within the burner is reduced. The new reheat burner concept has been optimized to allow rapid fuel/oxidant mixing, to have a high flashback margin and to limit the pressure drop penalty. The performance of the burner is described, initially in terms of its fluid dynamic properties and then its combustion characteristics. The latter are based upon full-scale high-pressure tests, where results are shown for two variants of the concept, one with a pressure drop comparable to today’s natural gas burners, and the other with a two-fold increase in pressure drop. Both burners indicated that Low NOx emissions, comparable to today’s natural gas burners, were feasible at reheat engine conditions (ca. 20 Bars and ca. 1000C inlet temperature). The higher pressure drop variant allowed a wider operating window. However the achievement of the lower pressure drop burner shows that the targeted Hydrogen-rich fuel (70/30 H2/N2 by volume) can be used within a reheat combustor without any penalty on gas turbine performance.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Mobasheri, Raouf, Zhijun Peng, Abdel Aitouche y Xiang Li. "CFD Investigation of Hydrogen Combustion in Swirler Combustor". En The 3rd International Conference on Advances in Energy Research and Applications (ICAERA'22). Avestia Publishing, 2022. http://dx.doi.org/10.11159/icaera22.106.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Singh, Kapil, Bala Varatharajan, Ertan Yilmaz, Fei Han y Kwanwoo Kim. "Effect of Hydrogen Combustion on the Combustion Dynamics of a Natural Gas Combustor". En ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-51343.

Texto completo
Resumen
In a carbon-constrained world, Integrated Gasification Combined Cycle (IGCC) systems achieve excellent environmental performance and offer a more economical pre-combustion CO2 removal compared to other coal-based systems. The residual gas after carbon removal is comprised primarily of hydrogen and nitrogen mixtures. Achieving stable combustion of hydrogen-rich fuel mixtures while producing ultra-low NOx emissions (much lower than current diffusion combustion technology) is challenging. The goal of this study was to characterize the stability of lean premixed combustion systems operating with hydrogen and establish boundaries for stable operation. Modeling and experimental efforts were directed towards demonstration of the feasibility of such systems while meeting the emissions requirements. The higher flame speed and heat-release rate achievable with hydrogen-containing fuels can change the dynamics and stability characteristics of the combustors compared to natural gas. A combustion rig was modeled using an in-house combustion dynamics analysis code. In the model, flame heat-release fluctuations were captured by considering the effect of upstream fuel-air ratio fluctuations and flow speed fluctuations. CFD simulations were used to obtain combustion parameters. The results showed the effect of using hydrogen instead of methane and the simulations correctly predicted the combustor modes and their instability for hydrogen as well as methane combustion.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Pappa, Alessio, Laurent Bricteux, Pierre Bénard y Ward De Paepe. "Can Water Dilution Avoid Flashback on a Hydrogen Enriched Micro Gas Turbine Combustion? A Large Eddy Simulations Study". En ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-14777.

Texto completo
Resumen
Abstract Considering the growing interest in Power-to-Fuel, i.e. production of H2 using electrolysis to store excess renewable electricity, combustion-based technologies still have a role to play in the future of power generation. Especially in a decentralized production with small-scale cogeneration, micro Gas Turbines (mGTs) offer great advantages related to their high adaptability and flexibility, in terms of operation and fuel. Hydrogen (or hydrogen enriched methane) combustion is well-known to lead to flame and combustion instabilities. The high temperatures and reaction rates reached in the combustor can potentially lead to flashback. In the past, combustion air humidification (i.e. water addition) has proven effective to reduce temperatures and reaction rates, leading to significant NOx emission reductions. Therefore, combustion air humidification can open a path to stabilize hydrogen combustion in a classical mGT combustor. However accurate data assessing the impact of humidification on the combustion is still missing for real mGT combustor geometries and operating conditions. In this framework, this paper presents a comparison between pure methane and hydrogen enriched methane/air combustions, with and without combustion air humidification, in a typical mGT combustion chamber (Turbec T100) using Large Eddy Simulations (LES) analysis. In a first step, the necessary minimal water dilution, to reach stable and low emissions combustion with hydrogen, was assessed using a 1D approach. The one-dimensional unstretched laminar flame is computed for both pure methane (reference case) and hydrogen enriched methane/air combustion cases. The results of this comparison show that, for the hydrogen enriched combustion, the same level of flame speed as in the reference case can be reached by adding 10% (in mass fraction) of water. In a second step, the feasibility and flexibility of humidified hydrogen enriched methane/air combustion in an industrial mGT combustor have been demonstrated by performing high fidelity LES on a 3D geometry. Results show that steam dilution helped to lower the reactivity of hydrogen, and thus prevents flashback, enabling the use of hydrogen blends in the mGT at similar CO levels, compared to the reference case. These results will help to design future combustor towards more stability.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Ghenai, Chaouki y Khaled Zbeeb. "Combustion of Hydrogen Enriched Hydrocarbon Fuels in Vortex Trapped Combustor". En ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39641.

Texto completo
Resumen
Trapped vortex combustor represents an efficient and compact combustor for flame stability. Combustion stability is achieved through the use of cavities in which recirculation zones of hot products generated by the direct injection of fuel and air are created and acting as a continuous source of ignition for the incoming main fuel-air stream. Computational Fluid Dynamics analysis was performed in this study to test the combustion performance and emissions from the vortex trapped combustor when natural gas fuel (methane) is replaced with renewable and alternative fuels such as hydrogen and synthesis gas. The flame temperature, the flow field, and species concentrations inside the Vortex Trapped Combustor were obtained. The results show that hydrogen enriched hydrocarbon fuels combustion will result in more energy, higher temperature (14% increase when methane is replaced with hydrogen fuels) and NOX emissions, and lower CO2 emissions (50% decrease when methane is replaced with methane/hydrogen mixture with 75% hydrogen fraction). The NOX emission increases when the fraction of hydrogen increases for methane/hydrogen fuel mixture. The results also show that the flame for methane combustion fuel is located in the primary vortex region but it is shifted to the secondary vortex region for hydrogen combustion.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Rouzbar, Ramin y Sinan Eyi. "Simulations of Ethylene and Hydrogen Combustions in Scramjet Combustor". En 51st AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-3750.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Dodo, Satoschi, Tomohiro Asai, Hiromi Koizumi, Hirokazu Takahashi, Shouhei Yoshida y Hiroshi Inoue. "Combustion Characteristics of a Multiple-Injection Combustor for Dry Low-NOx Combustion of Hydrogen-Rich Fuels Under Medium Pressure". En ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45459.

Texto completo
Resumen
An oxygen-blown integrated coal gasification combined cycle (IGCC) plant with pre-combustion carbon dioxide capture and storage (CCS) is one of the most promising means of zero-emission generation of power from coal. In an IGCC plant with CCS, hydrogen-rich syngas with a wide variation of hydrogen contents is supplied to a gas turbine. Such hydrogen-rich syngas poses a great challenge to a low NOx combustor based on premixed combustion technology, because its high flame speed, low ignition energy, and broad flammability limits can cause flashback and / or auto-ignition. On the other hand, a diffusion combustor suffers from the high flame temperature of syngas and the resulting high NOx emission. The authors applied a “multi-injection burner” (cluster burner) concept to a preliminary burner for hydrogen-rich syngas simulating that from IGCC with CCS. In a preliminary experiment under atmospheric pressure, the multi-injection burner worked without any flashback or any blowout. A prototype multi-cluster combustor based on the results of that preliminary study was made to be a dry low NOx combustor for hydrogen-rich syngas of IGCC with CCS. It was tested in experiments, which were carried out under medium pressure (0.6MPa) using test fuels simulating syngas from IGCC with a 0% carbon capture rate, a 30% carbon capture rate and a 50% carbon capture rate. The test fuels contained hydrogen, methane and nitrogen, and had hydrogen content ranging from 40% to 65%. The following conclusions were drawn from the test results: (1) The tested combustor allows stable combustion of fuels simulating 0%, 30%, and 50% CCS. (2) A convex perforated plate swirler is effective to suppress combustion oscillation, which allows NOx emissions to be less than 10ppm through the variation of fuel simulating 0%, 30% and 50% CCS.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Corbo, P., F. E. Corcione, M. Costa y F. Migliardini. "Fuel Processing for Hydrogen Fuel Cell Vehicles". En 2001 Internal Combustion Engines. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-24-0031.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Domingues, Rafael, Francisco Brójo y Pedro Oliveira. "CFD Analysis of the Combustion of Hydrogen Fuel on a CFM56-3 Combustor". En ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-95371.

Texto completo
Resumen
Abstract In the present work is made an overview of the use of hydrogen in aviation, the modifications needed to convert a conventional gas turbine to use hydrogen and a CFD simulation of an existent gas turbine burning hydrogen. The CFD simulation was done in a CFM56-3 combustor burning Jet A (as a reference standard) and hydrogen, with the intention of evaluate the viability of conversion of existent gas turbines to hydrogen, in a combustion point of view, by analyzing the emissions through ICAO’s LTO cycle while burning this fuel. ANSYS Fluent 2020R2 was the software used to perform the numerical study. The RSM was the viscous model used. Only the NOx emissions were assessed as pollutant once the hydrogen combustion products are reduced to water vapor and NOx. These emissions were evaluated through a detailed mechanism and the NOx model available on ANSYS to get a better concordance with the ICAO’s values. During this study, several sensibility studies were carried out for hydrogen burn, for instance, the analysis of the air flow with/without swirl in the primary zone and different inlet pressure and temperature for fuel.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Combustion hydrogène"

1

Beurlot, Kyle y Timothy Jacobs. PR457-242002-R01 Hydrogen and Natural Gas Mixtures in 2 Stroke Engines for Methane Reductions. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), febrero de 2025. https://doi.org/10.55274/r0000108.

Texto completo
Resumen
Large-bore natural gas two-stroke engines with lean-burn technology have been integral to the North American pipeline network for many years and will remain crucial for future gas transportation. As research focuses on achieving lower lean ignition limits, pre-combustion chambers have gained attention as a promising method to enhance combustion stability and engine reliability. However, retrofitting existing platforms with pre-combustion chambers may not always be financially viable, which calls for further exploration of alternative technologies that could reduce methane emissions from two-stroke open-chamber (OC) engines. Hydrogen dithering in natural gas has demonstrated potential for methane emissions reduction, yet significant gaps in understanding persist, particularly in terms of its impact on other pollutants like nitrogen oxides (NOx). This study intends to further research on evaluating various concentrations of hydrogen gas blended into a natural gas fuel stream on an OC engine platform as a pathway to reduce methane emissions. The resulting effects were then thoroughly analyzed to assess the impact on general combustion performance, including main chamber pressure, temperature, heat release rate, emissions, power levels, and rate of pressure rise.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Vieira, Greg, Titilope Banji, Rachel Lorenzen y Daniel Olsen. PR179-21205-R01 Methane Abatement from LB NG 2-Stroke Cycle Engines Through In-Cylinder Modifications. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), octubre de 2024. http://dx.doi.org/10.55274/r0000097.

Texto completo
Resumen
There are over 7000 of large bore integral compressor engines distributed along the interstate and intrastate natural gas pipelines in the United States for gas compression. Methane emissions from large bore engines stem primarily from poor combustion efficiency. This study aims to improve the combustion efficiency of these engines, by reducing the amount of unburned methane that can escape through the crankcase vent and the exhaust gas emissions. Two broad approaches are taken to achieve this objective using experimental testing and computational studies: hydrogen blending and late cycle high pressure fuel injection (HPFI). Multiple sweeps of natural gas/hydrogen blends are presented on the Cooper-Bessemer GMV-4TF utilizing two different configurations, (1) mechanical gas admission valve (MGAV) fuel injection with open chamber ignition and high-pressure fuel injection (HPFI) with pre-combustion chamber (PCC) ignition. Late-cycle high pressure fuel injection is evaluated by independently varying fuel injection timing at different injection pressures. Fuel/air mixing, methane blowby, and ring pack (crevice volume) methane emissions are quantified and used for performance assessment.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Pitz, W. y C. Westbrook. Chemical Kinetic Modeling of Hydrogen Combustion Limits. Office of Scientific and Technical Information (OSTI), abril de 2008. http://dx.doi.org/10.2172/928549.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Garrett Beauregard. Findings of Hydrogen Internal Combustion Engine Durability. Office of Scientific and Technical Information (OSTI), diciembre de 2010. http://dx.doi.org/10.2172/1031548.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Andre Boehman y Daniel Haworth. Hydrogen-Assisted IC Engine Combustion as a Route to Hydrogen Implementation. Office of Scientific and Technical Information (OSTI), septiembre de 2008. http://dx.doi.org/10.2172/950700.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Etemad, Shahrokh, Benjamin Baird y Sandeep Alavandi. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines. Office of Scientific and Technical Information (OSTI), junio de 2011. http://dx.doi.org/10.2172/1126867.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Swain, M. R. y M. N. Swain. Elimination of abnormal combustion in a hydrogen-fueled engine. Office of Scientific and Technical Information (OSTI), noviembre de 1995. http://dx.doi.org/10.2172/162498.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Lieuwen, Tim y Jared Kee. PR-592-16208-R01 Effect of Variability in Fuel on Operation and Reliability of Gas Turbine. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), marzo de 2017. http://dx.doi.org/10.55274/r0011023.

Texto completo
Resumen
Pipeline natural gas, while dominantly composed of methane, also contains various amounts of diluents, hydrogen, and hydrocarbons. The objective of this report is to describe how variations in fuel composition influence gas turbine emissions, operability, and operational range (turndown). A key point of this report is that these fuel composition sensitivities are not described by a single parameter, such as Wobbe index, but by different parameters depending upon the specific issue. For example, the autoignition time is an important parameter influencing autoignition risk, while flame speed has important influences on combustion instability and blowoff risk. This report explains these sensitivities, as well as approaches for identifying and mitigating operational risk. This report has a related webinar.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Santavicca, Dom y Tim Lieuwen. Combustion Dynamics in Multi-Nozzle Combustors Operating on High-Hydrogen Fuels. Office of Scientific and Technical Information (OSTI), septiembre de 2013. http://dx.doi.org/10.2172/1178997.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Payne, A. C. Jr y A. L. Camp. Parametric HECTR calculations of hydrogen transport and combustion at N Reactor. Office of Scientific and Technical Information (OSTI), junio de 1987. http://dx.doi.org/10.2172/6303891.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía