Literatura académica sobre el tema "Combinatorial and linear optimization"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Combinatorial and linear optimization".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Combinatorial and linear optimization"
Yannakakis, Mihalis. "Expressing combinatorial optimization problems by Linear Programs". Journal of Computer and System Sciences 43, n.º 3 (diciembre de 1991): 441–66. http://dx.doi.org/10.1016/0022-0000(91)90024-y.
Texto completoDonets, Georgy y Vasyl Biletskyi. "On Some Optimization Problems on Permutations". Cybernetics and Computer Technologies, n.º 1 (30 de junio de 2022): 5–10. http://dx.doi.org/10.34229/2707-451x.22.1.1.
Texto completoDE FARIAS, I. R., E. L. JOHNSON y G. L. NEMHAUSER. "Branch-and-cut for combinatorial optimization problems without auxiliary binary variables". Knowledge Engineering Review 16, n.º 1 (marzo de 2001): 25–39. http://dx.doi.org/10.1017/s0269888901000030.
Texto completoBarbolina, Tetiana. "Estimates of objective function minimum for solving linear fractional unconstrained combinatorial optimization problems on arrangements". Physico-mathematical modelling and informational technologies, n.º 32 (6 de julio de 2021): 32–36. http://dx.doi.org/10.15407/fmmit2021.32.055.
Texto completoPichugina, Oksana y Liudmyla Koliechkina. "Linear constrained combinatorial optimization on well-described sets". IOP Conference Series: Materials Science and Engineering 1099, n.º 1 (1 de marzo de 2021): 012064. http://dx.doi.org/10.1088/1757-899x/1099/1/012064.
Texto completoDonets, G. A. y V. I. Biletskyi. "On the Problem of a Linear Function Localization on Permutations". Cybernetics and Computer Technologies, n.º 2 (24 de julio de 2020): 14–18. http://dx.doi.org/10.34229/2707-451x.20.2.2.
Texto completoEngau, Alexander, Miguel F. Anjos y Anthony Vannelli. "On Interior-Point Warmstarts for Linear and Combinatorial Optimization". SIAM Journal on Optimization 20, n.º 4 (enero de 2010): 1828–61. http://dx.doi.org/10.1137/080742786.
Texto completoChung, Sung-Jin, Horst W. Hamacher, Francesco Maffioli y Katta G. Murty. "Note on combinatorial optimization with max-linear objective functions". Discrete Applied Mathematics 42, n.º 2-3 (abril de 1993): 139–45. http://dx.doi.org/10.1016/0166-218x(93)90043-n.
Texto completoBorissova, Daniela, Ivan Mustakerov y Lyubka Doukovska. "Predictive Maintenance Sensors Placement by Combinatorial Optimization". International Journal of Electronics and Telecommunications 58, n.º 2 (1 de junio de 2012): 153–58. http://dx.doi.org/10.2478/v10177-012-0022-6.
Texto completoMandi, Jayanta, Emir Demirovi?, Peter J. Stuckey y Tias Guns. "Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 02 (3 de abril de 2020): 1603–10. http://dx.doi.org/10.1609/aaai.v34i02.5521.
Texto completoTesis sobre el tema "Combinatorial and linear optimization"
Salazar-Neumann, Martha. "Advances in robust combinatorial optimization and linear programming". Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210192.
Texto completoUne des approches possibles pour résoudre des tels problèmes est de considérer les versions minimax regret, pour lesquelles résoudre un problème sous incertitude revient à trouver une solution qui s'écarte le moins possible de la valeur solution optimale dans tout les cas.
Dans le cas des incertitudes définies par intervalles, les versions minimax regret de nombreux problèmes combinatoires polynomiaux sont NP-difficiles, d'ou l'importance d'essayer de réduire l'espace des solutions. Dans ce contexte, savoir quand un élément du problème, représenté par une variable, fait toujours ou jamais partie d'une solution optimal pour toute réalisation des données (variables 1-persistentes et 0-persistentes respectivement), constitue une manière de réduire la taille du problème. Un des principaux objectifs de cette thèse est d'étudier ces questions pour quelques problèmes d'optimisation combinatoire sous incertitude.
Nous étudions les versions minimax regret du problème du choix de p éléments parmi m, de l'arbre couvrant minimum et des deux problèmes de plus court chemin. Pour de tels problèmes, dans le cas des incertitudes définis par intervalles, nous étudions le problème de trouver les variables 1- et 0-persistentes. Nous présentons une procédure de pre-traitement du problème, lequel réduit grandement la taille des formulations des versions de minimax regret.
Nous nous intéressons aussi à la version minimax regret du problème de programmation linéaire dans le cas où les coefficients de la fonction objectif sont incertains et l'ensemble des données incertaines est polyédral. Dans le cas où l'ensemble des incertitudes est défini par des intervalles, le problème de trouver le regret maximum est NP-difficile. Nous présentons des cas spéciaux ou les problèmes de maximum regret et de minimax regret sont polynomiaux. Dans le cas où l´ensemble des incertitudes est défini par un polytope, nous présentons un algorithme pour trouver une solution exacte au problème de minimax regret et nous discutons les résultats numériques obtenus dans un grand nombre d´instances générées aléatoirement.
Nous étudions les relations entre le problème de 1-centre continu et la version minimax regret du problème de programmation linéaire dans le cas où les coefficients de la fonction objectif sont évalués à l´aide des intervalles. En particulier, nous décrivons la géométrie de ce dernier problème, nous généralisons quelques résultats en théorie de localisation et nous donnons des conditions sous lesquelles certaines variables peuvet être éliminées du problème. Finalement, nous testons ces conditions dans un nombre d´instances générées aléatoirement et nous donnons les conclusions.
Doctorat en sciences, Orientation recherche opérationnelle
info:eu-repo/semantics/nonPublished
Iemets, O. O. y T. M. Barbolina. "Linear-fractional combinatorial optimization problems: model and solving". Thesis, Sumy State University, 2016. http://essuir.sumdu.edu.ua/handle/123456789/46962.
Texto completoCheng, Jianqiang. "Stochastic Combinatorial Optimization". Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112261.
Texto completoIn this thesis, we studied three types of stochastic problems: chance constrained problems, distributionally robust problems as well as the simple recourse problems. For the stochastic programming problems, there are two main difficulties. One is that feasible sets of stochastic problems is not convex in general. The other main challenge arises from the need to calculate conditional expectation or probability both of which are involving multi-dimensional integrations. Due to the two major difficulties, for all three studied problems, we solved them with approximation approaches.We first study two types of chance constrained problems: linear program with joint chance constraints problem (LPPC) as well as maximum probability problem (MPP). For both problems, we assume that the random matrix is normally distributed and its vector rows are independent. We first dealt with LPPC which is generally not convex. We approximate it with two second-order cone programming (SOCP) problems. Furthermore under mild conditions, the optimal values of the two SOCP problems are a lower and upper bounds of the original problem respectively. For the second problem, we studied a variant of stochastic resource constrained shortest path problem (called SRCSP for short), which is to maximize probability of resource constraints. To solve the problem, we proposed to use a branch-and-bound framework to come up with the optimal solution. As its corresponding linear relaxation is generally not convex, we give a convex approximation. Finally, numerical tests on the random instances were conducted for both problems. With respect to LPPC, the numerical results showed that the approach we proposed outperforms Bonferroni and Jagannathan approximations. While for the MPP, the numerical results on generated instances substantiated that the convex approximation outperforms the individual approximation method.Then we study a distributionally robust stochastic quadratic knapsack problems, where we only know part of information about the random variables, such as its first and second moments. We proved that the single knapsack problem (SKP) is a semedefinite problem (SDP) after applying the SDP relaxation scheme to the binary constraints. Despite the fact that it is not the case for the multidimensional knapsack problem (MKP), two good approximations of the relaxed version of the problem are provided which obtain upper and lower bounds that appear numerically close to each other for a range of problem instances. Our numerical experiments also indicated that our proposed lower bounding approximation outperforms the approximations that are based on Bonferroni's inequality and the work by Zymler et al.. Besides, an extensive set of experiments were conducted to illustrate how the conservativeness of the robust solutions does pay off in terms of ensuring the chance constraint is satisfied (or nearly satisfied) under a wide range of distribution fluctuations. Moreover, our approach can be applied to a large number of stochastic optimization problems with binary variables.Finally, a stochastic version of the shortest path problem is studied. We proved that in some cases the stochastic shortest path problem can be greatly simplified by reformulating it as the classic shortest path problem, which can be solved in polynomial time. To solve the general problem, we proposed to use a branch-and-bound framework to search the set of feasible paths. Lower bounds are obtained by solving the corresponding linear relaxation which in turn is done using a Stochastic Projected Gradient algorithm involving an active set method. Meanwhile, numerical examples were conducted to illustrate the effectiveness of the obtained algorithm. Concerning the resolution of the continuous relaxation, our Stochastic Projected Gradient algorithm clearly outperforms Matlab optimization toolbox on large graphs
Burer, Samuel A. "New algorithmic approaches for semidefinite programming with applications to combinatorial optimization". Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/30268.
Texto completoSidford, Aaron Daniel. "Iterative methods, combinatorial optimization, and linear programming beyond the universal barrier". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99848.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 256-266).
In this thesis we consider fundamental problems in continuous and combinatorial optimization that occur pervasively in practice and show how to improve upon the best known theoretical running times for solving these problems across a broad range of parameters. Using and improving techniques from diverse disciplines including spectral graph theory, numerical analysis, data structures, and convex optimization we provide the first theoretical improvements in decades for multiple classic problems ranging from linear programming to linear system solving to maximum flow. Key results in this thesis include the following: -- Linear Programming: We provide the first general improvement to both the running time and convergence rate of polynomial time algorithms for solving linear programs in over 15 years. For a linear program with constraint matrix A, with z nonzero entries, and bit complexity L our algorithm runs in time [mathematical formula] -- Directed Maximum Flow: We provide an [mathematical formula] time algorithm for solving the-maximum flow problem on directed graphs with m edges, n vertices, and capacity ratio U improving upon the running time of [mathematical formula] achieved over 15 years ago by Goldberg and Rao. -- Undirected Approximate Flow: We provide one of the first almost linear time algorithms for approximately solving undirected maximum flow improving upon the previous fastest running time by a factor of [mathematical formula] for graphs with n vertices. -- Laplacian System Solvers: We improve upon the previous best known algorithms for solving Laplacian systems in standard unit cost RAM model, achieving a running time of [mathematical formula] for solving a Laplacian system of equations. -- Linear System Solvers: We obtain a faster asymptotic running time than conjugate gradient for solving a broad class of symmetric positive definite systems of equations. * More: We improve the running time for multiple problems including regression, generalized lossy flow, multicommodity flow, and more.
by Aaron Sidford.
Ph. D.
Björklund, Henrik. "Combinatorial Optimization for Infinite Games on Graphs". Doctoral thesis, Uppsala University, Department of Information Technology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4751.
Texto completoGames on graphs have become an indispensable tool in modern computer science. They provide powerful and expressive models for numerous phenomena and are extensively used in computer- aided verification, automata theory, logic, complexity theory, computational biology, etc.
The infinite games on finite graphs we study in this thesis have their primary applications in verification, but are also of fundamental importance from the complexity-theoretic point of view. They include parity, mean payoff, and simple stochastic games.
We focus on solving graph games by using iterative strategy improvement and methods from linear programming and combinatorial optimization. To this end we consider old strategy evaluation functions, construct new ones, and show how all of them, due to their structural similarities, fit into a unifying combinatorial framework. This allows us to employ randomized optimization methods from combinatorial linear programming to solve the games in expected subexponential time.
We introduce and study the concept of a controlled optimization problem, capturing the essential features of many graph games, and provide sufficent conditions for solvability of such problems in expected subexponential time.
The discrete strategy evaluation function for mean payoff games we derive from the new controlled longest-shortest path problem, leads to improvement algorithms that are considerably more efficient than the previously known ones, and also improves the efficiency of algorithms for parity games.
We also define the controlled linear programming problem, and show how the games are translated into this setting. Subclasses of the problem, more general than the games considered, are shown to belong to NP intersection coNP, or even to be solvable by subexponential algorithms.
Finally, we take the first steps in investigating the fixed-parameter complexity of parity, Rabin, Streett, and Muller games.
Ferroni, Nicola. "Exact Combinatorial Optimization with Graph Convolutional Neural Networks". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17502/.
Texto completoWeltge, Stefan [Verfasser] y Volker [Akademischer Betreuer] Kaibel. "Sizes of linear descriptions in combinatorial optimization / Stefan Weltge. Betreuer: Volker Kaibel". Magdeburg : Universitätsbibliothek, 2015. http://d-nb.info/1082625868/34.
Texto completoWang, Xia. "Applications of genetic algorithms, dynamic programming, and linear programming to combinatorial optimization problems". College Park, Md.: University of Maryland, 2008. http://hdl.handle.net/1903/8778.
Texto completoThesis research directed by: Applied Mathematics & Statistics, and Scientific Computation Program. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Chakrabarty, Deeparnab. "Algorithmic aspects of connectivity, allocation and design problems". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24659.
Texto completoCommittee Chair: Vazirani, Vijay; Committee Member: Cook, William; Committee Member: Kalai, Adam; Committee Member: Tetali, Prasad; Committee Member: Thomas, Robin
Libros sobre el tema "Combinatorial and linear optimization"
Pardalos, P. M. Handbook of combinatorial optimization. New York: Springer, 2013.
Buscar texto completoDingzhu, Du y Pardalos P. M. 1954-, eds. Handbook of combinatorial optimization. Boston: Kluwer Academic Publishers, 1998.
Buscar texto completoMacGregor Smith, J. Combinatorial, Linear, Integer and Nonlinear Optimization Apps. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75801-1.
Texto completoDiaby, Moustapha. Advances in combinatorial optimization: Linear programming formulation of the traveling salesman and other hard combinatorial optimization problems. New Jersey: World Scientific, 2015.
Buscar texto completoPadberg, Manfred. Linear Optimization and Extensions. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999.
Buscar texto completoGerhard, Reinelt y SpringerLink (Online service), eds. The Linear Ordering Problem: Exact and Heuristic Methods in Combinatorial Optimization. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Buscar texto completoStrobach, Peter. Linear Prediction Theory: A Mathematical Basis for Adaptive Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990.
Buscar texto completoJonas, Mockus, ed. Bayesian heuristic approach to discrete and global optimization: Algorithms, visualization, software, and applications. Dordrecht: Kluwer Academic Publishers, 1997.
Buscar texto completoMahjoub, A. Ridha, Vangelis Markakis, Ioannis Milis y Vangelis Th Paschos, eds. Combinatorial Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32147-4.
Texto completoKorte, Bernhard y Jens Vygen. Combinatorial Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-56039-6.
Texto completoCapítulos de libros sobre el tema "Combinatorial and linear optimization"
Akgül, Mustafa. "The Linear Assignment Problem". En Combinatorial Optimization, 85–122. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77489-8_5.
Texto completoYang, Kai y Katta G. Murty. "Surrogate Constraint Methods for Linear Inequalities". En Combinatorial Optimization, 19–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77489-8_2.
Texto completoDongarra, Jack y Jerzy Waśniewski. "High Performance Linear Algebra Package - LAPACK90". En Combinatorial Optimization, 241–53. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4613-3282-4_11.
Texto completoNemhauser, George y Laurence Wolsey. "Linear Programming". En Integer and Combinatorial Optimization, 27–49. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118627372.ch2.
Texto completoDu, Ding-Zhu, Panos Pardalos, Xiaodong Hu y Weili Wu. "Linear Programming". En Introduction to Combinatorial Optimization, 129–74. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10596-8_6.
Texto completoPadberg, Manfred. "Combinatorial Optimization: An Introduction". En Linear Optimization and Extensions, 387–422. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-12273-0_10.
Texto completoAlevras, Dimitres y Manfred W.Padberg. "Combinatorial Optimization: An Introduction". En Linear Optimization and Extensions, 323–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56628-8_10.
Texto completoPinar, Mustafa Ç. y Stavros A. Zenios. "Solving Large Scale Multicommodity Networks Using Linear—Quadratic Penalty Functions". En Combinatorial Optimization, 225–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77489-8_12.
Texto completoBilbao, Jesús Mario. "Linear optimization methods". En Cooperative Games on Combinatorial Structures, 27–63. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4393-0_2.
Texto completoden Hertog, D., C. Roos y T. Terlaky. "The Linear Complementary Problem, Sufficient Matrices and the Criss-Cross Method". En Combinatorial Optimization, 253–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77489-8_18.
Texto completoActas de conferencias sobre el tema "Combinatorial and linear optimization"
Ma, Hyunjun y Q.-Han Park. "Constraint-Driven Method for Combinatorial Optimization". En 2024 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 1–2. IEEE, 2024. http://dx.doi.org/10.1109/cleo-pr60912.2024.10676554.
Texto completoYannakakis, Mihalis. "Expressing combinatorial optimization problems by linear programs". En the twentieth annual ACM symposium. New York, New York, USA: ACM Press, 1988. http://dx.doi.org/10.1145/62212.62232.
Texto completoBaioletti, Marco, Alfredo Milani y Valentino Santucci. "Linear Ordering Optimization with a Combinatorial Differential Evolution". En 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2015. http://dx.doi.org/10.1109/smc.2015.373.
Texto completoJin, Chen, Qiang Fu, Huahua Wang, Ankit Agrawal, William Hendrix, Wei-keng Liao, Md Mostofa Ali Patwary, Arindam Banerjee y Alok Choudhary. "Solving combinatorial optimization problems using relaxed linear programming". En the 2nd International Workshop. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2501221.2501227.
Texto completoLouchet, J., R. Mathurin y B. Rottembourg. "Combinatorial optimization and linear prediction approaches to rain cell tracking". En 26th AIPR Workshop: Exploiting New Image Sources and Sensors, editado por J. Michael Selander. SPIE, 1998. http://dx.doi.org/10.1117/12.300045.
Texto completoGadallah, M. H. y H. A. ElMaraghy. "A New Algorithm for Combinatorial Optimization". En ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0059.
Texto completoBeniwal, Gautam y Mohammad Rizwanullah. "Combinatorial Optimization of Non-linear Multicommodity Network Flow Using Pseudo Quasi-Newton Method". En 2022 International Conference on Computational Modelling, Simulation and Optimization (ICCMSO). IEEE, 2022. http://dx.doi.org/10.1109/iccmso58359.2022.00041.
Texto completoDrori, Iddo, Anant Kharkar, William R. Sickinger, Brandon Kates, Qiang Ma, Suwen Ge, Eden Dolev, Brenda Dietrich, David P. Williamson y Madeleine Udell. "Learning to Solve Combinatorial Optimization Problems on Real-World Graphs in Linear Time". En 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2020. http://dx.doi.org/10.1109/icmla51294.2020.00013.
Texto completoQuan, Ning y Harrison Kim. "A Tight Upper Bound for Grid-Based Wind Farm Layout Optimization". En ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59712.
Texto completoMitra, Mainak, Alparslan Emrah Bayrak, Stefano Zucca y Bogdan I. Epureanu. "A Sensitivity Based Heuristic for Optimal Blade Arrangement in a Linear Mistuned Rotor". En ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-75542.
Texto completoInformes sobre el tema "Combinatorial and linear optimization"
Bixby, Robert E. Notes on Combinatorial Optimization. Fort Belvoir, VA: Defense Technical Information Center, octubre de 1987. http://dx.doi.org/10.21236/ada455247.
Texto completoCoffrin, Carleton James. Combinatorial Optimization on D-Wave. Office of Scientific and Technical Information (OSTI), junio de 2018. http://dx.doi.org/10.2172/1454977.
Texto completoRadzik, Thomas. Newton's Method for Fractional Combinatorial Optimization,. Fort Belvoir, VA: Defense Technical Information Center, enero de 1992. http://dx.doi.org/10.21236/ada323687.
Texto completoGEORGE MASON UNIV FAIRFAX VA. Solving Large-Scale Combinatorial Optimization Problems. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1996. http://dx.doi.org/10.21236/ada327597.
Texto completoHoffman, Karla L. Solution Procedures for Large-Scale Combinatorial Optimization. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1993. http://dx.doi.org/10.21236/ada278242.
Texto completoPlotkin, Serge. Research in Graph Algorithms and Combinatorial Optimization. Fort Belvoir, VA: Defense Technical Information Center, marzo de 1995. http://dx.doi.org/10.21236/ada292630.
Texto completoWets, Roger D. Parametric and Combinatorial Problems in Constrained Optimization. Fort Belvoir, VA: Defense Technical Information Center, marzo de 1993. http://dx.doi.org/10.21236/ada264229.
Texto completoShepherd, Bruce, Peter Winkler y Chandra Chekuri. Fundamentals of Combinatorial Optimization and Algorithm Design. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2004. http://dx.doi.org/10.21236/ada423042.
Texto completoParekh, Ojas, Robert D. Carr y David Pritchard. LDRD final report : combinatorial optimization with demands. Office of Scientific and Technical Information (OSTI), septiembre de 2012. http://dx.doi.org/10.2172/1055603.
Texto completoJaillet, Patrick. Data-Driven Online and Real-Time Combinatorial Optimization. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2013. http://dx.doi.org/10.21236/ada592939.
Texto completo