Literatura académica sobre el tema "Colossal equivalent relative permittivity"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Colossal equivalent relative permittivity".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Colossal equivalent relative permittivity"
Dong, Wen, Wanbiao Hu, Terry J. Frankcombe, Dehong Chen, Chao Zhou, Zhenxiao Fu, Ladir Cândido et al. "Colossal permittivity with ultralow dielectric loss in In + Ta co-doped rutile TiO2". Journal of Materials Chemistry A 5, n.º 11 (2017): 5436–41. http://dx.doi.org/10.1039/c6ta08337d.
Texto completoKotb, Hicham Mahfoz, Adil Alshoaibi, Javed Mazher, Nagih M. Shaalan y Mohamad M. Ahmad. "Colossal Permittivity Characteristics of (Nb, Si) Co-Doped TiO2 Ceramics". Materials 15, n.º 13 (5 de julio de 2022): 4701. http://dx.doi.org/10.3390/ma15134701.
Texto completoHe, Jiayang, Yanwei Huang, Guang Feng, Si Shen, Ming Yan y Heping Zeng. "Rapid Laser Reactive Sintering Synthesis of Colossal Dielectric CCTO Ceramics". Applied Sciences 10, n.º 10 (19 de mayo de 2020): 3510. http://dx.doi.org/10.3390/app10103510.
Texto completoGiannoukos, Georgios, Mart Min y Toomas Rang. "Relative complex permittivity and its dependence on frequency". World Journal of Engineering 14, n.º 6 (4 de diciembre de 2017): 532–37. http://dx.doi.org/10.1108/wje-01-2017-0007.
Texto completoMahfoz Kotb, H., Osama Saber y Mohamad M. Ahmad. "Colossal relative permittivity and low dielectric loss in BaFe0.5Nb0.5O3 ceramics prepared by spark plasma sintering". Results in Physics 19 (diciembre de 2020): 103607. http://dx.doi.org/10.1016/j.rinp.2020.103607.
Texto completoVerma, A. K., Y. K. Awasthi y Himanshu Singh. "Equivalent isotropic relative permittivity of microstrip on multilayer anisotropic substrate". International Journal of Electronics 96, n.º 8 (agosto de 2009): 865–75. http://dx.doi.org/10.1080/00207210902851480.
Texto completoJurn, Yaseen Naser, Fareq Malek, Sawsen Abdulahadi Mahmood, Wei Wen Liu, Makram A. Fakhri y Muataz Hameed Salih. "Modelling and Simulation of Rectangular Bundle of Single-Walled Carbon Nanotubes for Antenna Applications". Key Engineering Materials 701 (julio de 2016): 57–66. http://dx.doi.org/10.4028/www.scientific.net/kem.701.57.
Texto completoWang, Ge, Hui Pan, Shimiao Lai, Yongjie Zhou, Li Wu, Huacheng Zhu y Yang Yang. "Dynamic Measurement of Relative Complex Permittivity of Microwave Plasma at Atmospheric Pressure". Processes 9, n.º 10 (13 de octubre de 2021): 1812. http://dx.doi.org/10.3390/pr9101812.
Texto completoBellucci, Stefano, Antonio Maffucci, Sergey Maksimenko, Federico Micciulla, Marco Migliore, Alesia Paddubskaya, Daniele Pinchera y Fulvio Schettino. "Electrical Permittivity and Conductivity of a Graphene Nanoplatelet Contact in the Microwave Range". Materials 11, n.º 12 (11 de diciembre de 2018): 2519. http://dx.doi.org/10.3390/ma11122519.
Texto completoPacini, Alex, Alessandra Costanzo y Diego Masotti. "A theoretical and numerical approach for selecting miniaturized antenna topologies on magneto-dielectric substrates". International Journal of Microwave and Wireless Technologies 7, n.º 3-4 (18 de mayo de 2015): 369–77. http://dx.doi.org/10.1017/s1759078715000859.
Texto completoTesis sobre el tema "Colossal equivalent relative permittivity"
Kader, Ammar. "Caractérisation et modélisation électromagnétique de multimatériaux composites : application aux structures automobiles". Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0056.
Texto completoThe main concern of this thesis is the characterization of the impacts of some composite materials on the main electromagnetic compatibility issues in a vehicle. The surface models of the dielectric materials are validated by confronting their simulated and measured permittivity. The surface model of the studied conductive material is validated by confronting it to a wire model and by measuring and simulating the S parameters on a structure constituted by such a material. It appears in both cases of dielectric and conductive composite materials that the surface impedance modeling technique gives a good description of the materials. The analysis of the effects of these materials on the EMC issues within a vehicle is done by use of a demonstrator representing the car body. The different equipment and harnesses embedded in a vehicle are represented in the demonstrator by some wires and monopoles. The evaluation of the impact of the composite materials on the EMC issues is done by measuring and simulating the different couplings within the demonstrator and between the demonstrator and a test antenna. The analysis of the different couplings confirms that the surface impedance material modeling approach describes well the materials under test. Concerning the impact of the composite materials on the EMC issues at a vehicle level, this analysis fulfills two main results. The first one concerns the dielectric materials. Indeed the use of these materials increases the different coupling by a value varying between at least 5 dB to 30 dB. The second conclusion concerns the use of conductive composite materials. It appears that they have no effect on the different couplings in comparison to the full steel structure
Fialka, Jiří. "Měření parametrů piezoelektrických materiálů". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-217770.
Texto completoActas de conferencias sobre el tema "Colossal equivalent relative permittivity"
Abukawa, S., T. Takabatake, Y. Namba y K. Tani. "Electrical Properties of Al2O3-TiO2 Plasma Sprayed Coatings for Electrode of Corona Discharge". En ITSC2011, editado por B. R. Marple, A. Agarwal, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima y A. McDonald. DVS Media GmbH, 2011. http://dx.doi.org/10.31399/asm.cp.itsc2011p0985.
Texto completo